
A Framework for Tracking Memory Accesses in Scientific Applications

Antonio J. Peña
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

Email: apenya@anl.gov

Pavan Balaji
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

Email: balaji@anl.gov

Abstract

Profiling is of great assistance in understanding
and optimizing applications’ behavior. Today’s profil-
ing techniques help developers focus on the pieces of
code leading to the highest penalties according to a
given performance metric. In this paper we describe
a pair of tools we have extended to complement the
traditional algorithm-oriented analysis. Our extended
tools provide new object-differentiated profiling capa-
bilities that help software developers and hardware
designers (1) understand access patterns, (2) identify
unexpected access patterns, and (3) determine whether
a particular memory object is consistently featuring a
troublesome access pattern. Memory objects found in
this way may have gone unnoticed with the traditional
profiling approach. This additional view may lead
developers to think of different ways of storing data,
leveraging different algorithms, or employing different
memory subsystems in future heterogeneous memory
systems.

1. Introduction

Analyzing applications’ performance has been of
interest since the early days of computers, with the
objective of exploiting the underlying hardware to
the greatest possible extent. As computational power
and the performance of data access paths have been
increasing, such analysis has become less crucial in
commodity applications. However, software profiling
is still largely used to determine the root of unexpected
performance issues, and it is especially relevant to
the high-end computing community, where code is
expected to be highly tuned.

The first modern profiling approaches used code
instrumentation to measure the time spent by different
parts of applications [1], [2]. Recognizing that the
same functional piece of code may behave differently
depending on the place from where it has been called
(i.e., its stack trace), researchers devised more ad-
vanced tools that use call graphs to organize profiling
information. This approach is limited, however, to
pointing to the conflicting piece of code consuming
large portions of execution time; it does not provide
any hint about the root of that time. For instance, a
highly optimized, compute-intensive task may legiti-
mately be spending a considerable amount of time,
hiding other possible candidates for optimization.

A more informative approach consists of differen-
tiating time spent in computation from that spent on
memory accesses. In current multilevel memory hier-
archies, cache hits pose virtually no penalty, whereas
cache misses are likely to lead to large amounts of
processor stall cycles. Cache misses, therefore, are a
commonly used metric to determine whether a perfor-
mance issue is caused by a troublesome data access
pattern.

In this regard, cache simulators have been used in
optimizing applications [3], [4]. The main benefit of
these is their flexibility, since they enable the cache
parameters to be easily changed and the analysis
repeated for different architectures. A disadvantage of
this profiling approach, however, is the large execution
timings caused by the intrinsically large cache simula-
tion and system emulation overheads.

The introduction of hardware counters enabled a
relatively accurate and fast method of profiling [5], [6],
[7]. These are based mainly on sampling the hardware
counters at a given frequency or determined by cer-
tain events and relating these measurements with the

code being executed. Both automated and user-driven
tools exist for this purpose, and in some cases code
instrumentation is not required. Unlike their simulator-
based counterpart, however, these limit the analysis
to the real platform on which they are executing on.
Although different architectures provide a different set
of counters, cache misses are commonly available and
a widely used profiling metric.

All these approaches are code focused. They point
developers to the place of code showing large execu-
tion time or large amounts of cache misses. However,
it is not uncommon to perform accesses to different
memory objects from the same line of code. For in-
stance, a matrix-matrix multiplication implementation
is likely to access all three memory buffers in the
same line of code. In this case, a code-oriented profiler
would not provide enough information to determine the
root of the problem.

The approach pursued in this paper is intended to
complement that view, separating those performance
metrics by memory object1 [8], [9]. The intent of
this approach is to expose particular objects showing
problematic access patterns throughout the execution
lifetime, which may be imperceptible from a traditional
approach. This view focuses on data objects rather than
lines of code.

In this paper we present a pair of tools we de-
veloped on top of state-of-the art technologies. We
incorporated per-object tracing capabilities into the
widely used Valgrind instrumentation framework [10].
Next, we extended two of the tools from its large
ecosystem to demonstrate the possibilities of our ap-
proach: Lackey [11] and Callgrind [4]. We describe
the intrinsics of our developments with the hope that
they prove useful for subsequent extensions and re-
search, such as profilers and runtime systems targeting
heterogeneous memory systems. Indeed, we envision
memory-object differentiation to be a basic technique
in these emerging systems as a means of determining
the most appropriate memory subsystem on which to
host the different memory objects according to their
access pattern.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the Valgrind instrumentation frame-
work as the basis for our developed tools. Sections 3
and 4 describe our modifications to incorporate per-
object differentiation capabilities into the Valgrind core

1. We refer as “memory object” to every memory entity as seen
from the code level, that is, statically and dynamically allocated
variables and buffers.

Figure 1. Simplified high-level view of the interac-
tion between Valgrind and its tools.

and the two tools we target. Section 5 reviews related
work, and Section 6 provides concluding remarks and
ideas for the future work.

2. Valgrind

Valgrind is a generic instrumentation framework. A
set of tools making use of this generic core constitutes
the Valgrind ecosystem. Valgrind’s most-used tool is
Memcheck [12], a memory debugger, executed by
default on Valgrind’s invocation.

Valgrind can be seen as a virtual machine. It per-
forms just-in-time compilation, translating the code to
a processor-agnostic intermediate representation (IR),
which the tools are free to analyze and modify.2 Tools
tend to use this process for inserting hooks (instrument)
to perform different tasks at run time. This code is
taken back by the Valgrind core to be executed. The
process is performed repeatedly in chunks of code
featuring a single entry and multiple exit points, called
“super blocks” (SBs), as depicted in Figure 1.

The main drawback of this process is the in-
curred overhead. Typically the code translation process

2. The tools do not directly interact with the IR itself but, rather,
with a high-level application programming interface (API) and
processed data structures to manage it.

itself—ignoring the tool’s tasks—poses an overhead of
around 4x to 5x.

Valgrind exposes a rich API to its tools, plus a
client request mechanism for final applications to in-
teract with the tools if needed. The API enables tools to
interact with the Valgrind core, for instance, to inform
the core of the required capabilities at initialization
time, get debug information about the executed code
generated by the compiler (typically code compiled
with the -g option), manage stack traces, or get
information about the thread status. It also provides
a set of high-level containers such as arrays, sets, or
hash tables. In addition, it facilitates the possibility of
intercepting the different memory allocation calls to
enable tools to provide specific wrappers for them. The
client request mechanism enables capabilities such as
starting and stopping the tool instrumentation on de-
mand to save execution time on uninteresting portions
of code.

In the following we introduce the two tools we have
extended: Lackey and Callgrind.

2.1.Lackey

Lackey is an example tool designed to show Val-
grind’s capabilities and its interaction with tools. Its
main functionality is to provide basic statistics about
the executed code, such as number of calls to user-
specified functions, number of conditional branches,
amount of superblocks, and number of guest instruc-
tions. It can also provide counts of load, store, and
ALU (arithmetic logic unit) operations. Furthermore,
it offers the possibility of memory tracing, that is,
printing the size and address of (almost) every memory
access made during the execution. We will focus on
this last capability. Listing 1 shows an excerpt of a
sample output from this tool with the memory tracing
functionality enabled.

Our extensions enable Lackey to differentiate mem-
ory accesses to different objects, which will provide
application developers and hardware designers with
information about raw access patterns to the different
memory objects.

2.2.Callgrind

Callgrind is autodefined as “a call-graph generating
cache and branch prediction profiler” and is intended
to be a profiling tool. By default, it collects the number

Listing 1. Sample output from Lackey.
I 04e9f363,5
S 7fefff4b8,8
I 04f23660,3
I 04f23663,7
L 05215e60,8
I 04f2366a,6
I 04f23670,6
I 04f23676,2
I 04f23691,3
I 04f23694,3
I 04f23697,2
==16084==
==16084== Counted 1 call to main()
==16084==
==16084== Jccs:
==16084== total: 567,015
==16084== taken: 312,383 (55%)
==16084==
==16084== Executed:
==16084== SBs entered: 511,667
==16084== SBs completed: 357,784
==16084== guest instrs: 3,279,975
==16084== IRStmts: 18,712,277
==16084==
==16084== Ratios:
==16084== guest instrs : SB entered = 64 : 10
==16084== IRStmts : SB entered = 365 : 10
==16084== IRStmts : guest instr = 57 : 10
==16084==
==16084== Exit code: 0

of instructions, the number of function calls, and the
caller-callee relationship among function calls (the call
graph). All this data is related to their source lines of
code. If the cache simulation is enabled, cache misses
can be used as a performance metric. By default, it sim-
ulates a cache hierarchy featuring the characteristics of
the host computer, with the aim of providing an accu-
rate estimation of the host cache behavior. Although
in practice the provided measurements diverge from
those obtained by separate tools based on hardware
counters, it is still a useful profiling tool: the fact
that the simulated cache does not behave exactly as
the physical one is not relevant if the profiling goal
is to determine cache-unfriendly accesses and fix the
application’s access pattern not only for a particular
cache implementation. Additional Callgrind’s features
include a branch predictor and a hardware prefetcher.
The call-graph functionality differentiates this tool
from Cachegrind [13], from which it borrows some
code.

After Callgrind has profiled an application, one can
use KCachegrind as a postprocessing tool that enables
the graphic visualization of the collected data. It loads
an output file from Callgrind and displays the collected
counters in an interactive way, enabling the user to
navigate through this information. Figure 2 shows a

snapshot from the visualization tool for a sample run
of the MiniMD [14] code.3

We have extended this profiler to differentiate per-
object cache misses. We have also fully integrated our
developments with KCachegrind in order to provide
the information graphically.

3. Core Extensions

Our extensions are based on the development
branch of Valgrind 3.10.0. In this section we introduce
the integration of the new functionality not specifically
related to a particular tool. The next section will cover
the way we extended two Valgrind tools, Lackey and
Callgrind, to make use of these new capabilities.

Our modifications are focused on enabling the
differentiation of memory objects. To this end, we
incorporate functionality to locate the memory object
comprising a given memory address and to store its as-
sociated access data. For our purpose, we differentiate
two types of memory objects: statically and dynami-
cally allocated. These require two different approaches,
as explained below.

3.1.Statically Allocated Memory Objects

Our changes concentrate in the debug information
functionality that Valgrind exposes to its tools. This
functionality requires applications to be compiled with
embedded debug information (usually by means of the
-g compiler option). We developed a new function
to locate and record a variable access (if found),
along with auxiliary functions to handle the debug
information objects to be considered or ignored, get
the debug information from a variable handler, retrieve
or print the gathered access information, trace a user-
defined set of variables only, and associate tool-defined
identifiers to the variable objects. In addition, we
extended the variable data structure with two triplets
of 64-bit counters that represent the load, store, and
modify information relative to the number of accesses
and bytes accessed. The “modify” counters are exposed
for performance purposes in case the tool performs
that distinction. Also incorporated are fields to store
whether the variable has been explicitly requested to
be traced and a user identifier.

3. MiniMD is a reduced version of the LAMMPS molecular
dynamics simulator [15], [16], [17].

Listing 2. Example of scopes.
// Scope #1
// i1 is valid
i n t i1;
{
// Scope #2
// i1 and i2 are valid
i n t i2;

}
// Scope #1
// Only i1 is valid again

The information about the statically allocated vari-
ables is distributed among the different binary ob-
jects constituting an application, including the differ-
ent dynamic libraries an application may use. The
internal Valgrind representation holds this information
in a linked list of objects—one per binary object.
In addition, different scopes may exist on which the
different statically allocated variables may or may not
be exposed depending on the current program counter
(see an example in Listing 2). Note that the address of
each variable is defined only when its scope is active.

We follow the algorithm already employed by Val-
grind to locate statically allocated variables, leveraged
for instance by Memcheck to indicate the location of
an illegal access. This algorithm (see pseudocode in
Listing 3) performs the following steps:

1) Iterate through the stack trace, and get the
instruction pointer (IP).

2) Traverse the debug information object list to
find that corresponding to IP.

3) Bring the found debug information object to
the front of the list (optimization).

4) Iterate through the debug information scopes,
working outwards.

5) Extract the set of variables in the current
scope (valid for the current program counter
on the current stack trace level).

6) Iterate over them until one is found compris-
ing the target address.

The asymptotic computational cost of this algo-
rithm is

O(st× (dio+ sao)),

where st is the maximum stack trace depth, dio is
the number of debug information objects, and sao
the maximum number of statically allocated objects
defined for a given IP.

Note that this distribution of the variables—derived
from the DWARF format [18] designed mainly for

Figure 2. Snapshot of KCachegrind for a simple run of MiniMD.

Listing 3. Algorithm to find statically allocated
variables.
f o r instruction_ptr in stack_trace:
debug_info = debug_info_list
whi le debug_info:

i f instruction_ptr in debug_info.txt_mapping:
debug_info_list.bring_front(debug_info)
From inner to outer
f o r scope in debug_info_scopes:
vars = scope.get_variables(instruction_ptr)
f o r var in vars:

i f address in var:
re turn var.user_id

debug_info = debug_info.next
re turn MEM_OBJ_NOT_FOUND

debuggers—permits performing a search through the
statically allocated variables defined for the current
IP only. On the other hand, the address on which a
variable is defined is computed on demand follow-
ing Valgrind’s original approach, precluding a binary
search within the scope. In future work we plan to
explore the viability of precomputing the addresses
of the different variables of a scope every time they
become active, in order to enable scopewise binary
searches.

Since this process is time consuming and since
users are likely to focus primarily on its application
variables—not including external libraries, by default
this new functionality will consider only the debug

information in the object containing the main entry
point (that is, the executable object). Tools can fully
control the debug information objects to be considered.

3.2.Dynamically Allocated Memory Objects

Taking advantage of Valgrind’s capabilities, we
intercept the application calls to the memory manage-
ment routines and provide wrappers for them. Fol-
lowing Valgrind’s infrastructure, this feature is im-
plemented on the tool side as a separate module,
since the management of the memory handling routines
is expected to be tool dependent. Nevertheless, our
developed code is common for the different tools. On
the other hand, the exposed API is similar to the case
of statically allocated variables described above.

The information about the dynamically allocated
objects is kept within an ordered set using the starting
memory address of the memory objects as the sorting
index. This approach enables binary searches whose
asymptotic computational cost is

O(log dao),

where dao is the number of dynamically allocated ob-
jects of a given application. This algorithm is enabled
by the fact that the dynamically allocated objects reside
in the global scope (in other words, they are globally

Listing 4. Example of objects eligible to have their
accesses merged: matrix creation.
f l o a t *vector = (f l o a t *) malloc(HEIGHT);
f o r(i n t i=0; i<HEIGHT; i++) {

vector[i] = malloc(WIDTH);
}

Listing 5. Example of objects eligible to have their
accesses merged: temporary buffers.
void auxiliary_function(size_t size) {

char *tmp_buf = (char *) malloc(size);
// ...
free(tmp_buf);

}

i n t main(void) {
size_t size;
f o r(i n t i=0; i<N; i++) {

// ...
auxiliary_function(size);
// ...

}
}

accessible), and hence their addresses do not change
among scopes.

We also implemented a merge technique for this
kind of memory object, similar to that described in [8].
Merging the accesses of different memory objects,
provided that these were created in the same line of
code and feature a common stack trace, provides a
unique view of objects that, in spite of being created
by separate memory allocation calls, are likely to be
considered as a single object from an application-level
view. As an example, consider a loop allocating an
array of lists as part of a matrix (see Listing 4), or an
object being repeatedly created and destroyed when
entering and leaving a function (Listing 5). Note that
the latter needs to be called from the same line of code
(i.e., within a loop) in order to meet the condition of
sharing the same stack trace. This feature is optional
and can be disabled by the tool.

4. Extending Valgrind Tools

This section covers the extensions we made to
the Lackey and Callgrind tools from the Valgrind
ecosystem, as well as sample use cases.

Listing 6. Sample memory trace from our ex-
tended Lackey.
I 0040b532,3
S ffeffef20,8 L timer+0 [ljs.cpp:271]
I 0040b535,4
S 057acd10,8 D +0 1392
I 0040b539,5
S 057acd18,8 D +8 1392
I 0040b53e,5
S 057acd20,8 D +16 1392
I 0040b543,5
S 057acd28,8 D +24 1392
I 0040b548,5
S 057acd30,8 D +32 1392

4.1.Lackey

Lackey instruments the code to get different statis-
tics about the executed application. Moreover, it pro-
vides memory access tracing capabilities that report
the type (instruction, store, load, or modify), address,
and size of the access (see Listing 1). We focused on
this last feature, extending it to identify the memory
object accessed.

We modified the memory tracing feature to make
use of the functionality described in Section 3. Follow-
ing the observation that applications tend to feature
far fewer dynamically allocated objects than their
statically allocated counterpart and that they tend to
cover a much larger amount of memory space, we first
performed the search in the dynamic set of objects for
performance purposes.

Listing 6 shows an excerpt from the output of our
extended tool. For each access to a known memory
object, it specifies its type (G: global, L: local, D:
dynamic). In the static case (G or L), the name of the
variable, the offset from the beginning of the buffer,
and the name and line of the file defining it are printed.
For the dynamic case, an execution context identifier
is provided. Listing 7 shows the final summary from
our tool, including the totals per object as well as
the grand totals. The section for dynamically allocated
objects contains the execution context identifier used
in the memory trace. This output can be sorted by any
column as requested by the user.

The output showed in listing 6 is intended to be vi-
sualized for (very) short executions. To facilitate post-
processing analysis, we also provide CSV-formatted
output. This output additionally includes the instruction
counter and the execution context identifier of the line
of code of each memory access. It does not include
instruction accesses, since they are out of the scope of

Listing 7. Excerpt of a summary of an execution by our extended Lackey.
==10322== 1.- Access to Statically-Allocated Memory
==10322==
==10322== Loads Stores Accesses Load Bytes Store Bytes Total Bytes T Size Location
==10322== ---
==10322==
==10322== -- /home/user/soft/miniMD_1.2/miniMD_ref/miniMD --
==10322== 0 1 1 0 8 8 L 8 argv [ljs.cpp:72]
==10322== 2 0 2 16 0 16 L 8 comm [integrate.cpp:71]

--- Some contents skipped from this sample excerpt ---
==10322== ---
==10322== 21,033 1,148 22,181 126,080 5,445 131,525 T 3,016
==10322==
==10322== 2.- Access to Dynamically-Allocated Memory
==10322==
==10322== Loads Stores Accesses Load Bytes Store Bytes Total Bytes T Size EC
==10322== ---
==10322==
==10322== 5,400 5,400 10,800 43,200 43,200 86,400 D 16,000 ECU #1384
==10322== malloc [buf_send = (MMD_float*) malloc((maxsend + BUFMIN) * sizeof(MMD_float));]
==10322== Comm::Comm() [/home/user/soft/miniMD_1.2/miniMD_ref/Obj_default/comm.cpp:47]
==10322== main [/home/user/soft/miniMD_1.2/miniMD_ref/Obj_default/ljs.cpp:270]
==10322==
==10322== 18 15 33 144 120 264 D 40 ECU #1392
==10322== malloc [array = (double*) malloc(TIME_N * sizeof(double));]
==10322== Timer::Timer() [/home/user/soft/miniMD_1.2/miniMD_ref/Obj_default/timer.cpp:38]
==10322== main [/home/user/soft/miniMD_1.2/miniMD_ref/Obj_default/ljs.cpp:271]

--- Some contents skipped from this sample excerpt ---
==10322== ---
==10322== 34,370 95,659 130,029 248,772 771,408 1,020,180 T 2,333,792
==10322==
==10322== 3.- Grand Totals
==10322==
==10322== Loads Stores Accesses Load Bytes Store Bytes Total Bytes Size
==10322== ---
==10322==
==10322== 55,403 96,807 152,210 374,852 776,853 1,151,705 2,336,808

our extensions. Another useful capability we included
is the option to annotate the output from the user source
(using Valgrind’s client request capabilities), in order
to facilitate the identification of different parts of the
code of interest to users.

To demonstrate the possibilities of this tool, we
have developed a simple script to analyze and plot the
CSV output from our extended Lackey tool. Figure 3
shows a pair of examples of this analysis from the
CESAR mini-apps [19]. These are from short runs
of CIAN (CESAR Integrated Analytics) in Figure 3a
and Nekbone in Figure 3b. In this case we selected
the most-used dynamically allocated variables from the
summary of the accesses. In addition, we included an
annotation in the Nekbone case to plot a vertical line
in order to identify a point of interest in the graph.
The figure shows the cumulative per-object loads and
stores after each instruction executed.

4.2.Callgrind

In Callgrind we followed a similar approach as in
Lackey to identify the accesses to the different memory
objects. This tool helps target cache misses, that is,
accesses to the main memory rather than raw accesses.
With these capabilities, users are able to explore the
per-object cache misses. We included the same tracing
capabilities as in Lackey, enabling the analysis of the
per-object cache misses along the execution of the pro-
gram. Similar graphs to those shown in Figure 3 can be
obtained from our extended Callgrind, although com-
prising main memory accesses (cache misses) rather
than raw accesses. In addition, we included support
for integration with the KCachegrind visualization tool,
by making use of the existing infrastructure. Figure 4
shows a snapshot of a KCachegrind output for MiniMD
from our extended Callgrind, displaying the read cache
misses for the memory object with execution context
identifier 1636.

(a) CIAN coupling raw access pattern to the four most
accessed memory buffers.

(b) Nekbone raw access pattern to the five most-
accessed memory buffers.

Figure 3. Example of raw access patterns from the
extended Lackey tool.

5. Related Work

A previous study on hardware-assisted object-
differentiated profiling [9] extends the Sun ONE Stu-
dio compilers and performance tools to offer object-
differentiated profiling based on hardware counters.
While this technique features low overheads, it does
not provide the flexibility of the software solutions
based on system emulators. In addition, because of the
intrinsics of the hardware architectures, its granularity
is limited.

MemSpy [8], [20] was an early “prototype tool”
providing object-differentiated profiling. It imple-
mented a technique similar to ours to merge accesses

to different memory objects. It was based on the
Tango [21] system simulator. To the best of our knowl-
edge, this tool was never made publicly available, and
both the Tango and MemSpy projects were discontin-
ued. An interesting feature of this tool is the simulation
of the memory subsystem, enabling the possibility
of using the processor stall cycles as a performance
metric.

In our research we attempt to revive the work
started by these previous approaches by providing
object differentiation capabilities to a state-of-the-art
framework: Valgrind. We aim our tools to be useful
for today’s application profiling needs and the basis for
advanced functionality and research (see Section 6).

On the other hand, we find a recent similar Valgrind
tool on Gleipnir [22], [23], [24], which provides object-
differentiated data access tracing. It is integrated with
the Gl cSim cache simulator, based on DineroIV [25].
This tool is focused on analyzing the cache behavior
of the different data structures of applications. This
tool differs from our work in that our tools do not
focus on cache performance issues, but provide object-
differentiated access pattern information. In addition,
in our extended Callgrind tool, we directly analyze
memory accesses within the cache simulator, thus
avoiding generating large trace files and consequently
eliminating the time overhead that implies.

6. Conclusions and Future Work

In this paper we have presented a pair of tools
providing object-differentiated analysis based on a
state-of-the-art and widely used technology: the Val-
grind instrumentation framework. We have described
our design and the implementation details, and we
have illustrated its use in two tools in the Valgrind
ecosystem—Lackey and Callgrind—that we extended
for this purpose. Our extensions to Lackey enable the
analysis of the raw access patterns to the different
objects, which can be useful for detecting unexpected
accesses. The per-object capabilities we incorporated
into Callgrind provide an additional profiling view to
developers, by exposing memory objects presenting
consistently troublesome access patterns, which may
have been hidden in traditional profiling approaches;
and this additional view may help in designing differ-
ent algorithmic approaches.

In future work we will explore the possibility of
adding memory simulators such as DRAMSim2 [26]

Figure 4. Snapshot of the KCachegrind tool with extended per-object information.

to our framework, to enable the measurement of pro-
cessor stall cycles. Our goal is to use the extended
tools along with the memory simulator in the study of
heterogeneous memory systems, in order to determine
the best memory subsystem in which to place the
different objects according to their out-of-die access
patterns.

Acknowledgments

This work was supported by the U.S. Dept. of
Energy, Office of Advanced Scientific Computing Re-
search (SC-21), under contract DE-AC02-06CH11357.

References

[1] S. L. Graham, P. B. Kessler, and M. K. Mckusick,
“Gprof: A call graph execution profiler,” ACM Sigplan
Notices, vol. 17, no. 6, pp. 120–126, Jun. 1982.

[2] A. Srivastava and A. Eustace, “ATOM: A system for
building customized program analysis tools,” ACM
SIGPLAN Notices – Best of PLDI 1979–1999, vol. 39,
no. 4, pp. 528–539, Apr. 2004.

[3] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob,
“CMP$im: A Pin-based on-the-fly multi-core cache
simulator,” in Proceedings of the Fourth Annual Work-
shop on Modeling, Benchmarking and Simulation
(MoBS), 2008, pp. 28–36.

[4] J. Weidendorfer, M. Kowarschik, and C. Trinitis, “A
tool suite for simulation based analysis of memory ac-
cess behavior,” in Computational Science-ICCS 2004.
Springer, 2004, pp. 440–447.

[5] S. Browne, J. Dongarra, N. Garner, K. London, and
P. Mucci, “A scalable cross-platform infrastructure
for application performance tuning using hardware
counters,” in Supercomputing, ACM/IEEE 2000 Con-
ference, Nov 2000, pp. 1–42.

[6] A. C. de Melo, “The new Linux ’perf’ tools,” in Linux
Kongress, 2010.

[7] W. E. Cohen, “Tuning programs with OProfile,” Wide
Open Magazine, vol. 1, pp. 53–62, 2004.

[8] M. Martonosi, A. Gupta, and T. Anderson, “MemSpy:
Analyzing memory system bottlenecks in programs,”
ACM SIGMETRICS Performance Evaluation Review,
vol. 20, no. 1, pp. 1–12, 1992.

[9] M. Itzkowitz, B. J. Wylie, C. Aoki, and N. Kosche,
“Memory profiling using hardware counters,” in Su-
percomputing, 2003 ACM/IEEE Conference. IEEE,
2003, pp. 1–13.

[10] N. Nethercote and J. Seward, “Valgrind: a framework
for heavyweight dynamic binary instrumentation,” in
ACM Sigplan Notices, vol. 42, no. 6. ACM, 2007,
pp. 89–100.

[11] ValgrindTM Developers, “Lackey: an example tool,”
http://valgrind.org/docs/manual/lk-manual.html, 2013.

[12] J. Seward and N. Nethercote, “Using Valgrind to
detect undefined value errors with bit-precision.” in
USENIX Annual Technical Conference, General Track,
2005, pp. 17–30.

[13] N. Nethercote, “Dynamic binary analysis and instru-
mentation,” Ph.D. dissertation, University of Cam-
bridge, 2004.

[14] M. A. Heroux, D. W. Doerfler, P. S. Crozier,
J. M. Willenbring, H. C. Edwards, A. Williams,
M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-
applications,” Sandia National Laboratories, Tech.
Rep., Sep. 2009, http://www.sandia.gov/∼maherou/
docs/MantevoOverview.pdf.

[15] S. Plimpton, “Fast parallel algorithms for short-
range molecular dynamics,” Journal of Computational
Physics, vol. 117, no. 1, pp. 1–19, 1995.

[16] S. Plimpton, R. Pollock, and M. Stevens, “Particle-
mesh ewald and rRESPA for parallel molecular dy-
namics simulations,” in Proceedings of the Eighth
SIAM Conference on Parallel Processing for Scientific
Computing, 1997.

[17] Sandia National Laboratories, “LAMMPS molecular
dynamics simulator,” http://lammps.sandia.gov, 2014.

[18] M. J. Eager, “Introduction to the DWARF debug-
ging format,” http://www.dwarfstd.org/doc/Debugging
using DWARF.pdf, 2007.

[19] Argonne National Laboratory, “Center for exascale
simulation of advanced reactors,” http://cesar.anl.gov,
2014.

[20] M. Martonosi, A. Gupta, and T. E. Anderson, “Tuning
memory performance of sequential and parallel pro-
grams,” Computer, vol. 28, no. 4, pp. 32–40, 1995.

[21] H. Davis, S. R. Goldschmidt, and J. L. Hennessy,
“Tango: a multiprocessor simulation and tracing sys-
tem,” in Proceedings of the International Conference
on Parallel Processing, Aug. 1991, pp. 99–107.

[22] T. Janjusic and K. Kavi, “Gleipnir: A memory pro-
filing and tracing tool,” ACM SIGARCH Computer
Architecture News, vol. 41, no. 4, pp. 8–12, 2013.

[23] T. Janjusic, K. M. Kavi, and C. Kartsaklis, “Trace
driven data structure transformations,” in 2012 SC
Companion: High Performance Computing, Network-
ing, Storage and Analysis (SCC). IEEE, 2012, pp.
456–464.

[24] T. Janjusic, K. Kavi, and B. Potter, “Gleipnir: A
memory analysis tool,” in International Conference on
Computational Science (ICCS), Jun. 2011.

[25] J. Edler and M. D. Hill, “Dinero IV
trace-driven uniprocessor cache simulator,”
http://pages.cs.wisc.edu/ markhill/DineroIV, 1998.

[26] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAM-
Sim2: A cycle accurate memory system simulator,”
Computer Architecture Letters, vol. 10, no. 1, pp. 16–
19, jan.-june 2011.

