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ABSTRACT
Many-core architectures, such as the Intel Xeon Phi, provide
dozens of cores and hundreds of hardware threads. To uti-
lize such architectures, application programmers are increas-
ingly looking at hybrid programming models, where multi-
ple threads interact with the MPI library (frequently called
“MPI+X” models). A common mode of operation for such
applications uses multiple threads to parallelize the compu-
tation, while one of the threads also issues MPI operations
(i.e., MPI FUNNELED or SERIALIZED thread-safety mode). In
MPI+OpenMP applications, this is achieved, for example,
by placing MPI calls in OpenMP critical sections or outside
the OpenMP parallel regions. However, such a model often
means that the OpenMP threads are active only during the
parallel computation phase and idle during the MPI calls,
resulting in wasted computational resources. In this paper,
we present MT-MPI, an internally multithreaded MPI imple-
mentation that transparently coordinates with the threading
runtime system to share idle threads with the application. It
is designed in the context of OpenMP and requires modifi-
cations to both the MPI implementation and the OpenMP
runtime in order to share appropriate information between
them. We demonstrate the benefit of such internal paral-
lelism for various aspects of MPI processing, including de-
rived datatype communication, shared-memory communica-
tion, and network I/O operations.

Categories and Subject Descriptors: D.4 [Communica-
tions Management]: Message sending

Keywords: MPI; OpenMP; hybrid MPI + OpenMP; threads;
many-core; Xeon Phi;

1. INTRODUCTION
Although multicore processor chips are the norm today,

architectures such as the Intel Xeon Phi take such chips to a
new level of parallelism, with dozens of cores and hundreds
of hardware threads. With the number of processing cores
increasing at a faster rate than are other resources in the
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system (e.g., memory), application programmers are look-
ing at hybrid programming models, comprising a mixture of
processes and threads, that allow resources on a node to be
shared between the different threads of a process. In such
models, one or more threads utilize a distributed-memory
programming system, such as MPI, for their data communi-
cation. The most prominent of the threading models used in
scientific computing today is OpenMP [5]. In OpenMP, the
application developer annotates the code with information
on which statements need to be parallelized by the compiler
and the associated runtime system. The compiler, in turn,
translates these annotations into semantic information that
the runtime system can use to schedule the computational
work units on multiple threads for parallel execution.

A common mode of operation for hybrid MPI+OpenMP
applications involves using multiple threads to parallelize
the computation, while one of the threads issues MPI op-
erations (i.e., MPI FUNNELED or SERIALIZED thread-safety
mode). This is achieved, for example, by placing MPI calls
in OpenMP critical sections or outside the OpenMP paral-
lel regions. However, such a model often means that the
OpenMP threads are active only in the computation phase
and idle during MPI calls, resulting in wasted computational
resources. These idle threads translate to underutilized hard-
ware resources on massively parallel architectures.

In this paper, we present MT-MPI, an internally mul-
tithreaded MPI implementation that transparently coordi-
nates with the threading runtime system to share idle threads
with the application. We designed MT-MPI in the context
of OpenMP, which serves as a common threading runtime
system for the application and MPI. MT-MPI employs ap-
plication idle threads to boost MPI communication and data-
processing performance and increases resource utilization.
While the proposed techniques are generally applicable to
most many-core architectures, in this paper we focus on In-
tel Xeon Phi as the architectural testbed (in “native mode,”
where applications are executed directly on the coprocessor).

To demonstrate the performance benefits of the proposed
approach, we modified the Intel OpenMP runtime (http://
www.openmprtl.org) and the MPICH implementation of MPI
(http://www.mpich.org). Specifically, we modified the MPI
implementation to parallelize its internal processing using a
potentially nested OpenMP parallel instantiation (i.e., one
OpenMP parallel block inside another). We studied new al-
gorithms for various internal processing steps within MPI
that are more “parallelism friendly” for OpenMP to use. In
theory, such a model would allow both the application and
the MPI implementation to expose their parallelism require-
ments to the OpenMP runtime, which in turn can schedule



them on the available computational resources. In practice,
however, this has multiple challenges:

1. The modified algorithms for internal MPI processing,
while efficient for OpenMP parallelism, are in some
cases not as efficient for sequential processing. Con-
sequently, they can improve performance only when
sufficient OpenMP parallelism is available. However,
the actual number of threads that will be available at
runtime is unknown. Depending on the application’s
usage of threads, this can vary from none to all threads
being available to MPI for processing. Thus, if not de-
signed carefully, the algorithms can perform worse than
the traditional sequential implementation of MPI.

2. Unfortunately, the current implementation of the Intel
OpenMP runtime does not schedule work units from
nested OpenMP parallel regions efficiently. It simply
creates new pthreads for each nested parallel block and
allows the operating system to schedule them on the
available cores. This results in creating more threads
than the available cores, and degrading performance.

To work around these limitations, we modified the In-
tel OpenMP runtime to expose information about the idle
threads to the MPI implementation. The MPI implemen-
tation uses this information to schedule its parallelization
only when enough idle resources were available. Further-
more, such information allows the MPI implementation to
selectively choose different algorithms that trade off between
parallelism and sequential execution in order to achieve the
best performance in all cases.

We present our parallelization designs for three different
parts within the MPI implementation: (1) packing and un-
packing stages involved in derived datatype processing and
communication, (2) shared-memory data movement in in-
tranode communication, and (3) network I/O operations on
InfiniBand. We also present a thorough experimental evalu-
ation, validation, and analysis using a variety of micro- and
macrokernels, including 3D halo exchanges, NAS MG bench-
mark, and the Graph500 benchmark [11].

2. BACKGROUND
In this section we provide some details about the Intel

Xeon Phi architecture and the different threading modes de-
fined by MPI for multithreaded environments.

2.1 Intel Xeon Phi Architecture
The Intel Xeon Phi architecture features a large number

of CPU cores inside a single chip. The Xeon Phi cards run
their own Linux-based operating system and can launch full
operating system processes. In the native mode, system calls
that cannot be handled directly on the Xeon Phi card are
transparently forwarded to the host processor, which exe-
cutes them and sends the result back to the issuing process.
Although these devices also offer the possibility of running
in offload mode, following a GPU-like approach, this mode is
not considered in our research because it does not allow the
coprocessors to run hybrid MPI + OpenMP applications.

When MPI processes are launched on a combination of
multiple nodes and adapters, these processes internally com-
municate with each other using a number of mechanisms.
Processes on the same Xeon Phi card communicate with
each other using shared memory. Processes on the same
node communicate using the PCIe peer-to-peer capabilities.

When communicating outside the node, for some networks
such as InfiniBand, communication is performed directly with-
out host intervention through the PCIe root complex.

The first generation of the product released to the public,
code-named Knights Corner [4], features a minimum of 60
simple cores each capable of 4 hardware threads, providing
a total of 240 hardware threads per coprocessor. The card
is equipped with 8 GB of GDDR5 RAM. One difference be-
tween this architecture and GPU architectures is the fully
private and coherent cache provided to each processing unit:
32 KB instruction + 32 KB data L1, and 512 KB L2 (uni-
fied), offering high data bandwidth. Further details on the
Intel Xeon Phi architecture can be found in [9, 4].

2.2 Hybrid Programming Models
The MPI standard provides four levels of thread safety.

Th1 Th2 Th3

(a) FUNNELED.

Th1 Th2 Th3

(b) SERIALIZED.

Th1 Th2 Th3

(c) MULTIPLE.

Figure 1: Threading modes in MPI. A line represents a thread;
the zigzag part represents an active thread in an OpenMP region;
the straight part represents a thread outside an OpenMP region;
the dotted part represents an idle thread in an OpenMP region;
the boxes represent MPI calls.

#pragma omp parallel
{

/* user computation */

}

MPI_Function();

(a) Outside a parallel region

#pragma omp parallel
{
/* user computation */
#pragma omp master
{
MPI_Function();

}
}

(b) Inside omp master region

#pragma omp parallel
{
/* user computation */
#pragma omp critical
{
MPI_Function();

}
}

(c) Inside omp critical region

#pragma omp parallel
{
/* user computation */
#pragma omp single
{
MPI_Function();

}
}

(d) Inside omp single region

Figure 2: Different use cases in hybrid MPI+OpenMP.

MPI THREAD SINGLE. In this mode, a single thread
exists in the system. This model is commonly referred to
as the MPI-only model, where a bunch of MPI processes
communicate with each other and no threads are involved.

MPI THREAD FUNNELED. In this mode, multiple th-
reads can exist, but only the master thread (the one that
initialized MPI) is allowed to make MPI calls. Different
threads can parallelize computational phases, but all MPI
communication has to be funneled through the main thread
(see Figure 1(a)). In typical OpenMP environments, this
involves making MPI calls either outside the OpenMP par-
allel region (Figure 2(a)) or within OpenMP master regions
(Figure 2(b)).



MPI THREAD SERIALIZED. In this mode, multiple
threads can exist, and any thread can make MPI calls but
only one thread at a time. Different threads can parallelize
computational phases, but the threads need to synchronize
in order to serialize their MPI calls (Figure 1(b)). In typi-
cal OpenMP environments, this involves making MPI calls
within OpenMP critical regions (Figure 2(c)) or single re-
gions (Figure 2(d)).

MPI THREAD MULTIPLE. In this mode, multiple thr-
eads can exist, and any thread can make MPI calls at any
time (Figure 1(c)). The MPI implementation is responsible
for using appropriate synchronization to protect accesses to
shared internal data structures.

In this paper we focus on FUNNELED/SERIALIZED modes.

3. DESIGN AND IMPLEMENTATION
In this section we describe the design of MT-MPI, in-

cluding modifications to the MPICH implementation of MPI
(v3.0.4) and the Intel OpenMP runtime (version 20130412).

3.1 OpenMP Runtime
As described in Section 1, for MPI to share OpenMP par-

allelism with the application, two challenges need to be ad-
dressed. The first is the different MPI internal algorithms
that trade off between parallelism and faster sequential ex-
ecution. The second is the behavior of nested parallel re-
gions in current OpenMP implementations, including that
of the Intel OpenMP runtime that is used on Xeon Phi ar-
chitectures. Specifically, the OpenMP runtime creates new
pthreads for each nested OpenMP region, thus creating more
threads than the available cores and degrading performance.

To handle these issues, we modified the Intel OpenMP
runtime to expose the number of idle threads to the MPI
implementation. The idea is for the OpenMP runtime sys-
tem to track how many threads are being used by the ap-
plication vs. how many threads are idle (e.g., because they
are in an OpenMP barrier or outside an OpenMP parallel
region). Then, the OpenMP runtime can provide this infor-
mation through a new runtime function. The expectation
in this model is that MPI could query for the number of
idle threads and use this information to (1) choose the most
efficient internal parallelization algorithms and (2) use only
as many threads in the nested OpenMP region as there are
idle cores, by explicitly guiding the number of threads in
OpenMP (using the num_threads clause in OpenMP).

Arguably, the second challenge described above (additional
pthreads created in nested OpenMP regions) is an issue only
with the current implementation of the Intel OpenMP run-
time. An alternative OpenMP runtime that internally uses
user-level threads (e.g., [12]) might not face this challenge.
However, given that most OpenMP implementations today
use pthreads internally and that Intel OpenMP is the only
formally supported OpenMP implementation on the Xeon
Phi architecture, we consider this to be a real problem that
needs to be addressed.

3.1.1 Exposing Idle Threads
To expose the number of idle threads in OpenMP, we need

to understand the status of threads in the following cases.

MPI call made outside the OpenMP parallel regions
(Figure 2(a)). In this case, all threads except the main
thread are idle (often equal to OMP_NUM_THREADS). Thus, we

expect MPI to be able to benefit from a large number of idle
threads.

MPI call made in an OpenMP single region (Fig-
ure 2(d)). OpenMP single regions provide an implicit barrier
on exit. Thus, we can ideally expect threads to be available
“soon” if the number of idle threads is queried within an
OpenMP single region. In practice, however, not all threads
might have reached the barrier yet, for example, because
there is some skew between the threads or because they are
working on a user computation. Thus, the number of idle
threads available can vary anywhere between zero and the
maximum number of threads. We modified the OpenMP
runtime to track each thread in order to return the actual
number of idle threads. In this case, the amount of paral-
lelism available to MPI is unknown in the general case. How-
ever, for OpenMP parallel regions where the work shared be-
tween threads is mostly balanced and threads are reasonably
synchronized, the number of idle threads is expected to be
close to the maximum number of threads.

MPI call made in an OpenMP master region or sin-
gle region with a nowait clause (Figure 2(b)). This case
is similar to the previous case (single region) with the pri-
mary difference that there is no implied barrier at the end
of such a region. Hence, there is no natural synchroniza-
tion point for the threads. Nevertheless, depending on how
the application is written, it is possible to have an exter-
nal synchronization point (such as a user-specified OpenMP
barrier) that would cause more idle threads to be available.
Consequently, we use a similar solution here as in the pre-
vious case, that is, to track the number of idle threads. In
practice, however, we do not expect too many idle threads
to be available for MPI to use in this case.

MPI call made in an OpenMP critical region (Fig-
ure 2(c)). OpenMP critical regions force some synchroniza-
tion between threads because only one thread can enter a
critical region at a time. While this is not quite an im-
plicit barrier, its behavior with respect to the availability of
threads can be similar to that of an OpenMP single region.
Specifically, when the first thread enters the OpenMP critical
region, the remaining threads can be ideally expected to be
idle“soon.” As discussed earlier, this is not necessarily true if
the other threads are busy with the user computation or are
skewed, but it can give a reasonable model for us to consider.
When the second thread enters the OpenMP critical region,
the first thread is no longer expected to be idle because it
has already finished executing its critical region. Similarly,
when the last thread enters the critical region, none of the
remaining threads are expected to be idle because they have
all finished executing their critical regions. As in the pre-
vious cases, we track the number of idle threads inside the
OpenMP runtime, although we expect that the number of
idle threads would be high for the first few threads entering
the critical section and low for the last few threads.

In some of the cases described above (e.g., single region
with nowait), utilizing the idle threads can be risky because
their status can change at any time. For example, they might
have been idle because they were in an unrelated critical sec-
tion that has now completed. This would cause those idle
threads to become active again, degrading performance. In
our implementation, we distinguish how many threads are
“guaranteed to be idle”and how many are“temporarily avail-
able at the current time.” To understand this distinction, we



need to look into when a thread can be idle. There are two
cases when a thread can be idle: (1) if it is waiting in a bar-
rier waiting for other threads in the team to arrive or (2) if
it is outside a critical section waiting to enter it.

A thread that is in a barrier is guaranteed to be idle till all
other threads in that team reach the barrier. Thus, when a
thread in that team queries for the number of guaranteed idle
threads, all the threads that are waiting in the barrier will
contribute to the returned value. Waiting to enter a critical
section is a bit more tricky in that a thread is guaranteed
to wait only till the thread that is already in the critical
section does not exit the critical section. Thus, if the thread
that is already in the critical section queries for the number
of guaranteed idle threads, the threads waiting to enter the
critical section will contribute to the returned value. For
all other threads, the threads waiting to enter the critical
section will not contribute to the guaranteed idle threads
but will contribute to the temporarily available threads.

Thus, the following semantics hold true for the number of
guaranteed idle threads:

1. It is thread-specific. At a given point of time, depend-
ing on which thread is querying for the information,
the returned value might be different (it can increase
or decrease).

2. It is OpenMP-region specific. If the querying thread
enters a new OpenMP region (e.g., critical or single)
or exits it, the returned value might be different (it
can increase or decrease).

3. It is time-specific. At two different points of time the
returned value might be different (e.g., if more threads
reached a barrier). However, if the same thread queries
for the value and it is in the same OpenMP region, the
value can only increase, not decrease.

We modified the OpenMP runtime to keep track of which
type of OpenMP region each thread is in, in order to return
both the guaranteed number of idle threads and the number
of temporarily idle threads. We note that our implementa-
tion treats a thread as idle only when it is not engaged in
any OpenMP activity, including OpenMP parallel loops and
OpenMP tasks. We also note that in our implementation
the performance overhead associated with tracking whether
a thread is actively being used by the OpenMP runtime is
too small to be observed and hence is not demonstrated in
this paper.

3.1.2 Thread Scheduling for Nested Parallelism
For well-balanced OpenMP parallel loops with little to

no skew, thread synchronizations such as barriers are often
short-lived because threads tend to arrive at the barrier at
approximately the same time. Thus, when a thread arrives
at a barrier, if it is put to sleep while waiting for the other
threads to arrive, only to be woken up in a short amount of
time, performance is degraded because of the cost of waking
up threads from a sleep state. To work around this situ-
ation, the Intel OpenMP runtime does not put threads to
sleep immediately when they reach a barrier. Instead, they
spin waiting for other threads to arrive, for a configurable
amount of time: KMP_BLOCKTIME. A large value for this vari-
able would mean that threads do not become truly idle for
a long time. While this situation is not a concern for regu-
lar OpenMP parallel loops, it can degrade performance for
nested OpenMP parallel loops since the Intel OpenMP run-
time creates more threads than the number of cores in such

cases. Having the primary threads spin for KMP_BLOCKTIME

would cause more threads to be active than the number of
available cores for that much time.

When MPI calls are outside the application OpenMP par-
allel region (such as in Figure 2(d)), this is not a concern
since MPI would use the same threads as the application in
its parallel region. When MPI calls are inside the applica-
tion parallel region, however, this would require MPI to use a
nested OpenMP parallel region. And since the threads that
arrived at the barrier would not yield the available cores im-
mediately, this would either require MPI to utilize lesser par-
allelism by only using the idle cores or cause thread thrash-
ing on the available cores for KMP_BLOCKTIME amount of time.
Neither solution is ideal.

In MT-MPI, to be able to employ these resources as soon
as possible, we implemented and exposed a new function in
the OpenMP runtime: set_fast_yield. This function plays
two roles. First, it forces the threads in the current team to
skip the active wait during the barrier operation and imme-
diately yield the core. Second, it continuously yields the core
using sched_yield calls instead of simply sleeping. We used
this approach primarily because of the overhead associated
with sleep vs. that of yield. We found that yielding allows
us to manage the cores with a much lower overhead (about
30 µs even with 240 threads) compared with sleeping (more
than 100 µs even at 16 threads).

We note that (1) our thread scheduling optimization im-
pacts only those threads that are guaranteed to be idle (e.g.,
threads waiting in an OpenMP barrier); (2) the fast yield
setting is performed internally inside the MPI call and reset
once the internal parallelism in MPI is complete, so future
OpenMP barriers are not affected by it; and (3) the proposed
thread scheduling optimization affects only that case when
MPI uses nested OpenMP parallelism (e.g., when an MPI
function is called in an OpenMP single region) and does not
affect the case when the MPI function is called outside the
OpenMP parallel region.

3.2 MPI Internal Parallelism
Using the information about the idle threads exposed by

our extended OpenMP runtime, the MPI implementation
can schedule its internal parallelism efficiently to obtain per-
formance improvements. In this section, we demonstrate
the benefit of such internal parallelism for various aspects of
the MPI processing, including derived datatype communica-
tion, shared-memory communication, and network I/O oper-
ations. In our MPI implementation, we utilize only those idle
threads that are guaranteed to be available. Although here
we do not utilize temporarily available threads, one could
envision cases (e.g., short MPI operations) where they could
be. In our implementation, when all threads are idle (e.g.,
when the MPI call is outside the OpenMP parallel region),
we do not specify the number of threads to be utilized by
OpenMP; instead, we let it manage such parallelism inter-
nally. If fewer than the maximum number of threads is idle,
however, we direct the amount of thread parallelism to use
through the num_threads OpenMP clause.

3.2.1 Derived Datatype Processing
MPI allows applications to describe noncontiguous regions

of memory using user-derived datatypes such as vector, in-
dexed, and struct. These derived datatypes can be used to
describe arbitrarily complex data layouts to be processed



for (i=0; i<count; i++){
*dest++ = *src;
src += stride;

}
(a) Sequential implementation.

#pragma omp parallel for
for (i=0; i<count; i++){
dest[i] = src[i * stride];

}
(b) Parallel implementation.

Figure 3: Sequential and parallel data packing.

by MPI for packing/unpacking data to/from a contiguous
buffer (using MPI_PACK and MPI_UNPACK) or to send/receive
data. When communicating using derived datatypes, MPI
implementations typically internally pack data into contigu-
ous buffers, communicate these contiguous buffers, and in-
ternally unpack them into the recipient buffer. Halo ex-
changes [19] are a well-known example of communications
that are well suited to employ derived datatypes.

The pack and unpack processing stages consist of a set of
local memory copies. A typical implementation traverses
the derived datatype tree and copies each noncontiguous
chunk of data separately. Some implementations of MPI op-
timize such processing by representing the entire datatype as
a stack structure so that it can be iteratively traversed rather
than using a recursive traversal [14]. Given that each non-
contiguous data chunk is copied to a different location and
there are no dependencies among the different data elements,
such copies are a good candidate for OpenMP paralleliza-
tion. Moreover, thanks to the relatively large private caches
per core on the Xeon Phi architecture, concurrent accesses
to separate memory regions by the different threads are ex-
pected to be highly efficient. Therefore, we modified the
MPI implementation to parallelize the datatype data copy
using OpenMP. We note that only the lowest level of a nested
datatype (e.g., a vector of vectors) is parallelized in MT-MPI.

One issue that we found using MT-MPI was an unin-
tended consequence of the compiler vectorization. The orig-
inal datatype copy code that is used in MPICH is shown in
Figure 3(a). While this code works correctly for sequential
data copy, it cannot be easily parallelized by using OpenMP
because the compiler cannot understand the constant stride
of accesses used through all iterations. We therefore modi-
fied the code as shown in Figure 3(b). While this new im-
plementation makes it easier for the compiler to understand
the computation and thus parallelize it, the implementation
also makes it easier for the compiler to vectorize the code.
This situation in itself is not a concern. However, the Intel
compiler is inefficient in vectorizing strided loops with large
stride values when the amount of data copied in each loop is
small. Specifically, the compiler does incorrect prefetching
in this case, causing additional cache misses and thus losing
performance. Consequently, our modification to the code is
not always beneficial and can perform worse than the sequen-
tial implementation when very few threads are available. To
work around this issue, we could either disable vectorization
in the parallel implementation or explicitly choose only the
parallel approach when a sufficiently large number of threads
are available. We chose the latter approach because vector-
ization is still beneficial in some cases (e.g., when the stride
is small or the copy size is large).

We note that the incorrect cache prefetching and addi-
tional cache misses that it causes have been experimentally
verified, but the results are not shown in this paper because
of space restrictions. The issue has also been reported to
Intel and has been confirmed by their compiler team. They
are expected to fix it in a future release of the compiler.

3.2.2 Shared-Memory Communication
When multiple MPI processes reside on the same node,

since each process has a different virtual address space, most
MPI implementations, including MPICH, use a pipelined
double-copy strategy through shared memory for intranode
communication [3]. As shown in Figure 4(a), a shared-memo-
ry ring buffer is allocated between the sender and receiver
processes and divided into multiple cells; the sender process
then copies part of data into an empty cell while the receiver
process copies a full cell out.

Shared buffers	

Buffer[0]!

Buffer[1]	

Buffer[2]	

Buffer[3]	

User 
Buffer	

User 
Buffer	

Sender	 Receiver	

(a) Sequential pipelining.

Shared buffers	Sender	 Receiver	

Buffer[0]!

Buffer[1]	

Buffer[2]	

Buffer[3]	

User 
Buffer	

User 
Buffer	

(b) Parallel pipelining.

Figure 4: Data movement of parallelization and pipelining.

In MT-MPI, we parallelize this copy on both the sender
and the receiver side using the available idle threads. We
implemented this optimization by extending the pipelined
double-copy strategy used within MPICH. As shown in Fig-
ure 4(b), in our approach we reserve multiple contiguous
available cells and concurrently copy data from the user
buffer to these cells on the sender side and from the cells to
the user buffer on the receiver side. For messages larger than
what can be held in the reserved cells, additional pipelining
is used, similar to the sequential case. Compared with the
sequential pipelining algorithm, however, the parallel algo-
rithm can degrade performance in the following cases.

Small messages. When the message size is small, there is
not enough work in MPI to be parallelized. In such cases, the
thread management and synchronization within OpenMP
are more expensive than the sequential copy mechanism al-
ready used in MPICH. Thus, in this case we do not expect
any performance benefit from parallelization.

Large messages but few idle threads. In our paral-
lel implementation, we reserve as many shared-memory cells
as possible and parallelize the copy using all of the avail-
able idle threads. Thus the receiver process now has to
wait until data is filled into all of the reserved cells before
it can start its data copy out of shared memory. This ap-
proach, in essence, increases the pipeline unit to a much
larger size. Thus, while parallelism can improve the per-
formance of each memory copy operation, it can also hurt
the data copy pipeline. We note that we cannot simply re-
duce the size of each shared-memory cell or the maximum
number of cells reserved to work around this issue because
that would reduce the amount of work done by each thread,
thus causing the thread management overhead to dominate.
This trend is illustrated in Figure 5. Specifically, compared
with sequential pipelining (Figure 5(a)), when the number
of threads available to MPI is small, the parallel copy does
not improve performance much but delays the receiver pro-
cess from getting started with its copy (Figure 5(b)). On the
other hand, when a large number of threads are available to
MPI, the parallel copy is significantly faster, thus balanc-
ing the loss of performance due to the reduced pipelining
(Figure 5(c)).
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Receiving process	
Sending process	

(a) Sequential pipelining.

Receiving process	
Sending process	

Time	5T	4T	3T	2T	1T	0T	

(b) Poor parallelism.
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Sending process	

(c) Strong parallelism.

Figure 5: Sequential pipelining vs. parallel data copy.

Few shared-memory cells. The amount of data to be
copied is decided not just on the number of available threads
but also on the number of available shared-memory cells.
Specifically, during the communication process, some cells
might be in use for transferring previous messages (or pre-
vious parts of the same message). In such cases, there is
not enough work to be parallelized, and hence the thread
management would add too much overhead to justify the
performance improvement through parallelization.

In summary, parallelism would improve performance only
when (1) the message size is not too small (≥ 64 Kbytes),
(2) the number of threads is not too few (≥ 8), and (3) the
total size of free cells is not too small (≥ 64 Kbytes). In our
implementation, we utilize the parallel shared-memory com-
munication algorithm only when all three conditions are met;
otherwise we fall back to the original sequential algorithm.
We note that the above-mentioned thresholds are empiri-
cally evaluated on our test platform and must be tuned for
different platforms.

3.2.3 Optimizations for the InfiniBand Network
Several MPI implementations are optimized for a variety

of networks through a layered software architecture where
one of the layers provides network-specific functionality. In
MPICH, this layer is called the netmod layer. Multiple net-
mod implementations exist for MPICH over InfiniBand (IB),
with more-or-less similar functionality and performance. In
this paper we utilize the implementation described in [17].

An MPI implementation utilizing IB needs to create and
manage a number of objects, including contexts, protection
domains (PDs), queue pairs (QPs), and completion queues
(CQs). A process can create one or more IB contexts, each of
which maintains a collection of state information associated
with the communication. Each context can contain one or
more PDs, each of which defines the protection semantics of
memory and other objects used by the program, for exam-
ple to allow different connections access to different sets of
memory regions. Within a PD, the program can create one
or more QPs, each of which consists of a send queue and a
receive queue. A QP is used to communicate between a pair
of processes. A PD can also have one or more CQs, each
of which is used to check for the completion of communica-
tion operations on one or more QPs. IB also provides shared
queues for better memory management, but for simplicity
we do not describe them here.

The IB software stack [13] is thread-safe. When multiple
threads access the same QP or CQ, it internally uses mutexes
to maintain state consistency. Such state consistency is ex-
pensive, however, and can degrade performance. Therefore,
in our approach we try to avoid such usage and instead have
different threads manage different QPs in order to maximize
performance. Even with this approach some shared data
structures still need to be protected. To understand how
much performance improvement MPI can gain by paralleliz-
ing the posting of network operations, we studied how much
potential parallelism there is in the IB stack that can theo-
retically be exploited. We modified the ib_write_bw bench-
mark from the OpenFabrics Enterprise Distribution (OFED)
package [13] to measure the multithreaded point-to-point IB
RDMA write bandwidth between two Intel Xeon Phi copro-
cessors on different nodes. We define three parallelism levels:

IB contexts. Each process has 64 IB contexts, and each
context has one QP and one CQ. Each thread handles oper-
ations on a different context, CQ and QP.

QPs and CQs. Each process has a single IB context with
64 QPs and 64 CQs. Each CQ is dedicated to a different QP.
Each thread handles operations on different QPs and CQs,
but they all share the same context.

QPs only. Each process has a single IB context with 64
QPs and one shared CQ. Each thread handles operations on
different QPs, but they all share the same context and CQ.
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Figure 6: Small (64-byte) IB RDMA write bandwidth.

Figure 6 compares the communication bandwidth of small
messages (64 bytes) for the cited parallelism levels. We
make two primary observations from the figure. The first is
that the performance improvement with increasing threads
is higher when the number of shared resources is less. For
example, when each thread has a separate context (IB con-

texts), with increasing threads, the parallel performance is
3.6-fold higher than the sequential performance. But when
the context and the CQ are shared by all threads (QPs only),
the parallel performance is only 3.1-fold higher than the se-
quential performance. This result is expected because more
sharing typically means more critical sections and hence more
serialization. The second observation is that the maximum
parallelism that the IB-stack can provide is 3.6-fold when
all resources are dedicated per thread and 3.1-fold when the
context and CQ are shared between all the threads. Most
MPI implementations are increasingly moving toward more
shared resources (i.e., closer to QPs only) in order to manage
the per-process resource usage. Thus, in current MPI imple-
mentations, 3.1-fold improvement is the maximum benefit
that we can expect even in the ideal case.

In MT-MPI, each QP is managed by a single thread; mul-
tiple QPs might be managed by a single thread, but a single
QP is never managed by multiple threads. This strategy
minimizes the mutexes that the IB stack needs to do. We
also ensure that the number of threads used for parallelism



is never more than the number of QPs, in order to minimize
thread synchronization overheads.

We note that in the MPICH IB netmod, small-message
communication employs temporary buffers that are prereg-
istered with the network. Since the network can communi-
cate only to/from preregistered buffers, user data needs to
be copied into these buffers on the sender side and out of
these buffers on the receiver side. Each connection uses a
separate QP and preregistered buffers, so the data copies on
the send and receive side are also part of the parallelism and
are executed concurrently by different threads.

Despite the potential for parallelism on many-core archi-
tectures, several factors limit the practical parallelism achiev-
able in the MPI implementation. For example, in order to
achieve the best parallelism, the MPI implementation can
benefit from a large number of operations to be issued to
the network, which can be evenly shared between the avail-
able threads. However, such ideal conditions are hampered
by several practical restrictions in current IB network stacks
and applications. For example, the number of operations
that can be issued to a QP or to the shared CQ is limited.
While the QP or CQ can be configured to allow for a large
number of operations, such configuration causes (sometimes
large) performance degradation due to the internal book-
keeping associated with these data structures within the IB
stack. Consequently, the MPICH IB netmod configures this
limit to 1,024 for QPs and 32,768 for CQs, thus forcing the
maximum number of network operations each thread can
post to 1,024 and the maximum number of network opera-
tions posted across all threads to 32,768, before thread syn-
chronization is needed. A similar parallelism-limiting factor
is the number of preregistered buffers available at the sender
and receiver side.

Still another parallelism constraint comes from the appli-
cation characteristics. Specifically, since in MT-MPI we ex-
ploit parallelism at the granularity of a QP, for ideal par-
allelism we need the same amount of work per QP—a pro-
cess should have close to uniform communication with its
peer processes. In practice, however, this assumption does
not hold; indeed, the amount of communication can vary
dramatically between different processes, thus limiting the
available parallelism.

4. EVALUATION AND ANALYSIS
In this section, we evaluate the various techniques designed

within MT-MPI. All our experiments are executed on the
Stampede supercomputer at the Texas Advanced Comput-
ing Center (https://www.tacc.utexas.edu/stampede/). S-
tampede consists of 6400 Dell Zeus C8220z compute nodes,
each with two Xeon E5-2680 processors and 32 GB RAM,
and an Intel Xeon Phi SE10P coprocessor with 8 GB of on-
board RAM connected by an x16 PCIe 2.0 interconnect. The
nodes are interconnected by a Mellanox FDR InfiniBand net-
work. All our experiments are executed on the Xeon Phi
coprocessor, with every MPI process running on a separate
coprocessor.

4.1 Derived Datatype Processing
In this section, we describe three types of experiments that

stress derived datatype processing to various degrees: (1) de-
rived datatype packing performance, (2) halo data exchange
with derived datatypes, and (3) the NAS multigrid bench-
mark.
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Figure 7: Performance of parallel 3D packing.

4.1.1 Derived Datatype Packing
In our experiments with derived datatype packing (using

MPI_PACK), we utilized a 3D matrix of doubles, with the X
dimension as the leading dimension. The matrix volume was
fixed at 1 GB, so increasing one dimension would reduce an-
other. Our experiments involved packing different 2D planes
of the 3D matrix.

Figure 7(a) shows the performance improvement while pac-
king the top surface (X-Z plane). A vector datatype is uti-
lized in this case, with a block length equal to the length
of the X dimension and stride equal to the area of the X-Y
plane; the Z dimension indicates the vector count. In our
experiment, the Y dimension was fixed to 2 doubles, and
the Z dimension varied as indicated on the graph legend (X
dimension was varied to maintain the matrix volume). As
can be seen in the figure, MT-MPI gets a reasonably good
speedup with increasing number of threads, achieving a 96-
fold improvement compared with the original sequential ver-
sion when all 240 threads are used. A larger Z dimension pro-
vides better speedup because that leads to a larger iteration
count for the contiguous copies and hence more parallelism
that can be exploited by MT-MPI.

Figure 7(b) shows the performance improvement while
packing the left surface (Y-Z plane). A two-level datatype
comprising a vector of vectors is utilized in this experiment.
The X dimension was fixed to 2 doubles, and the Y dimen-
sion varied as indicated on the graph legend (the Z dimen-
sion was varied to maintain the matrix volume). As shown in
the figure, MT-MPI still achieves a relatively good speedup
compared with the sequential version (42-fold), although less
than what it achieved while packing the top surface. This
reduction in performance is because the lowest-level vector
datatype always has a block length of one double and a count
equal to the Y dimension. This restricts the amount of work
that is done within each iteration of the contiguous data copy
operation and consequently limits the work done by each
thread, especially when the number of iterations (i.e., the Y
dimension) is small. Furthermore, when the Y dimension is
small, the parallel version is worse than the original sequen-
tial version (speedup is less than 1) because of the compiler’s
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Figure 8: 3D internode halo exchange using 64 MPI processes.
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Figure 9: Hybrid MPI+OpenMP NAS MG Class E using 64
MPI processes.

inefficiency in cache prefetching for vectorized code, as de-
scribed in Section 3.2.1.

4.1.2 Halo Exchange of Data
In our second set of experiments, we measured the per-

formance of 3D halo exchanges of data as used in stencil
computations. Both the data and the processes are parti-
tioned into a 3D space. Each process communicates with its
neighboring processes with which it shares a plane. For our
experiments we define the following four dimension shapes
for the local data on each process: (1) Cube, with dimensions
512 × 512 × 512 (doubles); (2) Large X, with dimensions
16K × 128 × 64; (3) Large Y, with dimensions 64 × 16K
× 128; and (4) Large Z, with dimensions 64 × 128 × 16K.
The MPI processes are evenly distributed in all dimensions.

Figure 8 shows the performance improvement achieved by
MT-MPI compared with the sequential version when using
64 MPI processes. Large Y performs much better than the
others, delivering a 23-fold speedup with 240 threads. To un-
derstand this behavior, we profiled the communication time
for the different dimensions. The halo benchmark sends data
in all dimensions simultaneously, so it is hard to profile how
much time each dimension takes. Therefore, for profiling
purposes, we modified it to serialize communication in one
dimension at a time, and we observed that communication
along the Y-Z dimension takes 85% of the time. While this is
obviously not entirely indicative of the true halo benchmark
that sends data in all dimensions simultaneously, it does give
us some idea of the communication cost.

As demonstrated in Figure 7(b), a large Y dimension helps
improve the performance of packing in the Y-Z dimension
by providing better parallelism. This results in a large Y
impacting the performance of the halo benchmark to the
largest extent. With Cube, the Y-dimension is reduced to
512 doubles, thus reducing the speedup to around 5.8-fold as
well. With Large X and Large Z, the Y-dimension further
reduces to 128 doubles, which in turn reduces the overall
speedup to around 1.6-fold and 1.8-fold, respectively.

4.1.3 NAS Multigrid Benchmark
We also evaluated a hybrid MPI+OpenMP version of the

NAS Multigrid (MG) kernel [1] . The original MG kernel dis-

tributed as a part of the NAS parallel benchmarks does not
contain a hybrid MPI+OpenMP version, so we modified the
MPI version to (1) parallelize the local computation using
OpenMP and (2) employ derived datatype communication
instead of manual packing. The MG kernel implements a
V-cycle multigrid algorithm to solve a 3D discrete Poisson
equation. In every iteration of the V-cycle routine, halo ex-
changes are performed with various dimension sizes (count
of double), from 2 to 514 in class E with 64 MPI processes,
and so forth. The communication in all dimensions except
the X-Y plane is noncontiguous.

Figure 9 presents the speedup achieved by MT-MPI com-
pared with the original MPICH in class E (X, Y, Z dimension
sizes are each 2K) when employing 64 processes. As shown
in the figure, MT-MPI helps improve the communication of
MG by 4.7-fold, and the overall execution time by 2.2-fold.
The speedup in the communication time is still slightly lower
than that of the 3D halo exchanges with the Cube shape
shown in Figure 8. The reason is that the MG also contains
some halo exchanges with very small dimension size whose
packing process cannot be parallelized efficiently.

4.2 Shared-Memory Communication
To measure the impact of MT-MPI on intranode shared-

memory communication, we evaluated the point-to-point com-
munication benchmarks in the OSU MPI microbenchmark
suite version 4.1 (http://mvapich.cse.ohio-state.edu/benchm-
arks/). In particular, we used the latency, bandwidth, and
message rate benchmarks. Both the original MPICH and
MT-MPI use an internal shared-memory region of 2 MB,
with each cell containing 32 KB.

Figure 10 illustrates the performance of all three bench-
marks; the legends in the graph represent different message
sizes. We notice that the performance trends of all three
benchmarks are similar, with MT-MPI delivering up to a
5-fold performance benefit for message sizes ≥ 1 MB, given
enough parallelism. When the number of idle threads is ≤ 4,
however, MT-MPI’s performance is worse than that of the
original MPICH. As discussed in Section 3.2.2, the reason is
that MT-MPI loses some of the pipelining capabilities in the
original MPICH code in return for thread parallelism. But
with a small number of threads, this tradeoff is not beneficial.

Another observation we make in Figure 10 is that the
speedup of MT-MPI for message sizes 64 KB and 256 KB is
much better than that of other message sizes. This, however,
is not because of MT-MPI’s superior architecture. Rather, it
is because the communication protocol thresholds (i.e., ea-
ger vs. rendezvous communication thresholds) in MPICH
are tuned for regular Xeon systems, by default, and are too
large for the Xeon Phi architecture. We did not change the
default configuration of MPICH in order to avoid introduc-
ing yet another dimension of variance in the paper. Thus, for
64 KB and 256 KB message sizes, the original MPICH ends
up using a suboptimal communication protocol, resulting in
MT-MPI’s performance falsely appearing to be significantly
better as compared to other message sizes.

4.3 InfiniBand Communication Operations
In this section we evaluate the performance benefits achiev-

ed by MT-MPI with our modifications to the MPICH IB
netmod. We performed two types of experiments: (1) a one-
sided communication microbenchmark designed to demon-
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Figure 10: Shared-memory communication performance with varying message size between 2 MPI processes
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Figure 11: One-sided communication benchmark with IB using
65 MPI processes.

strate the ideal parallelism that can be obtained within MT-
MPI and (2) the one-sided version of Graph500 benchmark [11].

4.3.1 One-Sided Microbenchmark
We designed a microbenchmark in which one MPI pro-

cess issues many MPI_PUT operations to all other processes.
Each MPI_PUT operation is for 64 bytes. We measured the
execution time of the benchmark using 65 MPI processes;
thus each process communicates with 64 other processes and
internally maintains 64 IB QPs. Figure 11(a) shows the
speedup in execution time with MT-MPI compared with the
original MPICH. As we increase the number of operations
issued from 1,000 to 16,000, MT-MPI delivers an increas-
ing performance benefit, reaching a 1.44-fold speedup when
using 64 threads.

This performance benefit, however, is less than the ideal
speedup of 3.1-fold that we can get by parallelizing IB com-
munication, as discussed in Section 3.2.3. To understand
the reason for this less-than-ideal speedup, we measured the
execution time of the netmod send-side communication pro-
cessing at the root process (SP), which consists only of the
copy from the user buffer to a preregistered chunk and the
posting of the operations to the IB network. Figure 11(b)
shows that the execution time of SP delivers around 8-fold
speedup when using 64 threads, which is as expected—we
expect around a 3.1-fold speedup due to the parallelization
in the posting of network operations, and some additional
improvement due to the parallelized memory copy. Table 1

Table 1: Profile of the one-sided communication benchmark.

Nthreads
Execution Time Speedup

Total (s) SP (s) SP / Total (%) Total SP

1 5.8 2.2 38 1 1

4 4.7 1.3 27 1.2 1.7

16 4.0 0.4 10 1.4 5.0

64 4.0 0.3 8 1.4 6.9
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Figure 12: Performance of the Graph500 benchmark using 64
MPI processes.

shows the relationship between the time spent in SP and the
total execution time when issuing 16,000 operations. Al-
though SP shows the expected performance improvement
with MT-MPI, the percentage of time spent in SP is less
than 10% when using more than 16 threads. This results in
a reduction in the overall performance boost that we achieve.

4.3.2 Graph500 Benchmark
The second benchmark we studied was the Graph500 benc-

hmark [11], which performs a breadth-first vertex-visit op-
eration on large graphs. In particular, we used a scale of
222 and an edge factor of 16 on 64 MPI processes running
on different Intel Xeon Phi coprocessors at different nodes.
In the one-sided version of the Graph500 benchmark, every
process issues many MPI_Accumulate operations to the other
processes in every breadth-first search iteration.

Figure 12 shows the performance improvement of MT-MPI
compared with the original MPICH. MT-MPI delivers a 1.3-
fold improvement in the harmonic mean of the traversed
edges per second (TEPS) when using 64 threads. As ex-
pected, this improvement is on par with the performance
improvement we see in the one-sided communication bench-
mark that we discussed in Section 4.3.1. The slightly smaller
speedup compared with the one-sided communication bench-
mark (which achieves a 1.44-fold speedup) is because the
Graph500 benchmark does not uniformly communicate with
all peer processes, thus causing some unevenness in MT-
MPI’s parallelization.

5. RELATED WORK
The hybrid MPI+OpenMP programming model has been

extensively used and studied in the past. For instance, Lusk



and Chan [10] explored the performance of such a model
on a typical Linux cluster, a large-scale system from SiCor-
tex, and an IBM Blue Gene/P system. The authors con-
cluded that some applications performed better with several
MPI-only processes on the same node, while others could
benefit from the hybridization. While this situation is still
true today, an increasing number of applications are moving
to hybrid MPI+OpenMP models, not just for performance,
but for per-core resource limitations (in particular, memory).
Other studies [16] have, on the other hand, reported satis-
factory results in porting the finite-difference time-domain
algorithm to the hybrid paradigm to adapt it to SMP com-
pute nodes.

Smith and Kent [15] also found that increasing the num-
ber of threads decreased the efficiency of the code when im-
plementing the quantum Monte Carlo algorithm on mixed
OpenMP/MPI code on an SGI Origin 2000 system. Al-
though this phenomenon was not attributed to the idle-
threads issue we address in this paper, it certainly contributes
to the reduced efficiency per thread. [18] performed a com-
prehensive evaluation of multithreaded MPI communications,
pointing to the mutually exclusive regions involved in com-
munication as one of the reasons for the suboptimal perfor-
mance obtained.

Several researchers have also looked at optimizing the MPI
implementation in multithreaded environments. For exam-
ple, the authors of [2, 7, 8] proposed various techniques to
minimize locking within the MPI implementation in order to
improve the performance of MPI in MPI_THREAD_MULTIPLE

environments. They presented various techniques to im-
prove performance on traditional Linux clusters as well as
the IBM Blue Gene/P systems. The authors in [6] proposed
extensions to the MPI standard that would allow the MPI
implementation to minimize contention and improve per-
formance in some cases. However, all these optimizations
are for MPI_THREAD_MULTIPLE applications. A large frac-
tion of today’s hybrid MPI applications, however, still use
MPI_THREAD_FUNNELED and MPI_THREAD_SERIALIZED modes,
for which these optimizations are not helpful.

6. CONCLUSIONS
In this paper we analyzed the potential benefits of em-

ploying idle hardware threads to accelerate MPI processing
in hybrid MPI+OpenMP applications on massively paral-
lel many-core architectures. To this end, we modified two
widely deployed implementations of these models: the In-
tel OpenMP runtime and MPICH MPI implementation. We
described various optimizations in different parts of MPI im-
plementation, including derived datatype processing, shared-
memory communication, and IB network operations. Our
experimental evaluation, based on several micro- and macro-
kernels, demonstrates considerable performance benefits.
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