
IPSJ SIG Technical Report

User-level Process towards Exascale Systems

Akio Shimada1,a) Atsushi Hori1,b) Yutaka Ishikawa1,c) Pavan Balaji2,d)

Abstract: The process oversubscription, which binds multiple parallel processes to one CPU core, can hide the com-
munication latency and reduce CPU idle time. However, the lightweight OS kernels for Exascale systems may no
longer support OS task scheduling. Without OS task scheduling, only one parallel process per CPU core is allowed,
and then the process oversubscription is impossible. Even if the OS task scheduling is supported, the overhead of the
context switch between parallel processes decreases the application performance and prevents the process oversub-
scription from being utilized. By assigning a role of a parallel process to a user-level thread, high-performance process
oversubscription can be achieved without OS task scheduling. However, the process oversubscription utilizing the
user-level thread dramatically changes the programming model of the parallel application. In this paper, we propose
user-level process. The user-level process is a ”process”, which can be scheduled in the user-space. The user-level
process has the beneficial features of the user-level thread. Meanwhile, it has its own program code and data like
a traditional process. By assigning a role of a parallel process to an user-level process, high-performance process
oversubscription can be achieved without OS task scheduling. Moreover, the process oversubscription utilizing the
user-level process does not change the programming model of the parallel application.

1. Introduction
Parallel processes running on a HPC cluster communicate with

each other to exchange data for processing parallel computation.
If a parallel process is blocked in order to wait for completion of
a communication, a CPU core, to which it is bound, can be idle
state during the communication. Then, the communication la-
tency between parallel processes results in inefficient use of CPU
resources. Network systems of HPC clusters will be larger and
more complicated towards Exascale systems. Therefore, the com-
munication latency and the disbenefit due to it continue to be an
important problem.

One of the techniques for reducing CPU idle time is to use
non-blocking communication. The non-blocking communication
enables a parallel process to overlap communication with compu-
tation. As a result, the communication latency can be hidden, and
efficient use of CPU resources can be enhanced. However, there
are not always computations, which can be overlapped with com-
munications. In such situations, a parallel process has to wait for
completion of a communication after all, even if the no-blocking
communication is used. Further technique for reducing CPU idle
time is to use process oversubscription, which binds multiple pro-
cesses to one CPU core and makes them run as a parallel process.
With the process oversubscription, if a parallel process is blocked
in order to wait for completion of a communication, any other
ready parallel process bound to the same CPU core can preempt

1 RIKEN AICS
2 Argonne National Laboratory
a) a-shimada@riken.jp
b) ahori@riken.jp
c) yutaka.ishikawa@riken.jp
d) balaji@anl.gov

it. As a result, communication latency can be hidden and CPU
idle time can be reduced.

Although the process oversubscription is beneficial, some
problems prevent HPC system users from utilizing it. The
lightweight OS kernels, such as Mckernel[4][12] and Argo[1],
may no long support OS task scheduling, because it is a re-
source consuming and noisy operation. Without OS task schedul-
ing, only one parallel process per CPU core is allowed, and
then the process oversubscription is impossible. Even if the OS
task scheduling is supported, the overhead, which arises at the
context switch between parallel processes, prevents the process
oversubscription from being utilized. Parallel processes must be
scheduled by the OS kernel. Thus, the overhead of jumping into
the kernel-context arises at every context switch. This overhead
spoils the performance benefit of the process oversubscription in
some cases[5].

Assigning a role of a parallel process to a user-level thread
solves above problems. In this scheme, the process oversubscrip-
tion is achieved by invoking multiple user-level threads within a
process on behalf of binding multiple parallel processes to one
CPU core. If a user-level thread, which plays a role of a parallel
process, is blocked, any other ready user-level thread within the
same process preempts it. Then, CPU idle time is reduced. The
context switch between user-level threads within the same pro-
cess can be done in user-space, which means that task scheduling
of the user-level threads within the same process can be operated
in user-space. Therefore, OS task scheduling is not necessary
for the process oversubscription when assigning a role of a par-
allel process to a user-level thread. Moreover, the overhead of
jumping into kernel-context does not arise at the context switch
between user-level threads within the same process. Therefore,

c⃝ 1992 Information Processing Society of Japan 1

IPSJ SIG Technical Report

Task	
 Scheduler	
 (Kernel-­‐space)	

data	

bss	

text	

data	

heap	

data	

bss	

text	

heap	

data	

bss	

text	

heap	

Task	
 Scheduler	
 (User-­‐space)	

data	

bss	

text	

heap	

data	

bss	

text	

heap	

data	

bss	

text	

heap	

Kernel-level	

Process	

User-level	

Process	

User-level	

Process	

User-level	

Process	

Kernel-level	

Thread	

Kernel-level	

Thread	

Kernel-level	

Thread	

User-level	

Thread	

User-level	

Thread	

User-level	

Thread	

Execution Context	
 C	
 CPU Core	

(a) Kernel-level Process	

Kernel-level Process	

Kernel-level Process	

Kernel-level Process	

(b) User-level Process	
 (c) Kernel-level Thread	
 (d) User-level Thread	

Kernel-level	

Process	

Kernel-level	

Process	

stack	

stack	
stack	
stack	

stack	
stack	

stack	
stack	
stack	

bss	

heap	

text	

data	

bss	

heap	

text	

stack	
stack	
stack	

Address Space Boundary	

Task	
 Scheduler	
 (User-­‐space)	

C	
 C	
 C	
 C	

Task	
 Scheduler	
 (Kernel-­‐space)	
 Task	
 Scheduler	
 (Kernel-­‐space)	
 Task	
 Scheduler	
 (Kernel-­‐space)	

Fig. 1 Semantics views of kernel-level process, user-level process, kernel-level thread and user-level
thread

high-performance process oversubscription can be achieved. Cur-
rently, a variety of high-performance user-level thread libraries
are proposed[13][14][8][2].

However, this scheme dramatically changes the programming
model of the parallel application. In general, programmers im-
plement parallel applications on the assumption that a parallel
process has its own program code (text) and data (data, bss and
heap). Nevertheless, when assigning a role of a parallel process
to a user-level threads, a user-level thread playing a role of a par-
allel process shares the same program code and data with others.
When using this scheme, existing programs cannot be executed
without any modifications, and programmers must implement a
new application with unfamiliar manner.

In this paper, we propose user-level process. The user-level
process is a ”process”, which can be scheduled in the user-space.
The user-level process has the beneficial features of the user-level
thread. Meanwhile, it has its own program code and data like a
traditional process. By assigning a role of a parallel process to a
user-level process, all of following purposes can be achieved.

• Enabling the process oversubscription without OS task
scheduling.

• Enabling high-performance process oversubscription by
avoiding the overhead, which arises at the context switch be-
tween parallel processes.

• Enabling the process oversubscription without changing the
programing model of the parallel application.

The rest of this paper is organized as follows. Next section
provides an overview of the user-level process and shows its capa-
bility. Section 3 describes implementation of the user-level pro-
cess. The preliminary evaluation results are presented in Section
4. Related work is discussed in Section 5. Finally, this paper is
summarized in Section 6.

2. Overview of User-level Process
2.1 Process and Thread

Process can be defined as a set of program code (text), data
(data, bss and heap), stack and execution context (register states).
Meanwhile, Thread can be defined as just a set of stack and ex-
ecution context. Thread is a subset of process, and then process
has one or more threads within itself. Threads within the same
process share the program code and data.

When doing the process oversubscription, multiple processes
are bound to the same core. Then, task scheduling is required.
The context switch between processes requires address space
switching, and only OS kernel can conduct it. Thus, task schedul-
ing of processes must be operated in kernel-space.

Another way to do the process oversubscription is to invoke
multiple threads within a process and to assign a role of a par-
allel process to each of them. Threads within the same process
run in the same address space. Then, address space switching is
not required at the context switch between them. Therefore, task
scheduling of the threads within the same process can be oper-
ated in both the kernel-space and the user-space. There are two
types of threads, kernel-level thread and user-level thread. The
kernel-level thread is a thread scheduled in the kernel-space. On
the other hands, the user-level thread is a thread scheduled in the
user-space. When OS task scheduling is supported, process has
one kernel-level thread at least. The context switch between user-
level threads is faster than the context switch between processes
and the context switch between kernel-level threads, because the
overhead of jumping into the kernel-context can be avoided.

2.2 User-level Process
User-level process is a ”process”, which can be scheduled in

user-space. To avoid any ambiguity, we use the term kernel-level
process when referring to traditional processes that are sched-

c⃝ 1992 Information Processing Society of Japan

IPSJ SIG Technical Report

Table 1 User-level process capability

kernel-level process user-level process kernel-level thread user-level thread
Enabling the process oversubscription without OS task scheduling No Yes No Yes
Enabling high-performance process oversubscription by avoiding the
overhead, which arises at the context switch between parallel pro-
cesses

No Yes No Yes

Enabling the process oversubscription without changing the pro-
graming model of the parallel application

Yes Yes No No

uled in the kernel-space, and the term process to indicate both
the kernel-level processes and the user-level processes.

Figure 1 describes semantics views of the kernel-level process,
the user-level process, the kernel-level thread and the user-level
thread. The user-level process is similar to the user-level thread.
However, it has its own program code and data unlike the user-
level thread. In this paper, ”process” is defined as a set of program
code, data, stack and execution context. Therefore, we equate
the user-level process with ”process”. The user-level process is
a subset of the kernel-level process, and so the user-level pro-
cesses within the same kernel-level processes runs in the same
address space. Then, address space switching is not required at
the context switch between them. Therefore, task scheduling of
the user-level processes within the same kernel-level process can
be operated in the user-space.

2.3 Capability of User-level Process
As described before, task scheduling of the user-level pro-

cesses within the same kernel-level process can be operated in
the user-space. Therefore, the process oversubscription can be
done without OS task scheduling by invoking multiple user-level
processes within the same kernel-level process and assigning a
role of a parallel process to each of them. Moreover, the context
switch between the user-level processes within the same kernel-
level process is faster than the context switch between kernel-
level processes, because the overhead of jumping into the kernel-
context can be avoided. Thus, high-performance process over-
subscription can be achieved.

The key feature of the user-level process is that it has its own
program code and data. When doing the process oversubscrip-
tion by assigning a role of a parallel processes to a user-level
thread, the programming model of the parallel application must
be changed, because the program code and data are shared among
parallel processes. In general, programmers implement paral-
lel applications on the assumption that one parallel process has
its own program code and data. On the other hands, when do-
ing the process oversubscription by assigning a role of a parallel
process to a user-level process, the programming model of the
parallel application does not need to be changed, because a user-
level process playing a role of a parallel process have its own
program code and data respectively. Existing programs can be
executed without any modifications, and programmers can im-
plement parallel applications with familiar manner. The capabil-
ity of the user-level process is summarized and compared with
the kernel-level process, the kernel-level thread and the user-level
thread in table 1.

The capability of the user-level process is supposed to be em-
bedded in runtimes for parallel computation, such as MPI run-

Task	
 Scheduler	
 (Kernel-­‐space)	

data	

bss	

text	

heap	

data	

bss	

text	

heap	

data	

bss	

text	

heap	

PVAS Task 0	

PVAS	

Partition 0	

PVAS Address Space	

stack	
stack	
stack	

PVAS Task 1	

PVAS	

Partition 1	

PVAS Task 2	

PVAS	

Partition 2	

C	

Fig. 2 An overview of the PVAS

times[9][7]. By modifying a process manager of a runtime to in-
voke a user-level process playing a role of a parallel process and
implementing a task scheduler for the user-level processes into
the runtime, the process oversubscription utilizing the user-level
process can be achieved.

3. Implementation
Currently, the prototype implementation of the user-level pro-

cess works on the Linux for the x86 64 architecture. In this sec-
tion, implementation of the user-level process is described.

3.1 Partitioned Virtual Address Space
The user-level process was implemented by diverting our

former research, Partitioned Virtual Address Space (PVAS)
[10][11]. Originally, The PVAS was developed to enhance the
intra-node communication between kernel-level processes within
a computing node. The PVAS enables kernel-level processes to
share the same address space, so that kernel-level processes shar-
ing the same address space can directly access the data of other
kernel-level processes. Figure 2 shows an overview of the PVAS.
The idea behind the PVAS is to partition a virtual address space
and assign one partitioned region to one kernel-level process in-
stead of assigning a whole virtual address space. In the PVAS,
the virtual address space that is partitioned is called PVAS ad-
dress space, and the partitioned region is called PVAS partition.
The kernel-level process that is assigned to the PVAS partition
is called PVAS task. A PVAS task can have the program code
(text), data (data, bss and heap) and stack within its PVAS par-
tition, and thus a PVAS task can load a program into its PVAS
partition and execute it. A PVAS task can directly access the data

c⃝ 1992 Information Processing Society of Japan 3

IPSJ SIG Technical Report

Task	
 Scheduler	
 (Kernel-­‐space)	

data	

bss	

text	

heap	

data	

bss	

text	

heap	

data	

bss	

text	

heap	

User-level	

Process 0	

PVAS	

Partition 0	

PVAS Address Space	

stack	
stack	
stack	

PVAS	

Partition 1	

PVAS	

Partition 2	

User-level	

Process 1	

User-level	

Process 2	

PVAS Task	

Task	
 Scheduler	
 (User-­‐space)	

C	

Fig. 3 An overview of the extended PVAS which supports the user-level
process

of other PVAS tasks, because no address space boundaries lie be-
tween the PVAS tasks within the same PVAS address space.

3.2 User-level Process Support
Here, our PVAS was extended to support the capability of the

user-level process. Our implementation of the user-level process
uses the address space partitioning mechanism of the PVAS. Fig-
ure 3 shows an overview of the extended PVAS that supports the
user-level process capability. In the extended PVAS, a user-level
process runs as a subset of a PVAS task. In our implementa-
tion, one PVAS partition is assigned to one user-level process,
and then a user-level process can have its own program code,
data and stack within its PVAS partition. A user-level process can
load a program into its PVAS partition, and the loaded program
can be executed as the user-level process. One PVAS task can
be the owner of multiple user-level processes and execute them.
Then, the context switch between user-level processes means that
the PVAS task switches the user-level process that it is currently
executing to another user-level process. The context switch be-
tween user-level processes within the same PVAS task does not
require address space switching, because they are running in the
same address space. Therefore, task scheduling of the user-level
processes within the same PVAS task can be operated in the user-
space. Having multiple PVAS tasks in the same PVAS address
space is allowed. However, one user-level process cannot belong
to multiple PVAS tasks, and the context switch between user-level
processes that belong to different PVAS tasks is prohibited. Each
user-level process has a unique ID that is called the PVAS ID.
In this paper, user-level process N means the user-level process
whose PVAS ID is N. The size of the PVAS partition is fixed,
and so the start address of the PVAS partition possessed by the
user-level process N is calculated by the following expression.

(N + 1) × [size o f PVAS partition]

text	

data	
 &	
 bss	

heap	

stack	

PVAS	

Par33on	
 0	

PVAS	

Par33on	
 1	

registers	

text	

data	
 &	
 bss	

heap	

stack	

registers	

CPU	

Core	

①	
 save	
 context	
 of	
 	

	
 	
 	
 	
 	
 	
 	
 user-­‐level	
 process	
 0	

②	
 load	
 context	
 of	
 	

	
 	
 	
 	
 	
 	
 	
 user-­‐level	
 process	
 1	

呍
呍
呍	

Low	

High	

A
dd
re
ss
	

Fig. 4 Context switch from user-level process 0 to user-level process 1 (In
this figure, PVAS partition 0 is assigned to user-level process 0, and
PVAS partition 1 is assigned to user-level process 1)

The PVAS ID is zero-origin. Thus, to prevent the start address
of the PVAS partition possessed by user-level process 0 from be-
coming NULL, the PVAS ID is shifted by one.

3.3 Context Switch
The context switch between user-level processes is done in the

user-space by saving the execution context of the current user-
level process and loading the execution context of the next user-
level process. In this case, execution context means the status of
the registers. Figure 4 describes the context switch from user-
level process 0 to user-level process 1. The context switch is im-
plemented by loading the execution context of user-level process
1 after saving the execution context of user-level process 0. The
memory region for saving the execution context of a user-level
process is pre-allocated on top of its PVAS partition when it is
created. Then, the routine for context switching can easily locate
the address to which the execution context of the current user-
level process should be saved and the address from which the
execution context of the next user-level process should be loaded
by their PVAS ID and the expression in Section 3.2.

3.4 User-level Process API
We developed the library for leveraging the capability of user-

level process. In this section, specification of the user-level pro-
cess API is described.
3.4.1 PVAS Address Space Creation

• int pvas create(void)

This function creates a PVAS address space where user-level
processes are created, and returns the descriptor of the created
PVAS address space. This function calls sys pvas create()
which is a system call for creating a PVAS address space.
3.4.2 PVAS Address Space Destroy

• int pvas destroy(pvd)

This function destroys the PVAS address space indicated by
pvd. pvd is a descriptor of the PVAS address space to be de-
stroyed. This function calls sys pvas destroy() which is a
system call for destroying a PVAS address space.

c⃝ 1992 Information Processing Society of Japan

IPSJ SIG Technical Report

3.4.3 PVAS Task Spawn

• pid t pvas spawn(int pvd, int pvid, char *file-
name, char **argv, char **envp)

This function spawns a new PVAS task within the PVAS ad-
dress space indicated by pvd and creates a new user-level process
that is executed by the spawned PVAS task. pvid is a PVAS ID
of the new user-level process. The new user-level process loads
the program indicated by filename into its PVAS partition. argv
is a list of arguments passed to the program. envp is a list of en-
vironmental variables. At the same time as loading the program,
the memory region for saving the execution context of the new
user-level process is allocated on top of its PVAS partition. The
address at which this region should be allocated is calculated by
pvid following the expression in Section 3.2. The loaded pro-
gram is executed as a user-level process by the spawned PVAS
task. This function returns the process ID of the new PVAS task.
This function calls sys pvas spawn() which is a system call to
do the above operations.
3.4.4 User-Level Process Creation

• int pvas ulp exec(int pvid, char *filename, char
**argv, **envp)

pvas ulp exec() create a new user-level process. This func-
tion must be called by a user-level process. A new user-level
process is created into the PVAS address space where the calling
user-level process is running. The PVAS task that is the owner
of the calling user-level process also becomes the owner of the
new user-level process. pvid is a PVAS ID of the new user-level
process. The new user-level process loads a program indicated
by filename into its PVAS partition. argv is a list of arguments
passed to the program. envp is a list of environmental variables.
At the same time as loading the program, the memory region for
saving the context of the new user-level process is allocated on
top of its PVAS partition in the same manner as pvas spawn().
After creating a new user-level process, the context of the current
user-level process is saved. Then, the loaded program is executed
as the new user-level process. This function returns 0 on success,
error code on error. This function calls sys pvas ulp exec()
which is a system call to do the above operation.
3.4.5 Context Switch

• int pvas ulp switch(int pvid)

This function executes context switch from current user-level
process to another one. pvid indicates the PVAS ID of the tar-
get user-level process which will be switched to. This function
performs a context switch by saving the execution context of the
current user-level process and loading the execution context of
the target user-level process. This function returns 0 on success,
error code on error.

Most of this function is executed in the user-space. However,
a part of the operation is delegated to the OS kernel. Some libc
libraries utilize thread local storage (TLS) to implement thread-

#include <stdio.h> !
#include <pvas.h> !
!
int main (int argc, char **argv) { !
 "int error; !
 "int pvd, status; !
!
 "/* Create a new PVAS address space */!

"pvas_create(&pvd); !
 "/* Spawn a new PVAS task */ !
 "pvas_spawn(pvd, 0, “ulpexec”, argv, NULL, NULL); !
 "wait(&status); !
 "/* Destroy the PVAS address space */!
 "pvas_destroy(pvd); !

"return 0; !
}	

#include <stdio.h> !
#include <pvas.h> !
!

"int main (int argc, char **argv) { !
 "int pvid; !
 !
 "/* Get PVAS ID */ !
 "pvas_get_pvid(&pvid); !
!

"printf(“I am user-level process %d.\n”, pvid); !
!

"/* Context Switch */ !
"pvas_ulp_switch(0); !

!
"return 0; !

}	

ulpprogram	

ulpspawn	

#include <stdio.h> !
#include <pvas.h> !
!
#define PNUM 2 !
!
int main (int argc, char **argv) { !
 "int pvd, i; !
!
 "/* Create a new user-level process */!

"for(i=1; i<PNUM+1; i++) !
" "pvas_ulp_exec(pvd, i, “ulpprogram”, argv, NULL, NULL); !
"return 0; !

}	

ulpexec	

Fig. 5 Sample program of the user-level process

safe functions. The TLS enables a kernel-level thread to allocate
its own private data region (TLS region). The GCC compiler[3]
for the x86 64 architecture uses fs register that is one of the seg-
ment registers to implement the TLS. In this implementation, the
TLS region is pointed to by the fs register. The fs register is
not accessible from the user-space, so the operation for the save
and the load of this register must be delegated to the OS kernel.
This delegation causes the overhead of jumping into the kernel-
context. The value of the fs register is constant while a program
is executed, so the save of the fs register is required only on the
first context switch. However, the load of the fs register is re-
quired on every context switch. This problem can be avoided by
building libc libraries with disabling the TLS and making user-
level processes use them. In this case, pvas ulp switch() can
ignore the save and the load of the fs register.
3.4.6 Sample Program

Figure 5 describes the sample programs of the user-level
process written by C language, and Figure 6 shows the im-
age of executing it. This example consists of three programs,
ulpspawn,ulpexec and ulpprogram.

ulpspawn creates a new PVAS address space by calling
pvas create(). Then it spawns a new PVAS task and creates
user-level process 0 by calling pvas spawn(). User-level pro-
cess 0 loads ulpexec into its PVAS partition, and it is executed as
user-level process 0 by the created PVAS task.

ulpexec executed as user-level process 0 creates user-level pro-

c⃝ 1992 Information Processing Society of Japan 5

IPSJ SIG Technical Report

ulpspawn	

PVAS Address Space	

ulpexec	

ulpprogram	

ulpprogram	

呍
呍
呍	

PVAS Partition 0	

PVAS Partition 1	

PVAS Partition 2	

PVAS Partition 3	

③ pvas_ulp_exec()	

② pvas_ulp_spawn()	

⑤ pvas_ulp_exec()	

④ pvas_ulp_switch()	

⑥ pvas_ulp_switch()	

PVAS Task	

① pvas_ulp_create()	

Fig. 6 Image of executing the sample program

cess 1 by calling pvas ulp exec(). User-level process 1 loads
ulpprogram into its PVAS partition and it is executed as user-level
process 1.

ulpprogram executed as user-level process 1 performs context
switch from user-level process 1 to user-level process 0 by call-
ing pvas ulp switch(). User-level process 0 creates user-level
process 2, and then user-level process 2 repeats the operation per-
formed by user-level process 1.

When embedding the capability of the user-level process to the
rutimes for parallel computation, these sample programs can be
an example of the implementation. For example, supposing that
the capability of the user-level process is embedded in the MPI
runtimes, mpiexec or mpirun can be implemented by consulting
ulpexec and ulpspawn, and ulpprogram may be a counterpart of a
MPI program executed by mpiexec or mpirun.

3.5 Compatibility Issues
The specification of the user-level process is not equal to that

of the traditional kernel-level process. For example, file descrip-
tors cross user-level processes within the same kernel-level pro-
cess, and transmission of signals takes place between kernel-level
processes (not between user-level processes). Therefore, those
compatibility issues must be considered when embedding the ca-
pability of the user-level process in the runtimes for parallel com-
putation.

4. Preliminary Evaluation
When doing the process oversubscription, context switch per-

formance affects the overall performance of the parallel appli-
cation, because so much number of parallel processes may be
invoked on a single CPU core. Then, the context switch perfor-
mance of the user-level process was measured in this preliminary
evaluation. The evaluation was performed on the Intel Xeon CPU
X5670 (2.93GHZ).

The context switch performance was evaluated by using a sim-
ple micro-benchmark. This benchmark invokes multiple parallel
processes on a single CPU core and makes each of them per-
form a context switch 1000 times. Then elapsed time until all
context switch operations are performed was measured. Four
implementations of this benchmark are prepared. First imple-
mentation treats one kernel level process as one parallel pro-

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	
 900	
 1000	

El
ap

se
d	

Ti
m
e	

(s
ec
)	

Number	
 of	
 Parallel	
 Processes	

kernel-­‐level	
 process	

kernel-­‐level	
 thread	

user-­‐level	
 thread	
 (massivethreads)	

user-­‐level	
 process	

user-­‐level	
 process	
 (ignoring	
 fs)	

Fig. 7 Context switch performance

cess. This implementation invokes multiple kernel-level pro-
cesses and makes each of them perform a context switch by call-
ing sched yield(). Second implementation treats one kernel-
level thread as one parallel process. This implementation invokes
multiple kernel-level threads and makes each of them perform a
context switch by calling sched yield(). Third implementation
threats one user-level thread as one parallel process. This im-
plementation invokes multiple user-level threads and makes each
of them perform a context switch. We used massivethreads[8],
which is one of the high-performance user-level thread libraries.
When using massive threads, a user-level thread is invoked by
calling myth create(), and the invoked user-level thread can
perform a context switch by calling myth yield(). Final im-
plementation treats one user-level process as one parallel pro-
cess. This implementation invokes multiple user-level processes
and makes each of them perform a context switch by calling
pvas ulp switch(). In this way, the context switch perfor-
mance of user-level process is compared with those of kernel-
level process, kernel-level thread and user-level threads.

The execution results of this benchmark are shown in Figure
7. As described in the graph, the context switch performance of
kernel-level process is slower than those of others, because the
context switch between kernel-level processes requires address
space switching. The address space switching needs TLB flush
and some other heavy operations, then the context switch per-
formance can be lower. The performance of user-level process
is competitive with that of the kernel-level thread. This is why
the save and load of the fs register on every context switch be-
tween user-level processes introduces the overhead of jumping
from the user-space into the kernel-space as described in Section
3.4. Then we implemented pvas ulp switch() which ignores
the save and load of the fs register. The performance result of this
implementation is competitive with that of the user-level thread.

We think that there still remains a room to improve the con-
text switch performance of user-level process. For example, cur-
rent implementation saves all general purpose registers on every
context switch, although they all do not necessarily have to be
saved for some situations. If we further examine this problem,
the context switch performance of the user-level process will be
improved.

c⃝ 1992 Information Processing Society of Japan

IPSJ SIG Technical Report

5. Related Work
FG-MPI[6] is an implementation of MPI runtime, which binds

a MPI rank to a user-level thread. By assigning a role of an MPI
process to a user-level thread, high-performance process oversub-
scription can be achieved. The process oversubscription hides the
communication latency and results in better load balance, then
MPI application performace can be improved.

The problem of the FG-MPI is that it dramatically changes a
programming model of MPI. In general, programmers implement
MPI applications on the implicit assumption that a MPI process
has its own program code (text) and data (data, bss and heap).
However, programmers must consider those objects are shared
among MPI processes when using the FG-MPI. If FG-MPI binds
a MPI rank to a user-level process proposed in this paper, MPI
applications can enjoy the benefit of the process oversubscription
without changing the programming model of MPI.

6. Summary
In this paper, we propose the user-level process. The user-level

process is a ”process”, which can be scheduled in the user-space.
By assigning a role of a parallel process to a user-level process,
the process oversubscription can be achieved, even if the OS ker-
nel does not support task scheduling. This is an important feature,
because the lightweight OS kernels for Exascale systems may no
longer support the task scheduling, although the process oversub-
scription is beneficial. Moreover, the user-level process enables
high-performance process oversubscription. The context switch
between user-level processes is faster than the context switch be-
tween traditional kernel-level processes, because it is operated
in the user-space, and the overhead of jumping into the kernel-
context is not required at every context switch.

The capability of the user-level process is similar to that of the
user-level process. By assigning a role of one parallel process to
one user-level thread, high-performance oversubscription can be
achieved without OS task scheduling. However, the process over-
subscription utilizing the user-level thread changes the program-
ming model of the parallel application. Meanwhile, the process
oversubscription utilizing the user-level process does not change
the programing model of the parallel application, because a user-
level process has its own program code and data like a traditional
kernel-level process.

The capability of the user-level process is supposed to be em-
bedded in the runtimes for parallel computation, such as MPI run-
times. Our future work is to enhance those runtimes to leverage
the capability of the user-level process and evaluate their perfor-
mance.

7. Acknowledgments
This research was partially supported by the CREST project of

the Japan Science and Technology Agency (JST).

References
[1] Argonne National Laboratory: Argo: An exascale operating system,

http://www.mcs.anl.gov/project/argo-exascale-operating-system.
[2] Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Ran-

dall, K. H. and Zhou, Y.: Cilk: An Efficient Multithreaded Runtime
System, Proceedings of the Fifth ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPOPP ’95, New York,
NY, USA, ACM, pp. 207–216 (online), DOI: 10.1145/209936.209958
(1995).

[3] GCC, the GNU Compiler Collection: GCC online documentation,
https://gcc.gnu.org/onlinedocs/.

[4] Gerofi, B., Shimada, A., Hori, A. and Ishikawa, Y.: Partially Sepa-
rated Page Tables for Efficient Operating System Assisted Hierarchi-
cal Memory Management on Heterogeneous Architectures, CCGRID,
pp. 360–368 (2013).

[5] Iancu, C., Hofmeyr, S., Blagojevic, F. and Zheng, Y.: Oversub-
scription on multicore processors, Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, IEEE, pp. 1–11
(online), DOI: 10.1109/IPDPS.2010.5470434 (2010).

[6] Kamal, H. and Wagner, A.: An Integrated Runtime Scheduler for MPI,
Proceedings of the 19th European Conference on Recent Advances
in the Message Passing Interface, EuroMPI’12, Berlin, Heidelberg,
Springer-Verlag, pp. 173–182 (2012).

[7] MPICH: High-Performance Portable MPI, http://www.mpich.org/.
[8] Nakashima, J. and Taura, K.: MassiveThreads: A Thread Library for

High Productivity Languages, Concurrent Objects and Beyond From
Theory to High-Performance Computing (Festschrift).

[9] Open MPI: Open Source High Performance Computing,
http://www.open-mpi.org/.

[10] Shimada, A., Gerofi, B., Hori, A. and Ishikawa, Y.: PGAS Intra-node
Communication towards Many-Core Architecture, In PGAS 2012: 6th
Conference on Partitioned Global Address Space Programing Model,
PGAS’12 (2012).

[11] Shimada, A., Gerofi, B., Hori, A. and Ishikawa, Y.: Proposing A
New Task Model towards Many-Core Architecture, Proceedings of the
ACM international workshop on manycore embedded systems 2013,
MES’13, Tel-Aviv, Israel, ACM (2013).

[12] Si, M., Ishikawa, Y. and Takagk, M.: Direct MPI Library for Intel
Xeon Phi co-processors, The 3rd Workshop on Communication Archi-
tecture for Scalable Systems in conjunction with IPDPS2013 (2013).

[13] von Behren, R., Condit, J., Zhou, F., Necula, G. C. and Brewer,
E.: Capriccio: Scalable Threads for Internet Services, Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles,
SOSP ’03, New York, NY, USA, ACM, pp. 268–281 (online), DOI:
10.1145/945445.945471 (2003).

[14] Wheeler, K. B., Murphy, R. C. and Thain, D.: Qthreads: An API for
programming with millions of lightweight threads., IPDPS, IEEE, pp.
1–8 (2008).

c⃝ 1992 Information Processing Society of Japan 7

