
Special Issue Article

The International Journal of High
Performance Computing Applications
2014, Vol. 28(4) 390–405
� The Author(s) 2014
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342014548772
hpc.sagepub.com

Enabling communication concurrency
through flexible MPI endpoints

James Dinan1, Ryan E Grant2, Pavan Balaji3, David Goodell4,
Douglas Miller5, Marc Snir3 and Rajeev Thakur3

Abstract
MPI defines a one-to-one relationship between MPI processes and ranks. This model captures many use cases effectively;
however, it also limits communication concurrency and interoperability between MPI and programming models that uti-
lize threads. This paper describes the MPI endpoints extension, which relaxes the longstanding one-to-one relationship
between MPI processes and ranks. Using endpoints, an MPI implementation can map separate communication contexts
to threads, allowing them to drive communication independently. Endpoints also enable threads to be addressable in
MPI operations, enhancing interoperability between MPI and other programming models. These characteristics are illu-
strated through several examples and an empirical study that contrasts current multithreaded communication perfor-
mance with the need for high degrees of communication concurrency to achieve peak communication performance.

Keywords
MPI, endpoints, hybrid parallel programming, interoperability, communication concurrency

1. Introduction

Hybrid parallel programming in the ‘‘MPI+X’’ model
has become the norm in high-performance computing.
This approach to parallel programming mirrors the
hierarchy of parallelism in current high-performance
systems, in which a high-speed interconnect joins many
highly parallel nodes. While MPI is effective at manag-
ing internode parallelism, alternative data-parallel, fork-
join, and offload models are needed to utilize current
and future highly parallel nodes effectively.

In the MPI+X programming model, multiple cores
are utilized by a single MPI process with a shared MPI
rank. As a result, communication for all cores in the
MPI process is effectively funneled through a single
MPI address and its corresponding communication
context. As processor core counts have increased, high-
speed interconnects have evolved to provide greater
resources to support concurrent communications with
multiple cores. For such networks, a growing number
of cores must be used in order to realize peak perfor-
mance (Underwood et al., 2007; Blagojević et al., 2010;
Dózsa et al., 2010; Barrett et al., 2013). This situation
is at odds with conventional hybrid programming tech-
niques, where the node is partitioned by several MPI
processes and communications are funneled through a
small fraction of the cores.

Interoperability between MPI and other parallel
programming systems has long been a productivity
and composability goal in the parallel programming
community. The widespread adoption of MPI+X par-
allel programming has put additional pressure on the
community to produce a solution that enables full
interoperability between MPI and system-level pro-
gramming models, such as X10, Chapel, Charm++,
UPC, and Coarray Fortran, as well as node-level pro-
gramming models such as OpenMP*, threads, and
Intel� TBB. A key challenge to interoperability is the
ability to generate additional MPI ranks that can be
assigned to threads used in the execution of such
models.

The MPI 3.0 standard resolved several issues affect-
ing hybrid parallel programming with MPI and
threads, but it did not include any new mechanisms to
address these foundational communication

1Intel Corporation, Hudson, MA, USA
2Sandia National Laboratories, Albuquerque, NM, USA
3Argonne National Laboratory, Lemont, IL, USA
4Cisco Systems Incorporated, San Jose, CA, USA
5International Business Machines Corporation, Rochester, MN, USA

Corresponding author:

James Dinan, Intel Corporation, 75 Reed Road, Hudson, MA 01749, USA.

Email: james.dinan@intel.com

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342014548772&domain=pdf&date_stamp=2014-09-23

concurrency and interoperability challenges. In current
multithreaded MPI programs, the programmer must
use either tags or communicators to distinguish com-
munication operations between individual threads.
However, both approaches have significant limitations.
When tags are used, it is not possible for multiple
threads sharing the rank of an MPI process to partici-
pate in collectives. In addition, when multiple threads
perform wildcard receive operations, matching is non-
deterministic. Using multiple communicators can side-
step some of these restrictions, but at the expense of
partitioning threads into individual communicators
where only one thread per parent process can be pres-
ent in each new communicator.

Several solutions to the communication concurrency
challenge have been explored, including internally par-
allelizing MPI processing (Kumar et al., 2012; Tanase
et al., 2012) and modifying the networking layer to
enable greater concurrency for threads using the cur-
rent MPI interface (Luo et al., 2011). However, these
approaches can require customized thread-management
techniques to avoid overheads and noise from oversub-
scribing cores, and they are not able to address the pro-
grammability challenges that arise when MPI threads
share a rank.

In this paper we present an MPI extension, called
‘‘MPI endpoints’’, that enables the programmer to cre-
ate additional ranks at existing MPI processes. We
explore the design space of MPI endpoints and the
impact of endpoints on MPI implementations. We
illustrate through several examples that endpoints
address the problem of interoperability between MPI
and parallel programming systems that utilize threads.
Additionally, we explore how endpoints enrich the
MPI model by relaxing the one-to-one relationship
between ranks and MPI processes. We explore this new
potential through a brief example that utilizes end-
points to achieve communication-preserving load bal-
ancing by mapping work (e.g. mesh tiles) to ranks and
reassigning multiple ranks to processes. We also con-
duct an empirical study of communication concurrency
in a modern many-core system. Results confirm that
multiple cores are required to drive the interconnect to
its full performance. They further suggest that private,
rather than shared, communication endpoints may be
necessary to achieve high levels of communication
efficiency.

2. Background

The design of MPI communicators has been vigorously
debated within the MPI community, and several
approaches to increasing the generality of MPI com-
municators have been suggested (Geist et al., 1996;
Demaine et al., 2001; Graham and Keller, 2009). Led

by the authors, members of the MPI Forum have
rekindled this discussion in the context of the MPI end-
points extension that is proposed for MPI 4.0.1

Initially, static interfaces were explored, and we present
these designs in Section 3.1. The dynamic interface,
presented in Section 3.2, is preferred as a more flexible
alternative to the static interface, and it was refined as
described in Section 3.5 into a proposal that is cur-
rently under consideration for inclusion in version 4.0
of the MPI standard.

MPI interoperability has been investigated exten-
sively in the context of a variety of parallel program-
ming models (Jose et al., 2010, 2012; Yang et al., 2014).
Interoperability between MPI and Unified Parallel C
was defined in terms of one-to-one and many-to-one
mappings of UPC threads to MPI ranks (Dinan et al.,
2010). Support for the one-to-one mapping cannot be
provided in MPI 3.0 when the unified parallel C (UPC)
implementation utilizes operating system threads,
rather than processes, to implement UPC threads.
However, this mode of operation can be supported
through the endpoints interface by assigning endpoint
ranks to threads.

Hybrid parallel programming, referred to as
‘‘MPI+X’’, which combines MPI and a node-level par-
allel programming model, has become commonplace.
MPI is often combined with multithreaded
parallel programming models, such as MPI+OpenMP
(Smith and Bull, 2001; Rabenseifner et al., 2009).
The 1997 MPI 2.0 Forum (Message Passing Interface
Forum, 1997) defined MPI’s interaction with threads
in terms of several levels of threading support that
can be provided by the MPI library. MPI 3.0 further
clarified the interaction between several MPI con-
structs and threads. For example, matched-probe
operations were added to enable deterministic use of
MPI_Probe when multiple threads share an MPI
rank. In addition, MPI 3.0 added support for inter-
process shared memory through the Remote
Memory Access (RMA) interface (Hoefler et al.,
2012, 2013).

Recently, researchers have endeavored to integrate
MPI and accelerator programming models. This
effort has focused on the impact of separate accelerator
memory on communication operations. Several
approaches to supporting the use of NVIDIA* CUDA*

or OpenCL* buffers directly in MPI operations (Wang
et al., 2011; Ji et al., 2012) have been developed. Other
efforts have focused on enabling accelerator cores to
perform MPI calls directly (Stuart et al., 2011).

Numerous efforts have been made to integrate node-
level parallelism with MPI. Fine-Grain MPI (FG-MPI)
(Kamal and Wagner, 2010) implements MPI processes
as lightweight coroutines instead of operating-system
processes, enabling each coroutine to have its own MPI

Dinan et al 391

rank. In order to support fine-grain coroutines,
FG-MPI provides mechanisms to create additional
ranks when MPI is initialized, similar to the approach
described by the static endpoints interface. FG-MPI
programs have been run with as many as 100 million
MPI ranks using this technique (University of British
Columbia, 2013). Li et al. (2013) recently demonstrated
significant performance improvements in collective
communication when the node is not partitioned into
individual MPI processes; that is, endpoints are
used instead of one process per core. Hybrid MPI
(HMPI) transmits ownership for shared buffers to
improve the performance of intranode communication
(Friedley et al., 2013); techniques such as this can be
leveraged to optimize intranode communication
between endpoints.

3. Communication endpoints

We define an MPI endpoint as a set of resources that
supports the independent execution of MPI communi-
cations. The central resource that backs an MPI end-
point is a rank within an MPI communicator, which
identifies the endpoint in MPI operations. In support
of this rank, the MPI implementation may utilize addi-
tional resources such as network command queues, net-
work addresses, or message queues. One or more
threads are logically associated with an endpoint, after
which the thread can perform MPI operations using
the resources of the endpoint. In this context, a conven-
tional MPI process can be thought of as an MPI end-
point and a set of threads that perform operations
using that endpoint.

The current MPI standard defines a one-to-one map-
ping between endpoints and MPI processes. As shown
in Figure 1, MPI endpoints relax this restriction by
allowing an MPI process to contain multiple endpoints.
A variety of mechanisms could be used to incorporate
endpoints into MPI. We break down the design space
into static versus dynamic approaches, and further dis-
cuss how and when additional ranks are created, how
ranks are associated with endpoints, and how threads
are mapped to endpoints.

3.1. Static endpoint creation

During initialization, MPI creates the MPI_
COMM_WORLD communicator, which contains all MPI
processes. Static approaches to the endpoints interface
make endpoints members of this communicator and
require endpoints to be created during launching or
initialization of an MPI execution. In order to use end-
points created in the MPI_COMM_WORLD communicator,
threads must first be associated with an endpoint
through an attach function, described in Section 3.3.

In one approach to supporting static endpoints, the
programmer requests additional endpoints as an argu-
ment to mpiexec, as in Dinan et al. (2010) and Kamal
and Wagner (2010). This approach can require
MPI_Init or MPI_Init_thread to be extended so
that it can be called multiple times per instance of the
MPI library, once for each endpoint. This is perceived to
be a disruptive change to the existing MPI specification,
which states that multiple calls to MPI_Init are
erroneous.

As an alternative to this approach, a new MPI initia-
lization routine can be added that allows the program-
mer to call the MPI initialization routine once per
operating system process and indicate the number of
endpoints required by each of those processes.

int MPI_Init_endpoints(int *argc,
char *argv[], int count,
int tl_requested, int *tl_provided)

In this new initialization routine, argc and argv are
the command line arguments, count indicates the
desired number of endpoints at the calling process,
tl_requested is the level of thread support requested by
the user, and tl_provided is an output parameter indi-
cating the level of thread support provided by the MPI
library.

An advantage of the static endpoints scheme is that
it can better align MPI implementations with systems
where endpoint resources are reserved or created when
MPI initialized the network, for example, in the case of
implementations based on the IBM� parallel active
message interface (PAMI) low-level communication
library (Kumar et al., 2012). A significant drawback to
this approach is that statically specifying the number of
endpoints restricts the ability of MPI to interoperate
fully with models where the number of threads is
dynamic. In addition, statically selecting the number of
endpoints can limit opportunities for libraries to utilize
endpoints. To better support such use cases, we next
describe an alternative approach that allows endpoints
to be created dynamically.

0 1 2

0 1 2 3 4 5

parent_comm

endpoints_comm

Figure 1. Flexible communication endpoints extend MPI with a
many-to-one mapping between ranks and processes.

392 The International Journal of High Performance Computing Applications 28(4)

3.2. Dynamic endpoint creation

MPI communicators provide a unique communication
context that is used to perform matching between oper-
ations and to distinguish communication operations
that arise from different components in a program or
library. In addition to providing encapsulation, com-
municators contain a group that defines the processes
that are members of the communicator and the map-
ping of ranks to these processes. When a communicator
is created, the group of the new communicator is
derived from the group of an existing parent communi-
cator. In conventional communicator creation routines,
the group of the new communicator is a subset of the
group of its parent.2

In the dynamic endpoints interface we extend the
group component of communicators, such that multi-
ple ranks in a new group can be associated with each
rank in the parent group. An example of this interface
is as follows.

int MPI_Comm_create_endpoints(
MPI_Comm parent_comm, int my_num_ep,
MPI_Infoinf,MPI_Comm out_comm_hdls[])

In this collective call, a single output communicator is
created, and an array of my_num_ep handles to this
new communicator are returned, where the ith handle
corresponds to the ith rank requested by the caller of
MPI_Comm_create_endpoints. These ranks, or
endpoints, of the output communicator are ordered
sequentially and numbered by using the same
relative order as the parent communicator. After it has
been created, the output communicator behaves as a
normal communicator, and MPI calls on each endpoint
(i.e. communicator handle) behave as though they ori-
ginated from a separate MPI process. In particular, col-
lective calls must be performed concurrently on all
ranks (i.e. endpoints) in the given communicator.

Freeing an endpoints communicator requires a collec-
tive call to MPI_Comm_free, where the free function is
called once per endpoint. As currently defined, this could
require MPI_Comm_free to be called concurrently
on all endpoints, which in turn requires that the MPI
implementation be initialized with MPI_THREAD_
MULTIPLE support. To avoid this restriction, one can
define MPI_Comm_free in a way that enables a sin-
gle thread to call MPI_Comm_free separately for
each endpoint. In order to support this semantic, the
MPI implementation must internally aggregate
endpoint-free requests and delay communication until
the last endpoint associated with a given conventional
process calls MPI_Comm_free on the given commu-
nicator. At this point, any communication needed can
be performed by a subset of the endpoints in the
communicator.

3.3. Associating threads with endpoints

In order to use an endpoint, a thread must associate its
operations with a rank in the given communicator.
Identifying the specific endpoint can be accomplished
through explicit or implicit approaches. The design
choice can have a significant impact on performance
and interoperability with threading models.

3.3.1. Explicit binding. A goal of the static endpoints case
is to allow the programmer the convenience of operat-
ing directly on MPI_COMM_WORLD, as is commonly
done today. In order to communicate on a world com-
municator that contains multiple endpoints, each
thread must bind itself to a specific rank, as follows.

int MPI_Endpoint_attach(int id)

This approach binds the calling thread to the local end-
point with the id between 0 and the number of local
endpoints. A consequence of this interface is that the
MPI implementation must store the association
between a thread and its endpoint using thread-local
storage (TLS), which requires support from the thread-
ing package that is being used. In addition, it requires a
TLS lookup in every MPI operation on the given com-
municator, which can significantly increase software
overheads in MPI processing.

The explicit binding approach can also be used with
the dynamic endpoints interface, if an additional com-
municator argument is added to the routine. An advan-
tage of this approach is that it allows the MPI
implementation to associate threads with specific end-
points, potentially enabling the MPI implementation to
manage resources more effectively. Functionality to
detach from an endpoint can also be added, enabling a
more dynamic programming interface but potentially
limiting optimizations. A disadvantage to explicit bind-
ing is that integration of the MPI library with the spe-
cific threading package may be required in order to
support this functionality. Moreover, TLS lookups are
necessary to identify the endpoint in use by a given
thread.

3.3.2. Implicit binding. The dynamic interface enables an
alternate, more flexible strategy to associating end-
points with threads. In this interface, we return sepa-
rate communicator handles, one per endpoint. When a
thread wishes to use a particular endpoint, it simply
uses that endpoint’s communicator handle in the given
MPI operation. For example, MPI_Comm_rank can be
used to query the rank of the given endpoint in the
communicator. This approach is agnostic to the thread-
ing package used, and it allows MPI to store any
endpoint-specific information internally using a struc-
ture that is referenced through the communicator han-
dle, rather than through thread-local storage.

Dinan et al 393

3.4. Progress semantics

The MPI standard specifies a minimal progress require-
ment: Communication operations on a given process,
whose completion requirements are met (e.g. matching
send and receive calls have been made, test or wait has
been called), must eventually complete regardless of
other actions in the system. Endpoints add an addi-
tional dimension to the progress semantic, since they
could be treated as independent processes or as part of
the process that created them.

Treating endpoints as part of the process from which
they were created leads to the simplest progress seman-
tics. This would require that the MPI implementation
ensures progress is made on all endpoints of a process
whenever any MPI operation is performed. This is easy
for users to reason about, especially for an endpoints
interface that does not require threads to be bound to
endpoints. However, this approach may limit concur-
rency in some MPI implementations by requiring any
thread entering the MPI progress engine to access the
state for all endpoints.

Treating endpoints as individual processes in the
progress semantic is a weaker guarantee; however, it
provides additional opportunities for thread isolation
and communication concurrency within the MPI
library. In this model, it can be helpful to the MPI
implementation if users declare an association of
threads with endpoints through attach operations or
performance hints in an MPI info object. Such mechan-
isms can be used to make the MPI runtime system
aware that a limited number of threads communicate
on a given endpoint. When only a single thread uses a
given endpoint, the MPI implementation can eliminate
internal synchronizations, potentially providing lock-
less multithreaded communication.

3.5. Proposed endpoints interface

After reviewing the various approaches to specifying an
endpoints extension to MPI, the MPI hybrid working
group has put forward the dynamic endpoints pro-
posal for consideration (MPI Forum Hybrid Working
Group, 2013). This proposal calls for the addition of a
new MPI_Comm_create_endpoints function that
returns an array of handles to the output endpoints
communicator. No explicit binding of endpoints with
threads is required; however, an MPI info object can
be provided to this function to specify the level of
threading support that will be used on the given end-
point, enabling internal optimizations within the MPI
implementation. In this proposal, endpoints are
defined to behave as MPI processes and are indepen-
dent in the MPI progress semantic. For the remainder
of this paper, we focus on this proposed endpoints
interface.

4. Impact on MPI implementations

We now explore the expected impact of endpoints on
existing MPI implementations. Our discussion focuses
on the popular, open source MPICH implementation
of MPI (MPICH, 2013) from which many commercial
MPI implementations are derived. However, the
discussion is generally applicable to other MPI
implementations.

4.1. Internal communicator representation

MPI communicators are logically composed of an MPI
group and a communication context. MPI groups are
opaque data structures that represent ordered sets of
MPI processes. Groups are local to an MPI process,
are immutable once created, and are derived from exist-
ing communicators or other groups. The communica-
tion context refers to the internal information that an
MPI implementation uses to match communication
operations according to the communicator on which
they were performed. Most MPI implementations iden-
tify the communication context using an integer value
that is unique across the processes in the group of the
communicator. The context ID is typically combined
with the source process rank and tag into a single quan-
tity (e.g. a 64-bit integer) that is included in the MPI
message header and used for matching.

In MPICH, communicators are internally repre-
sented through a structure at each process that contains
several important components: the process’s rank in
the communicator, the size of the communicator, and a
table that is used to map a given destination rank to a
virtual connection (VC). This mapping structure is cur-
rently a dense array indexed by communicator rank,
though more compact implementations are possible
(Goodell et al., 2011).

MPI applications refer to a given communicator
using an MPI_Comm handle. A communicator handle is
an opaque reference that can be used by the MPI
implementation to retrieve the internal communicator
structure. In MPICH, it is implemented as an integer
value, which satisfies the MPI specification require-
ments and simplifies Fortran language bindings.
Calling MPI_Comm_create_endpoints will create
one communicator handle for each endpoint on a given
process, and the handles are returned in the out_-
comm_hdls array. While the handles identify a particu-
lar endpoint in the given communicator, the MPI
implementation is expected to share one or more
underlying structures. For example, just as normal
communicators that are duplicated by MPI_Comm_dup
may easily share the rank-to-VC map, endpoints com-
municators within a process may also easily share this
mapping structure within an MPI process among all
the endpoints communicators derived from the same
call to MPI_Comm_create_endpoints.

394 The International Journal of High Performance Computing Applications 28(4)

In order to extend MPI groups to endpoints commu-
nicators, groups must be generalized to incorporate end-
points as well as conventional MPI processes, and
group and communicator comparison and manipula-
tion functions must also be updated. We add the
MPI_ALIASED result for communicator and group
comparisons when the communicator handles corre-
spond to different endpoints in the same communicator.

Group manipulations are traditionally viewed as
mapping problems (Träff, 2010) from the dense group
space to a global process ID of some type.3 Endpoints
must be assigned unique IDs at their creation time to
serve as an element in the codomain of the group rank
mapping function. This ID must not be recycled or
reused as long as any communicator or group contains
a reference to the endpoint associated with that ID.
The MPI-2 dynamic process interface has a similar
requirement; thus, endpoints can utilize existing infra-
structure that supports this interface.

4.2. Associating endpoints with connections

EachMPICH VC in the rank-to-VC mapping table rep-
resents a logical connection to another MPI process,
even though the underlying network may be connec-
tionless. Endpoint ranks must be associated with a VC
and entered into this table for each endpoints communi-
cator. This can be accomplished by creating additional
VCs for each endpoint (e.g. by creating additional net-
work addresses or connections), by multiplexing end-
points over existing VCs, or through some combination
of these approaches. In current implementations, VCs
must be unique within a communicator, since each pro-
cess may hold only a single rank in a given communica-
tor. The addition of endpoints may require us to relax
the uniqueness restriction, breaking an otherwise injec-
tive relationship. While rank-to-VC translation is
important, the reverse lookup is never performed; thus,
the loss of uniqueness in the rank-to-VC mapping does
not present any new challenges.

When endpoints are multiplexed across one or more
VCs, and operations from multiple endpoints share
receive queues, the destination rank must be included as
an additional component in the MPI message-matching
scheme to distinguish the intended endpoint. If the desti-
nation rank is not already included in the message header
or match bits, it must be added in order to facilitate this
additional matching or demultiplexing step. While this
implementation option adds some complexity, it can
reduce or eliminate the need to create additional network
addresses or connections, and it potentially provides the
user access to a greater number of endpoints.

The dynamic endpoints interface introduces chal-
lenges for interconnects that must create network end-
points when MPI_Init is called. Such networks may
be unable to create additional network endpoints later,

such as an implementation of MPI over PAMI (Kumar
et al., 2012). For such a network, the implementation
may create all endpoints when MPI_Init is called, pos-
sibly directed by runtime parameters or environment
variables. Implementations on such networks can also
multiplex MPI endpoints over network endpoints, and
the user can improve performance through hints indi-
cating that the number of endpoints created in calls to
MPI_Comm_create_endpoints will not exceed the
number of network endpoints.

4.3. Interaction with message matching

MPI message matching is performed at the receiver
using the hCommunicator_Context_ID, Source_Rank,
Tagi triples, and operations that match a given triple,
including those that use the MPI_ANY_SOURCE and
MPI_ANY_TAG wildcards, must be matched in the
order in which they were posted. Most MPI implemen-
tations utilize a set of queues to track receive opera-
tions and match them with incoming sends according
to the required ordering.

While it is possible to utilize separate queues for
each communicator, a single pair of queues is often
used. These queues are referred to as the posted and
unexpected receive queues. The posted receive queue
contains the list of receive operations that have been
performed for the given process. This includes blocking
and nonblocking operations performed by all threads
in a given process. The unexpected receive queue con-
tains an ordered list of messages that arrived but did
not match any posted receive. For small messages, the
implementation may store the full unexpected message
in system buffer space; for larger messages, additional
data may need to be fetched from the sender. When a
receive operation is posted, the MPI implementation
must first search the unexpected message queue to
check if it has already arrived. Otherwise, the receive
operation is appended to the posted receive queue.

MPICH currently supports shared message queues
that contain operations posted across all communica-
tors. When shared message queues are used, MPI mes-
sage matching is performed by using the full
hCommunicator_Context_ID, Source_Rank, Tagi tri-
ples. Shared message queues can pose significant chal-
lenges because of thread synchronization. Therefore,
per-receiver/endpoint message queues may be needed
for highly threaded MPI implementations. No receiver
wildcard is present in MPI; thus message queues can be
split per endpoint. Such an implementation can reduce
or potentially eliminate synchronization when accessing
per-endpoint message queues.

4.4. Interaction with threading models

An endpoints interface that returns separate communi-
cator handles for each endpoint has implementation

Dinan et al 395

advantages relative to interfaces that share a communi-
cator handle for all endpoints within a single MPI pro-
cess. Models that share communicator handles
maintain an implicit association between threads and
endpoints, which has two major implications for the
MPI implementation’s interaction with the applica-
tion’s threading model.

Any explicit binding between threads and specific
endpoints necessitates the usage of TLS in order to
determine the thread’s rank in the communicator as
well as other endpoint-specific information. Using TLS
within the MPI library obligates the MPI implementers
to be aware of all possible threading models and mid-
dleware that a user might use. This coupling could limit
an MPI library’s interoperability with different thread-
ing models, and it also poses basic maintainability and
testability challenges to MPI implementations.

A larger problem than tightly coupling the threading
model and the MPI library is that such TLS lookups
would be on the critical path for any communication
operation. Although some threading models and archi-
tectures have support for fast TLS access (Drepper,
2005), many do not. A design utilizing separate commu-
nicator handles per endpoint is advantageous because it
keeps TLS off the communication critical path. The
design tradeoff to using separate handles in the end-
points interface is that it slightly burdens the user, who
must distribute these handles among the application
threads in order to call MPI routines.

4.5. Optimizing network performance

Modern interconnection networks are often capable of
greater speeds than can be generated by transmitting a
single message. In order to saturate the network, multi-
ple streams of communication must be performed in
parallel, and these communications must use distinct
resources in order to avoid being serialized.

Endpoints can be used to separate the communica-
tion resources used by threads, enabling multiple
threads to drive communication concurrently and
achieve higher network efficiency. For example, end-
point ranks may be implemented through distinct net-
work resources, such as network interface cards (NICs)
direct memory access first in first out (DMA FIFOs),
or PAMI contexts (Kumar et al., 2012). An MPI imple-
mentation might have an optimal number of endpoints
based on the number of available hardware resources;
users could query this optimal number and use it to
influence the number of endpoints that are created.

In this regard, endpoints differ from the use of mul-
tiple communicators because additional communica-
tors replicate the current rank into a new context,
typically using the same hardware resource. Thus, it is
challenging to drive multiple communication channels/
resources using multiple threads within a single MPI

process. The endpoints creation operation generates
new ranks that can be associated with separate hard-
ware resources and with the specific intent of enabling
parallel, multithreaded communications within a single
context.

5. Impact on MPI applications

Endpoints introduce a new capability within the MPI
standard by giving the programmer a greater amount
of freedom in mapping ranks to processes. This capa-
bility can have a broad impact on interoperability as
well as mapping of the computation. In this section, we
demonstrate these capabilities by using the proposed
endpoints interface described in Section 3.5. First, we
use an OpenMP example to highlight the impact of
endpoints on interoperability with node-level parallel
programming models. Next, we demonstrate the impact
of endpoints on interoperability with system-level par-
allel programming models through a UPC example.
Although we use OpenMP and UPC as examples, the
techniques shown are applicable to a variety of parallel
programming models that may use threads within a
node, including Charm++, Coarray Fortran (CAF),
X10, and Chapel. We also demonstrate that the relaxa-
tion of process–rank mapping enables new approaches
to computation mapping through a dynamic load-
balancing example.

5.1. Node-level hybrid programs

In Listing 1, we show an example hybrid
MPI+OpenMP program where endpoints have been
used to enable all OpenMP threads to participate in
MPI calls. In particular, threads at all nodes are able to
participate in a call to MPI_Allreduce within the
OpenMP parallel region. This example highlights one
possible use of endpoints. Many different usages are
possible, including schemes where MPI_COMM_SELF is
used as the basis for the endpoints communicator,
allowing the programmer to construct a communicator
that can be used to perform MPI communication
among threads within a process, enabling a multilevel
parallel structure where MPI can be used within the
node and between nodes.

In this example, we assume that the maximum num-
ber of threads allowed in the OpenMP implementation
is compatible with the number of endpoints allowed
in the MPI implementation. This is often the case,
since the number of cores on a node typically drives
the number of threads allowed as well as the
available network resources. This example calls
MPI_Comm_create_endpoints from the master
thread within the OpenMP parallel region in order to
create exactly one thread per endpoint. Each thread
then obtains its handle to the endpoints communicator

396 The International Journal of High Performance Computing Applications 28(4)

and utilizes this private handle to behave as a separate
MPI process. Thus, each thread is able to call
MPI_Allreduce with its communicator handle as if
they were separate MPI ranks in separate processes.
Since the threads share a process and address space, the
MPI implementation can use a hierarchical collective
algorithm to optimize the reduction of data between
local threads. As we will show in Section 6, the MPI
implementation can utilize the additional threads and
endpoint resources to increase network throughput.

5.2. Systemwide hybrid programs

Endpoints can be used to enable interoperability with
system-level programming models that use threads for
on-node execution, for example, UPC, CAF, Charm++,
X10, and Chapel. In this setting, endpoints are used to
enable flexible mappings between MPI ranks and exe-
cution units in the other model.

To illustrate this capability, we show a hybrid
MPI+UPC program in Listing 2. This program uses a
flat (one-to-one) mapping between MPI ranks and
UPC threads (Dinan et al., 2010). The UPC specifica-
tion allows UPC threads to be implemented by using
processes or threads; however, implementations

commonly use threads as the execution unit for UPC
threads. In order to support the flat execution model, a
mechanism is needed to acquire multiple ranks per unit
of MPI execution. In Dinan et al. (2010), the authors
extended the MPI launcher with a ––ranks-per-
proc argument that would allow each spawned process
to call MPI_Init multiple times, once per UPC thread.
This is one approach to enabling a static endpoints
model. However, calling MPI_Init multiple times vio-
lates the MPI specification, and it results in all end-
points being within MPI_COMM_WORLD, a situation
that may not be desired.

In order to support the UPC code in Listing 2,
the UPC compiler must intercept usages of
MPI_COMM_WORLD and substitute the upc_comm_
world endpoints communicator. Alternatively, the
MPI profiling interface (PMPI) can be used to intercept
MPI calls and provide communicator translation. This
approach provides the best compatibility with MPI
libraries that are not compiled by the UPC compiler.

In Listing 3, we show the code that a UPC compiler
could generate to enable this hybrid execution model.
In this example, MPI is used to bootstrap the UPC exe-
cution, the approach used by several popular UPC
implementations (UC Berkeley and LBNL, 2013). Once

int main(int argc, char **argv) {
int world_rank, tl;
int max_threads = omp_get_max_threads();
MPI_Comm ep_comm[max_threads];

MPI_Init_thread(&argc, &argv, MULTIPLE, &tl);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

#pragma omp parallel
{

int nt = omp_get_num_threads();
int tn = omp_get_thread_num();
int ep_rank;

#pragma omp master
{

MPI_Comm_create_endpoints(MPI_COMM_WORLD,
nt, MPI_INFO_NULL, ep_comm);

}
#pragma omp barrier

MPI_Comm_rank(ep_comm[tn], &ep_rank);
. // divide up work based on ’ep_rank’
MPI_Allreduce(., ep_comm[tn]);

MPI_Comm_free(&ep_comm[tn]);
}
MPI_Finalize();

}

Listing 1. Example hybrid MPI+OpenMP program where endpoints are used to enable all OpenMP threads to participate in a
collective MPI allreduce.

Dinan et al 397

the execution has been bootstrapped, a ‘flat’ endpoints
communicator is created, UPC threads are spawned, and
threads register the endpoints communicator with an
interoperability library and then run the user’s main func-
tion (shown in Listing 2).

5.3. Impact on computation management

Endpoints introduce powerful new flexibility in the
mapping of ranks to processes. In the current MPI spe-
cification, ranks can be shuffled, but the number of
ranks assigned to each process must remain fixed.
Dynamic endpoints allow ranks to be shuffled and the
number of ranks assigned to each process to be
adjusted. This capability can be used to perform

dynamic load balancing by treating endpoints as ‘‘vir-
tual processes’’ and repartitioning endpoints across
nodes. This enables an application behavior that is sim-
ilar to Adaptive MPI (Bhandarkar et al., 2001), where
MPI processes are implemented as Charm++ objects
that can be migrated to perform load balancing.

A schematic example of this approach to load balan-
cing is shown in Figure 2. In this example, individual
components of the computation (e.g. mesh tiles) are
associated with each endpoint rather than particular
threads of execution. This enables a programming con-
vention where per-iteration data exchange can be per-
formed with respect to neighbor ranks in the endpoints
communicator (e.g. halo exchange). Thus, when end-
points are migrated, the virtual communication pattern

int main(int argc, char **argv) {
int world_rank, tl, i;
MPI_Comm upc_comm_world [NUM_THREADS];

MPI_Init_thread(&argc, &argv, MULTIPLE, &tl);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
MPI_Comm_create_endpoints(MPI_COMM_WORLD, THREADS_PER_NODE, MPI_INFO_NULL, upc_
comm_world);

/* Calls upc_thread_init(), which calls upc_main() */
for (i = 0; i \ NUM_THREADS; i++)
UPCR_Spawn(upc_thread_init, upc_comm_world[i]);

MPI_Finalize();
}

upc_thread_init(int argc, char **argv, MPI_Comm upc_comm_world) {
upc_main(argc, argv); /* User’s main function */
MPI_Comm_free(&upc_comm_world);

}

Listing 3. Example hybrid MPI+UPC bootstrapping code generated by the UPC compiler.

shared [*] double data[100*THREADS];

int main(int argc, char **argv) {
int rank, i; double err;

do {
upc_forall(i = 0; i \ 100*THREADS; i++; i) {

data[i] = .; err += .;
}
MPI_Allreduce(&err, ., MPI_COMM_WORLD);

} while (err . TOL);
}
Listing 2. Example hybrid MPI+UPC user code. Endpoints enable UPC threads to behave as MPI processes.

398 The International Journal of High Performance Computing Applications 28(4)

between endpoints is preserved. Such a
communication-preserving approach to dynamic load
balancing can provide an effective solution for adaptive
mesh computations.

While this approach to load balancing is promising,
it requires the programmer to manually communicate
computational state from the previous thread or pro-
cess responsible for an endpoint to the endpoint’s new
owner. This introduces interesting opportunities for the
development of new parallel programming models and
libraries that can harness such a feature. For example,
a library could interface with existing load-balancing or
work-partitioning tools to generate the remapped com-
municator. Endpoint or mesh tile state could then be
automatically migrated from locations in the old com-
municator to locations in the new communicator.

6. Empirical performance study

We measure the impact of multithreaded communica-
tion on a commercial MPI implementation running on
a modern, many-core HPC cluster. Through this study,
we demonstrate the need for communication
concurrency—for multiple cores to drive communica-
tions in parallel—in order to achieve high levels of
communication performance. We compare the impact
of shared versus private communication environments
to illustrate that many cores must drive communication
to achieve high levels of throughput and that a signifi-
cant performance gap currently exists between multi-
threaded and single-threaded communication. This
data suggests that an endpoints approach that enables
threads to acquire private MPI communication con-
texts can be used to close this gap and relieve pressure
on intranode thread/process count tradeoffs.

We conducted experiments using two Intel� Xeon
PhiTM Coprocessor 5110P cards, each with 8 GB of
memory, and 60 1.053 GHz in-order cores with 4-way
hyperthreading. Each card runs a version 2.6.38 Linux*

kernel adapted for the Xeon Phi. All code was run with

the Intel� MPI Library version 4.1 update 1, the
Intel� Manycore Platform Software Stack (MPSS) ver-
sion 3.1, and compiled with the Intel� C Compiler ver-
sion 13.1.2. Benchmarks were run in native mode on
the Xeon Phi, in which application code and MPI oper-
ations are performed directly on the Xeon Phi. While
this leaves the host processor idle, it is more representa-
tive of future systems where the many-core processor is
no longer incorporated into the system as a separate
device. The Xeon Phi cards are located within different
compute nodes and are connected using Mellanox* 4X
QDR InfiniBand* HCAs, with a maximum data rate of
32 Gb/s. The Xeon Phi coprocessor is representative of
the growing trend in HPC toward many-core proces-
sors and highly multithreaded programs. Such scenar-
ios are strong motivators for endpoints; however,
endpoints are expected to be effective at improving
communication throughput in any scenario where mul-
tithreaded MPI processes are used.

We adapted the Ohio State University (OSU) MPI
message rate benchmark (Ohio State University, 2013)
to support threads and allow varying of the unexpected
and expected queue depths. This benchmark is executed
on two nodes and is bidirectional; for a P process
experiment, each node contains P sender processes and
P receiver processes. Thus, each sender process is paired
with a receiver process on the remote node. Threading
support directly uses POSIX* threads, and MPI was
initialized in the MPI_ THREAD_MULTIPLE mode to
support concurrent MPI calls by multiple threads. In
order to build expected queue lengths, the benchmark
was adapted to post a given number of receive opera-
tions to the expected queue with a nonmatching tag.
This strategy causes the receiving MPI process to tra-
verse the messages with the nonmatching tag to check
for matches each time a message arrives. In the case of
the unexpected message queue, a given number of mes-
sages with nonmatching tags were sent to the receiver
before the timed message sends occurred. This caused
the receiver to traverse the list of unexpected messages
to search for matches every time a message was
received. We use these modifications to simulate the
impact of multiple threads sharing a communication
context; when multiple threads share a single MPI rank
and communicator, MPI’s message matching must be
performed across all operations performed by all
threads.

6.1. Impact of communication concurrency on
network throughput

We first demonstrate the need for communication con-
currency in order to achieve high levels of network
throughput, by comparing throughput for shared ver-
sus private communication contexts. We model idea-
lized endpoints as individual MPI processes with

0 1 2

5 0 3 1 4 6

parent_comm

endpoints_comm1

2

3 1

endpoints_comm2

5 4 0 26

Load Balancing

Figure 2. Communication-preserving dynamic load balancing
via endpoints migration.

Dinan et al 399

private communication states. This represents an upper
bound on the performance that can be achieved by
MPI endpoints. In Figure 3, we show the message rate
that can be achieved when using P = 1.16 sending
processes on each Xeon Phi processor to inject mes-
sages. This corresponds to a total of 2 to 32 active MPI
processes per card, since each sending process is
matched with a receiving process. From this data, we
clearly see that multiple MPI processes enable improve-
ments in the aggregate message rate achieved by each
Xeon Phi processor. Message rate increases with pro-
cess count, with the 16-process case resulting in an
approximately 133 improvement over a single process
for small messages. The dip in performance at 64 B
messages corresponds directly to the cache line size of
the Phi. The resulting increase in performance for
128 B messages is related to better utilization of the
main memory on the Phi.

In Figure 4 we show the corresponding bandwidth
for this experiment. We see that bandwidth scales with
communication concurrency, with a greater number of
processes having a positive impact on bandwidth
between P = 1 and P = 16 cases, but with diminish-
ing returns after P = 8 as the system becomes satu-
rated. At 32 KB message sizes and higher, architectural
limitations on our platform prevent bandwidth from
scaling with greater concurrency. Newer CPU genera-
tions remove this architectural limitation, and we
expect that bandwidth will continue to benefit from
concurrency for large message sizes in future systems.

6.1.1. Impact of threads on network throughput

Figure 5 shows the message rate achievable using multi-
ple threads, as well as multiple threads with multiple
MPI processes. This should be regarded as the lower
bound for the performance of endpoints, as the threads
share MPI state between them for a given MPI process.

M
e

s
s
a

g
e

 R
a

te
 (

x
1

0
6
)

Message Size (bytes)

P=1
P=1, T=2

P=2, T=2
P=4, T=2

P=8, T=2
P=16, T=2

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

M
e

s
s
a

g
e

 R
a

te
 (

x
1

0
6
)

Message Size (bytes)

P=1
P=1, T=4

P=2, T=4
P=4, T=4

P=8, T=4
P=16, T=4

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

Figure 5. Impact of number of threads on message rate, with processes P = 1.16 and threads T = 2 and T = 4 per process.

B
a

n
d

w
id

th
 (

M
B

/s
)

Message Size (bytes)

P=1 P=2 P=4 P=8 P=16

 0.1

 1

 10

 100

 1000

 10000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

Figure 4. Impact of communication concurrency on
bandwidth, for P = 1.16.

M
e
s
s
a
g
e
 R

a
te

 (
x
1
0

6
)

Message Size (bytes)

P=1 P=2 P=4 P=8 P=16

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

Figure 3. Impact of communication concurrency on message
rate, for P = 1.16.

400 The International Journal of High Performance Computing Applications 28(4)

Therefore, the performance of endpoints should lie
between the multithread performance in Figure 5 and
the upper bound in Figure 3. The benchmark adapta-
tions to enable multiple threads are considered in the
calculation of the benchmark time; therefore the over-
head involved in creating and joining the threads is
included in our measurements. Performance-conscious
concurrency methods can avoid this overhead by reus-
ing threads after they have been created, avoiding the
costs of multiple thread creations. In each experiment,
however, the thread fork and join overheads are amor-
tized over many communications and have no measur-
able impact on timings.

The multithreaded message rate results show lower
performance with threads versus processes, as a result
of threads sharing communication and MPI library
state. We thus focus our exploration on a mixture of
processes without threads, with two threads, and with
four threads. This is representative of current thread/
process tradeoffs made by users of HPC systems. For
small messages, we see that the configuration of four
processes with two threads yields message rates that
exceed those of the single MPI process case. In
Figure 6, we see that large message bandwidths can
slightly outperform the single-process case with only
two threads in a single process. However, this is a rela-
tively small improvement that occurs within the region
of the plot where bandwidth converges for all config-
urations. Having multiple processes and multiple
threads clearly benefits bandwidth, with scaling occur-
ring even for P = 16, where a 9.253 performance
improvement in bandwidth over the single-process case
is observed for small messages.

6.2. Impact of shared communication state on
message queue processing

The results shown thus far have measured perfor-
mance of different message sizes when the incoming
messages match the first item in the message-matching

queue. Also important is MPI performance with
queues of lengths that better approximate those seen
in real applications (Barrett et al., 2013). Such a
consideration is especially important in the multi-
threaded case, since threads sharing a communicator
must share the message queues associated with
that communicator in order to ensure MPI’s FIFO
message-matching semantics.

Because receive operations posted by all threads must
be considered during message matching, the message-
matching overheads can increase proportionally to the
number of threads performing communication. Figure 7
shows the message rate for given expected queue lengths
for 8 B messages. The performance of most process/
thread schemes remains steady for queue sizes of 64 or
fewer posted received operations. After the queue length
grows beyond 64 items, performance decreases, with
more dramatic dropoff occurring after the queue grows
to a length greater than 128.

The unexpected queue results in Figure 8 show simi-
lar results to those observed for the expected queue.
The overall message rate is roughly equal to that for
the expected queue, except that for the unexpected
queue, the dropoff in message rate is slightly higher for
2 threads at a 256-item-long queue. By providing indi-
vidual ranks that isolate threads within the MPI imple-
mentation, endpoints can avoid these increases in
message-matching costs.

7. Summary

Endpoints provide a natural evolution of MPI that
relaxes the one-to-one mapping of ranks to processes.
This change provides improved interoperability
between MPI and parallel programming models that
use threads or other flexible execution strategies. In
addition, endpoints can enable greater network
throughput by allowing threads in a parent MPI pro-
cess to drive multiple, independent network endpoints.

B
a
n
d
w

id
th

 (
M

B
/s

)

Message Size (bytes)

P=1
P=1, T=2

P=2, T=2
P=4, T=2

P=8, T=2
P=16, T=2

 0.01

 0.1

 1

 10

 100

 1000

 10000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

B
a
n
d
w

id
th

 (
M

B
/s

)

Message Size (bytes)

P=1
P=1, T=4

P=2, T=4
P=4, T=4

P=8, T=4
P=16, T=4

 0.01

 0.1

 1

 10

 100

 1000

 10000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

Figure 6. Impact of number of threads on bandwidth, with processes P = 1.16 and threads T = 2 and T = 4 per process.

Dinan et al 401

Using a modern many-core platform, we have demon-
strated that increased communication concurrency
results in greater network performance and that this
level of performance is difficult to achieve in multi-
threaded environments where threads share communi-
cation states. We show that in this scenario, increasing
the number of endpoints can provide a proportional
boost to network performance.

The proposed dynamic endpoints extension requires
the addition of a single new function and integrates
with the MPI specification as an extension to the com-
municators interface. Endpoints make concrete the
existing implicit association of threads with processes
by treating a single thread or a group of threads and an
associated endpoint as an MPI process. These refine-
ments to the MPI standard establish a self-consistent
interaction between endpoints and the existing MPI
interface and provide the important flexibility that is
needed to fully harness the performance potential of
future systems.

We have summarized the lessons learned, motiva-
tions, and design decisions that led to the proposed
MPI endpoints interface, and we have motivated it
through studies of the hybrid programming and com-
munication performance gaps that it is intended to
address. However, more work is needed to explore effi-
cient techniques for implementing the endpoints inter-
face and incorporating it within applications.

Acknowledgements

We thank the members of the MPI Forum, the MPI Forum
hybrid working group, and the MPI community for their
engagement in this work.

Funding

This work was supported by the US Department of Energy
(contract number DE-AC02-06CH11307). Sandia National
Laboratories is a multiprogram laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary

M
e

s
s
a

g
e

 R
a

te
 (

x
1

0
6
)

Expected Queue Depth

P=1
P=1, T=2

P=2, T=2
P=4, T=2

P=8, T=2
P=16, T=2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 64 128
256

512

M
e

s
s
a

g
e

 R
a

te
 (

x
1

0
6
)

Expected Queue Depth

P=1
P=1, T=4

P=2, T=4
P=4, T=4

P=8, T=4
P=16, T=4

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 64 128
256

512

Figure 7. Impact of shared message queues on message rate for 8 B messages. The expected queue length is varied, and
configurations with processes P = 1.16 and threads T = 2 and T = 4 per process are evaluated.

M
e

s
s
a

g
e

 R
a

te
 (

x
1

0
6
)

Unexpected Queue Depth

P=1
P=1, T=2

P=2, T=2
P=4, T=2

P=8, T=2
P=16, T=2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 64 128
256

512

M
e

s
s
a

g
e

 R
a

te
 (

x
1

0
6
)

Unexpected Queue Depth

P=1
P=1, T=4

P=2, T=4
P=4, T=4

P=8, T=4
P=16, T=4

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 64 128
256

512

Figure 8. Impact of shared message queues on message rate for 8 B messages. The unexpected queue length is varied, and
configurations with processes P = 1.16 and threads T = 2 and T = 4 per process are evaluated.

402 The International Journal of High Performance Computing Applications 28(4)

of Lockheed Martin Corporation, for the US Department of
Energy’s National Nuclear Security Administration (contract
number DE-AC04-94AL85000).

Notes

1. An earlier version of this paper was published in Dinan et
al. (2013), and we extend this prior work with additional
detail, including a detailed empirical study.

2. We ignore here the dynamic processes interface, which
can be used to create new processes but not to generate
additional ranks for the purpose of interoperability with
threaded programming models.

3. Though the same process need not be represented by the
same value on two different processes, leading to the local
process ID (LPID) concept of previous work (Goodell
et al., 2011).

% Other names and brands may be claimed as the property
of others.

References

Barrett BW, Hammond SD, Brightwell R and Hemmert KS
(2013) The impact of hybrid-core processors on MPI mes-
sage rate. In: 20th european MPI users’ group meeting

(EuroMPI‘13), Madrid, Spain, 15–18 September 2013,
pp. 67–71. New York: ACM Press.

Bhandarkar M, Kale LV, de Sturler E and Hoeflinger J
(2001) Object-based adaptive load balancing for MPI pro-
grams. In: International conference on computational sci-

ence (ICCS‘01), San Francisco, USA, 28–30 May 2001,
pp. 108–117. New York: Springer.

Blagojević F, Hargrove P, Iancu C and Yelick K (2010)
Hybrid PGAS runtime support for multicore nodes. In:
4th conference on partitioned global address space program-

ming models (PGAS‘10). New York: ACM Press.
Demaine E, Foster I, Kesselman C and Snir M (2001) Gener-

alized communicators in the message passing interface.
IEEE Transactions on Parallel and Distributed Systems 12:
610–616.

Dinan J, Balaji P, Goodell D, Miller D, Snir M and Thakur
R (2013) Enabling MPI interoperability through flexible
communication endpoints. In: 20th european MPI users’

group meeting (EuroMPI‘13).
Dinan J, Balaji P, Lusk E, Sadayappan P and Thakur R

(2010) Hybrid parallel programming with MPI and unified
parallel C. In: 7th ACM international conference on com-

puting frontiers (CF‘10). New York: ACM Press.

Dózsa G, Kumar S, Balaji P, Buntinas D, Goodell D, Gropp
W, et al. (2010) Enabling concurrent multithreaded MPI
communication on multicore petascale systems. In: 17th
european MPI users’ group meeting (EuroMPI‘10). Berlin:
Springer-Verlag.

Drepper U (2005) ELF handling for thread-local storage.
Report, Red Hat Incorporated. Available at : http://
www.akkadia.org/drepper/

Friedley A, Hoefler T, Bronevetsky G, Lumsdaine A and Ma
CC (2013) Ownership passing: Efficient distributed mem-
ory programming on multi-core systems. In: 18th ACM

SIGPLAN symposium on principles and practice of parallel

programming. New York: ACM Press.

Geist A, Gropp W, Huss-Lederman S, Lumsdaine A, Lusk E,

Saphir W, et al. (1996) MPI-2: Extending the message-

passing interface. In: 2nd international Euro-Par conference

(Euro-Par‘96) (ed L Bougé, P Fraigniaud, A Mignotte

and Y Rober), Lyon, France, 26–29 August 1996, pp. 128–

135. Berlin: Springer.
Goodell D, Gropp W, Zhao X and Thakur R (2011) Scalable

memory use in MPI. In: 18th european MPI users’ group

meeting (EuroMPI‘11).
Graham RL and Keller R (2009) Dynamic communicators in

MPI. In: Ropo M, Westerholm J and Dongarra J (eds)

Recent Advances in Parallel Virtual Machine and Message

Passing Interface. Berlin: Springer, pp. 116–123.
Hoefler T, Dinan J, Buntinas D, Balaji P, Barrett B, Bright-

well R, et al. (2012) Leveraging MPI’s one-sided communi-

cation interface for shared-memory programming. In: 19th

european MPI users’ group meeting (EuroMPI’12).
Hoefler T, Dinan J, Buntinas D, Balaji P, Barrett B, Bright-

well R, et al. (2013) MPI+MPI: A new hybrid approach to

parallel programming with MPI plus shared memory.

Computing 95: 1121–1136.
Ji F, Aji AM, Dinan J, Buntinas D, Balaji P, Thakur R, et al.

(2012) MPI-ACC: An integrated and extensible approach

to data movement in accelerator-based systems. In: 14th

international conference on high performance computing and

communications (HPCC‘12). Piscataway: IEEE Press.
Jose J, Kandalla K, Luo M and Panda DK (2012) Supporting

hybrid MPI and OpenSHMEM over InfiniBand: Design

and performance evaluation. In: 42nd international confer-

ence on parallel processing, pp. 219–228.

Jose J, Luo M, Sur S and Panda DK (2010) Unifying UPC

and MPI runtimes: Experience with MVAPICH. In: 4th

conference on partitioned global address space programming

model (PGAS‘10), pp. 5:1–5:10. New York: ACM Press.

Kamal H and Wagner A (2010) FG-MPI: Fine-grain MPI for

multicore and clusters. In: 11th international workshop on

parallel and distributed scientific and engineering computing

(PDSEC), pp. 1–8. Piscataway: IEEE Press.
Kumar S, Mamidala A, Faraj D, Smith B, Blocksome M,

Cernohous B, et al. (2012) PAMI: A parallel active mes-

sage interface for the Blue Gene/Q supercomputer. In:

26th international parallel & distributed processing sympo-

sium (IPDPS). Piscataway: IEEE Press.
Li S, Hoefler T and Snir M (2013) NUMA-Aware shared

memory collective communication for MPI. In: 22nd

international ACM symposium on high-performance parallel

and distributed computing (HPDC‘13). New York: ACM

Press.
Luo M, Jose J, Sur S and Panda D (2011) Multi-threaded

UPC runtime with network endpoints: Design alternatives

and evaluation on multi-core architectures. In: 18th inter-

national conference on high performance computing

(HiPC), pp. 1–10.
Message Passing Interface Forum (1997) MPI-2: Extensions

to the Message-Passing Interface. Available at: http://

www.mpi-forum.org/docs/docs.html
MPI Forum Hybrid Working Group (2013) MPI endpoints

proposal. Available at: https://svn.mpi-forum.org/trac/

mpi-forum-web/ticket/380
MPICH (2013) MPICH - A portable implementation of MPI.

Available at: http://www.mpich.org

Dinan et al 403

Ohio State University (2013) OSU MPI benchmarks. Avail-

able at: http://mvapich.cse.ohio-state.edu/benchmarks
University of British Columbia (2013) Over 100 Million MPI

Processes with MPICH, January 15. Available at: http://

www.mpich.org/2013/01/15/over-100-million-processes-with-

mpich/
Rabenseifner R, Hager G and Jost G (2009) Hybrid MPI/

OpenMP parallel programming on clusters of multi-core

SMP nodes. In: 17th euromicro international conference on

parallel, distributed and network-based processing

(PDP‘09), pp. 427–436.
Smith L and Bull M (2001) Development of mixed mode

MPI/OpenMP applications. Scientific Programming 9:

83–98.
Stuart JA, Balaji P and Owens JD (2011) Extending MPI to

accelerators. In: 1st workshop on architectures and systems

for big data (ASBD).
Tanase G, Almasi G, Xue H and Archer C (2012) Network

endpoints for clusters of SMPs. In: 24th international sym-

posium on computer architecture and high performance com-

puting (SBAC-PAD), pp. 27–34. Piscataway: IEEE Press.
Träff JL (2010) Compact and efficient implementation of the

MPI group operations. In: 17th european MPI users’ group

meeting (EuroMPI‘10).

UC Berkeley and LBNL (2013) Berkeley UPC User’s Guide

version 2.16.0. Technical report, UC Berkeley and LBNL.

Available at: http://upc.lbl.gov/docs/user/
Underwood KD, Levenhagen MJ and Brightwell R (2007)

Evaluating NIC hardware requirements to achieve high

message rate PGAS support on multi-core processors. In:

ACM/IEEE conference on supercomputing (SC‘07). New

York: ACM Press.
Wang H, Potluri S, Luo M, Singh A, Sur S and Panda D

(2011) MVAPICH2-GPU: Optimized GPU to GPU com-

munication for InfiniBand clusters. In: 26th international

supercomputing conference (ISC‘11), Hamburg, Germany,

19–23 June 2011. New York: ACM Press.
Yang C, Bland W, Mellor-Crummey J and Balaji P (2014)

Portable, MPI-interoperable coarray Fortran. In: 19th SIG-

PLAN symposium on principles and practice of parallel pro-

gramming (PPoPP‘14), pp. 81–92. New York: ACM Press.

Author biographies

Dr Pavan Balaji holds appointments as a Computer
Scientist at the Argonne National Laboratory, as an
Institute Fellow of the Northwestern–Argonne
Institute of Science and Engineering at Northwestern
University, and as a Research Fellow of the
Computation Institute at the University of Chicago.
He leads the Programming Models and Runtime
Systems group at Argonne. His research interests
include parallel programming models and runtime
systems for communication and I/O, modern system
architecture (multicore, accelerators, complex mem-
ory subsystems, high-speed networks), and cloud
computing systems. He has more than 100 publica-
tions in these areas and has delivered nearly 120 talks
and tutorials at various conferences and research
institutes.

Dr Balaji is a recipient of several awards including
the US Department of Energy Early Career award in
2012, the TEDxMidwest Emerging Leader award in
2013, Crain’s Chicago 40 under 40 award in 2012, the
Los Alamos National Laboratory Director’s Technical
Achievement award in 2005, the Ohio State University
Outstanding Researcher award in 2005, six best paper
awards and various others. He has served as a Chair or
Editor for nearly 50 journals, conferences and work-
shops, and as a technical program committee member
for numerous conferences and workshops. He is a
senior member of the IEEE and a professional member
of the ACM. More details about Dr Balaji are available
at http://www.mcs.anl.gov/ balaji.

Dr James Dinan is a Software Architect at Intel
Corporation, where his work focuses on high-
performance computing. Prior to joining Intel, he was
the James Wallace Givens postdoctoral fellow at the
Argonne National Laboratory. He received his PhD
(2010) and MSc (2009) degrees in Computer Science
from Ohio State University, in Columbus. He received
his BSc degree (2004) in Computer System Engineering
from the University of Massachusetts, Amherst. He is
an active member of the MPI Forum standardization
body and a contributor to the open source MPICH
implementation of MPI. His research interests include
parallel programming models, scalable runtime sys-
tems, scientific computing, operating systems, and
computer architecture.

David Goodell graduated from the University of Illinois
at Urbana–Champaign in 2005 with a BSc degree in
Computer Engineering. He has served on the MPI
Forum standards body starting with MPI 2.1 and has
contributed to all subsequent revisions, including the
currently proposed MPI 3.1 and MPI 4.0 standards.
He is the author of numerous academic research papers
and has served on the technical program committee for
several conferences.

David is currently a Software Engineer at Cisco
Systems Incorporated. He specializes in network driver
and high-performance computing software develop-
ment, with a particular focus on the MPI programming
model. Prior to Cisco he worked at the Argonne
National Laboratory on MPI implementation issues
and various research projects. Before that he spent sev-
eral years at Amazon working on a variety of projects,
including the S3 storage service.

Ryan Grant is a postdoctoral appointee in the Scalable
Software Systems group at Sandia National
Laboratories. He graduated with a PhD degree in
Computer Engineering from Queen’s University in
Kingston, Ontario, Canada in 2012. His research inter-
ests are in high-performance computing, with emphasis

404 The International Journal of High Performance Computing Applications 28(4)

on high-performance networking for Exascale systems.
He is an active member of the Portals Networking
Interface design team, a high-performance interconnect
specification. He is an IEEE member and is actively
involved in IEEE-sponsored conference organization.

Doug Miller is an Advisory Software Engineer at IBM,
with 25 years’ experience working with multiprocessor
and multicore operating systems and applications.
Doug has a BSc degree in Computer Science from
Western Washington University and an Associate
Degree in Computer Technology from Wake Technical
College. Doug was an active contributor/author of the
MPI 3.0 standard, focusing on multithreading and
hybrid technologies.

Marc Snir is Director of the Mathematics and
Computer Science Division at the Argonne National
Laboratory and Michael Faiman and Saburo Muroga
Professor in the Department of Computer Science at
the University of Illinois at Urbana–Champaign. He
currently pursues research in parallel computing.

He was head of the Computer Science Department
from 2001 to 2007. Until 2001 he was a Senior Manager
at the IBM TJ Watson Research Center where he led
the Scalable Parallel Systems research group that was
responsible for major contributions to the IBM� SP
scalable parallel system and to the IBM� Blue Gene
system.

Marc Snir received his PhD degree in Mathematics
from the Hebrew University of Jerusalem in 1979,
worked at New York University (NYU) on the NYU
Ultracomputer project in 1980–1982, and was at the
Hebrew University of Jerusalem in 1982–1986, before
joining IBM. Marc Snir was a major contributor to the
design of the Message Passing Interface. He has pub-
lished numerous papers and given many presentations
on computational complexity, parallel algorithms,

parallel architectures, interconnection networks, paral-
lel languages and libraries and parallel programming
environments.

Marc is an Argonne Distinguished Fellow, AAAS
Fellow, ACM Fellow and IEEE Fellow. He has Erdó́s
number 2 and is a mathematical descendant of Jacques
Salomon Hadamard. He recently won the IEEE Award
for Excellence in Scalable Computing and the IEEE
Seymour Cray Computer Engineering Award.

Rajeev Thakur is the Deputy Director of the
Mathematics and Computer Science Division at
Argonne National Laboratory, where he is also a
Senior Computer Scientist. He is also a Senior Fellow
in the Computation Institute at the University of
Chicago and an Adjunct Professor in the Department
of Electrical Engineering and Computer Science at
Northwestern University. He received his PhD degree
in Computer Engineering from Syracuse University in
1995. His research interests are in the area of high-
performance computing in general and particularly in
parallel programming models, runtime systems, com-
munication libraries, and scalable parallel I/O. He is a
member of the MPI Forum that defines the MPI stan-
dard. He is also coauthor of the MPICH implementa-
tion of MPI and the ROMIO implementation of MPI-
IO, which have thousands of users all over the world
and form the basis of commercial MPI implementa-
tions from IBM, Cray, Intel, Microsoft, and other ven-
dors. MPICH received an R&D 100 Award in 2005.
Rajeev is a coauthor of the book Using MPI-2:
Advanced Features of the Message Passing Interface
published by MIT Press, which has also been trans-
lated into Japanese. He was an Associate Editor of
IEEE Transactions on Parallel and Distributed Systems
(2003–2007) and was Technical Program Chair of the
SC‘12 conference.

Dinan et al 405

