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ABSTRACT
MPI-3.0 defines a new interface for the Fortran 2008 lan-

guage standard. This is the first Fortran support method for
MPI that is consistent with the Fortran standard. This pa-
per introduces our implementation of the Fortran 2008 bind-
ing in MPICH. Issues discussed include the binding frame-
work, the implementation of wrapper functions, and the
implementation of named constants. Our implementation
is neat, efficient, and portable, in the sense that we limit
the layers of wrappers, avoid Fortran-specific initialization,
avoid unnecessary runtime overhead in wrappers, and rely
only on standard Fortran and C.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-

tions—Languages

General Terms
Languages, Standardization

Keywords
MPI, Fortran, Fortran 2008, Language binding

1 Introduction
A preeminent programming language for high-performance

computing (HPC), Fortran has been around for more than
50 years. It is especially useful for numerical analysis and
technical calculations. On the other hand, the Message Pass-
ing Interface (MPI) [1] is the dominant programming model
for HPC. MPI provides scalable parallel programming ab-
stractions for machines ranging from desktops to supercom-
puters. Fortran and MPI are essential tools for HPC.

In its history, MPI has defined three Fortran bindings.
The earliest one is the Fortran 77 (F77) binding, present
in the MPI-1.0 standard. F77 supports only implicit inter-
faces. An F77 compiler induces the interface of an exter-
nal subroutine from the actual arguments passed at a call
site and generates a sequence of calling code based on that.
No compile-time argument number or type checking is per-
formed. Thus, although MPI defines the standard interface
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of the library, an F77 compiler does not check against it to
ensure that programmers supply correct arguments to the li-
brary. The lack of argument checking (type safety) in effect
makes it easier to implement the MPI F77 binding. Since
many MPI implementations are implemented in C and since
Fortran passes arguments by address, one can implement
the F77 binding by supplying a layer of wrapper functions
written in C, which receive addresses of arguments in For-
tran and call the backend C code. One implementation issue
is to ensure that the C wrapper function names match the
link names produced by the Fortran compiler. Usually the
link name of an external symbol in Fortran is in lower case
with one or two trailing underscores. This convention is
compiler-dependent, however, and not specified in the For-
tran standard.

Although the MPI F77 binding has been successful, the
lack of type safety could lead to programming errors that are
hard to debug. The Fortran 90 language standard (F90) in-
troduced appealing features such as explicit interfaces, over-
loading, and modular programming. The MPI Forum de-
fined a new interface in MPI-2.0, taking into account the
new features of F90. This version contained all MPI func-
tionality in a Fortran module named mpi. Ideally, all MPI
routines should be declared in an interface block of the mpi

module so that type safety can be enforced. But since F90
does not have a generic type like the void* in C, there is no
standard way to declare the type for choice buffers in MPI.
An inelegant workaround might be to use overloading and
declare a specific procedure for every possible type and rank
combination of actual choice buffers. This is not practical,
however, and would lead to an interface explosion problem.
An implementation would need to create more than 6 mil-
lion specific procedures [5]. Even then, user-defined data
types are not covered. Another approach is to use compiler-
dependent directives such as !$PRAGMA IGNORE_TKR to tell
the compiler to ignore type checking for choice buffer argu-
ments. Again, it is not Fortran standard conforming, and
the external symbol link name problem still exists.

Clearly, the binding problems lie in the poor interoper-
ability of Fortran with C. Effort has been made to fix that.
Starting from Fortran 2003, Fortran has provided standard
mechanisms to interoperate with C. A recent Fortran techni-
cal specification TS 29113 [4] further improves this feature.
With this support, the MPI Forum defined the new Fortran
2008 (F08) binding interface in MPI-3.0, which is the only
Fortran support method that is consistent with the Fortran
standard (F08 + TS 29113 and later) and thus is highly
recommended for all MPI applications.



In this paper, we discuss the F08 binding implementa-
tion in MPICH [2]. With a careful design and the support
of interoperability of Fortran with C, our implementation
is neat, efficient, and portable. The paper is organized as
follows. Section 2 gives an overview of the new MPI F08
binding interface. Section 3 shows our implementation, and
Section 4 talks about our test experience. Section 5 presents
our conclusions and future work.

2 MPI F08 binding interface
The MPI F08 binding interface, defined in a module named

mpi_f08, has several big improvements over its ancestors.
The most important one is that choice buffers are now de-
clared as assumed-type, assumed-rank dummy arguments,
that is, of type type(*), dimension(..), which is defined
in TS 29113. The actual argument for an assumed-type,
assumed-rank dummy can be of any type and can be a scalar,
an array, or an array section (i.e., subarray). The subar-
ray can even be noncontiguous by using Fortran subscript
triplets, for example, a(2:10:2), where a is a 1-d array and
the subarray contains a(2) to a(10) with a stride of 2.

The F08 binding further improves type safety in various
aspects. MPI handles in the F77/F90 bindings all have type
integer, making them indistinguishable to compilers. In
the F08 binding, handles are defined as Fortran bind(C) de-
rived types that consist of only one element, integer ::

MPI_VAL. The internal handle value is identical to the For-
tran integer value used in the F77/F90 bindings. Operators
such as == and /= are overloaded to allow the comparison
of these handles. An MPI Status variable in the F77/F90
bindings is an integer array, for example, integer :: sta-

tus(MPI_STATUS_SIZE). In the F08 binding, it has a Fortran
bind(C) derived type with three public integer components,
MPI_SOURCE, MPI_TAG and MPI_ERROR, which are identical to
the Fortran integer value used in the F77/F90 bindings. Ad-
ditionally, the F08 binding defines interfaces for MPI user-
defined callback functions. Dummy arguments that are a
procedure (similar to function pointers in C) are declared
by using Fortran’s procedure keyword. Listing 1 shows some
types defined in the F08 binding.

type , bind(C) :: MPI_Comm
integer :: MPI_VAL

end type MPI_Comm

type , bind(C) :: MPI_Status
integer :: MPI_SOURCE
integer :: MPI_TAG
integer :: MPI_ERROR
... ! Implementation -dependant private components

end type MPI_Status

Listing 1: MPI F08 type examples

The F08 binding also declares the ierror argument in
all Fortran subroutines except user-defined and predefined
callbacks as optional, so that a programmer can omit that
argument. Additionally, choice buffers in nonblocking com-
munications now have an asynchronous attribute. In For-
tran 2003/2008, this attribute could be used only to protect
buffers of Fortran asynchronous I/O. With TS 29113, this
attribute now also covers asynchronous communication oc-
curring within library routines.

3 Implement the F08 binding in MPICH
MPICH [2] is a high-performance and widely portable im-

plementation of the MPI standard. The current MPICH
F77/F90 bindings are implemented in a set of C wrapper

functions. But, as analyzed in Section 1, they have funda-
mental drawbacks. One is that the F90 binding in MPICH
does not support compiler-dependent directives for choice
buffers; instead, it falls back on its F77 binding on subrou-
tines with choice buffers. That means it does not perform
argument-checking for a large set of subroutines. With the
F08 binding interface defined in MPI-3.0, we want to provide
better Fortran support in MPICH. In this section we discuss
our F08 binding design strategies and various implementa-
tion issues in MPICH. Our implementation is independent
of MPICH’s current F77/F90 bindings and targets a Fortran
2008 + TS 29113–capable compiler, which enables the most
important parts of the new binding.

3.1 F08 Binding Framework
Like other MPI implementations, MPICH’s backend is

implemented in C. The process of F08 binding is to write
wrapper functions that do necessary argument conversion
between Fortran and C and invoke the backend C functions.
Wrappers can be implemented in C or Fortran or both. For
efficiency, the wrappers need to be thin and light. And when
Fortran and C argument types are the same, we want to re-
duce the conversion overhead to zero. In the MPICH F08
binding, we implemented the wrappers in Fortran whenever
possible. The main value is that Fortran intrinsically knows
about both Fortran and C types, whereas C knows nothing
about Fortran types. Hence, it is much safer and portable
to use Fortran to write any code that involves a Fortran
type. For most subroutines, one layer of Fortran wrappers
is enough. For subroutines with choice buffers, however, we
have to write another layer of wrappers in C to decode the
C descriptor for the choice buffer before calling the back-
end MPI C libraries. Thus, we designed an F08 binding
framework embodied by the following directory tree:

use_mpi_f08/

mpi_f08.F90

pmpi_f08.F90

mpi_f08_types.F90

mpi_f08_callbacks.F90

mpi_f08_compile_constants.F90

mpi_f08_link_constants.F90

wrappers_f/{start, send, ...}_f08ts.F90

profiling/{pstart, psend, ...}_f08ts.F90

mpi_c_interface_types.F90

mpi_c_interface_nobuf.F90

mpi_c_interface_cdesc.F90

mpi_c_interface_glue.F90

wrappers_c/{send, recv, ...}_cdesc.c

On one side, files with name mpi_f08_*.F90 are used to
define interfaces required by the F08 binding. Among them,
mpi_f08_types.F90 defines MPI types as well as operators
on them (see Listing 1 for examples); mpi_f08.F90 defines
the mpi_f08 module with an interface block containing in-
terfaces for all MPI subroutines; and pmpi_f08.F90 is mpi_

f08.F90’s PMPI (i.e., profiling) version. Listing 2 shows
example interfaces for MPI_Start and MPI_Send.

interface MPI_Start
subroutine MPI_Start_f08(request , ierror)

use :: mpi_f08_types , only : MPI_Request
implicit none
type(MPI_Request), intent(inout) :: request
integer , optional , intent(out) :: ierror

end subroutine MPI_Start_f08
end interface MPI_Start



interface MPI_Send
subroutine MPI_Send_f08ts(buf , count , datatype , &

dest , tag , comm , ierror)
use :: mpi_f08_types , only : MPI_Datatype , MPI_Comm
implicit none
type(*), dimension (..), intent(in) :: buf
integer , intent(in) :: count , dest , tag
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Comm), intent(in) :: comm
integer , optional , intent(out) :: ierror

end subroutine MPI_Send_f08ts
end interface MPI_Send

Listing 2: MPI F08 subroutine interface examples

mpi_f08_callbacks.F90 has an abstract interface block
which contains interfaces for user-defined callbacks. It also
implements the predefined callbacks (e.g., MPI_COMM_NULL_
COPY_FN). mpi_f08_compile_constants.F90 contains all con-
stants that are known at compile time, including error classes,
null handles, predefined MPI data types, predefined commu-
nicators, etc. mpi_f08_link_constants.F90 declares the so
called named constants (see more in Section 3.3). Directory
wrappers_f/ and profiling/ contain Fortran files with each
implementing an MPI subroutine declared in {mpi, pmpi}_

f08.F90. They are actually wrapper files, in the sense that
they wrap around the backend C functions.

To call the backend C functions from Fortran correctly, we
need to know their interfaces, too. This information is given
in mpi_c_interface_*.F90. Specifically, mpi_c_interface_
types.F90 defines types of MPI handles and MPI Status
in MPICH’s MPI C binding. In MPICH C, except that
MPI File is a pointer type, all other MPI handles are a C
integer. But we treat them all as integers and record their
kind values. Listing 3 shows some MPI C data types from
Fortran’s viewpoint. Note that we access C types from the
intrinsic iso_c_binding module. For example, c_int is the
kind value of a C integer.

use , intrinsic :: iso_c_binding
integer , parameter :: c_Comm = c_int
integer , parameter :: c_Request = c_int
integer , parameter :: c_File = c_intptr_t

type :: c_Status
integer(c_int) :: MPI_SOURCE
integer(c_int) :: MPI_TAG
integer(c_int) :: MPI_ERROR
...

end type c_Status

Listing 3: MPI C type examples

Similarly, mpi_c_interface_{cdesc, nobuf}.F90 define
interfaces for MPI C functions with or without choice buffers,
respectively. See Listing 4 for examples. A few comments
are appropriate here. First, we use bind(C) to directly spec-
ify the functions’ link name, avoiding the underscore name
mangling problem. Second, for routines without choice buffers,
we want to call their C counterpart from Fortran wrappers
directly, so we declare functions bound to MPI C routines
(e.g., PMPI_Start). We use the PMPI_ version since we ex-
pect MPI tools to intercept Fortran symbols for Fortran
programs and C symbols for C programs. But if tool de-
velopers want to simplify their design and intercept only
C symbols for both Fortran and C programs, it is easy to
adapt our design to use the MPI_ version (e.g., MPI_Start).
Third, for routines with choice buffers, we do a second indi-
rection in C and call C wrappers from Fortran. Therefore,
we also declare interfaces for these C wrappers (e.g., MPIR_
Send_cdesc). Fourth, for input arguments, we give them the
value attribute so that the Fortran compiler will pass them

by value instead of address, properly matching with what the
C interfaces expect. To do language sensitive work, such as
setting language tags or translating a string from Fortran to
C, mpi_c_interface_glue.F90 defines glue functions.

function MPIR_Start_c(request) &
bind(C, name=" PMPI_Start ") result(ierror)
use , intrinsic :: iso_c_binding , only : c_int
use :: mpi_c_interface_types , only : c_Request
implicit none
integer(c_Request), intent(inout) :: request
integer(c_int) :: ierror

end function MPIR_Start_c

function MPIR_Send_cdesc(buf ,count ,datatype ,dest ,tag ,comm) &
bind(C, name=" MPIR_Send_cdesc ") result(ierror)
use , intrinsic :: iso_c_binding , only : c_int
use :: mpi_c_interface_types , only : c_Datatype , c_Comm
implicit none
type(*), dimension (..), intent(in) :: buf
integer(c_int), value , intent(in) :: count , dest , tag
integer(c_Datatype), value , intent(in) :: datatype
integer(c_Comm), value , intent(in) :: comm
integer(c_int) :: ierror

end function MPIR_Send_cdesc

Listing 4: MPI C function interface examples

3.2 Fortran Wrappers
We now discuss the implementation of the Fortran wrap-

pers. The main task is to convert between arguments spec-
ified by the Fortran interfaces and arguments specified by
the C interfaces. If their types happen to be the same, there
is no need to convert. Otherwise, we need to declare tem-
poraries to accommodate the conversion. Depending on the
intent value, we may need to convert Fortran to C (for in
arguments), or convert C to Fortran (for out arguments),
or do both (for inout arguments). When an argument is an
array, if a temporary array is needed, we need to allocate it
efficiently. We now discuss argument conversion for various
Fortran types.

INTEGER / MPI Handle Since all MPI handles in For-
tran have an integer value, this is the most common case. If
the kind value of an integer argument is specified by the MPI
Fortran interface, then in the C interface that argument usu-
ally has a paired C type of the same width and the same cod-
ing manner, which is guaranteed by the MPI standard. Ex-
amples include MPI_Aint for integer(MPI_ADDRESS_KIND),
MPI_Offset for integer(MPI_OFFSET_KIND), and MPI_Count

for integer(MPI_COUNT_KIND). Thus, in mpi_c_interface_

{nobuf, cdesc}.F90, we declare the C argument with the
same type (i.e., integer(MPI_ADDRESS_KIND)) as its Fortran
partner’s and do no conversion.

If an argument’s type in Fortran is integer or MPI handle
and in C is int, then in Fortran’s view that means we need to
convert between integer and integer(c_int). Most likely,
Fortran’s default integer has the same size as C int, and
we do not need type conversion. But one can pass options
like -i8 to Fortran compilers to change the default. To
get around this situation, we test the kind value of Fortran
integer against c_int in Fortran wrappers as shown in the
following example.

subroutine MPI_Start_f08(request , ierror)
use , intrinsic :: iso_c_binding , only : c_int
use :: mpi_f08 , only : MPI_Request
use :: mpi_c_interface , only : c_Request , MPIR_Start_c

type(MPI_Request), intent(inout) :: request
integer , optional , intent(out) :: ierror
integer(c_Request) :: request_c
integer(c_int) :: ierror_c



if (c_int == kind (0)) then
ierror_c = MPIR_Start_c(request%MPI_VAL)

else
request_c = request%MPI_VAL
ierror_c = MPIR_Start_c(request_c)
request%MPI_VAL = request_c

end if
if (present(ierror )) ierror = ierror_c

end subroutine MPI_Start_f08

Listing 5: Test Fortran integer and C integer

Note that kind(0) returns the default kind value of a For-
tran integer, which is known at compile time, so that the
if branch and the else branch are also chosen at compile
time, in other words, the test should incur zero runtime over-
head. Additionally, note that we use % to access a handle’s
MPI_VAL component and since ierror is optional, we use if

(present(ierror)) to test whether it is present.

To simplify the code, one may want to drop the c_int ==

kind(0) test and always do the type conversion as shown in
the else part. When integer’s kind value is indeed c_int,
an optimizing compiler should easily get rid of the redun-
dant copies through copy prorogation, incurring zero run-
time overhead also. We do not choose this approach mainly
because of integer array arguments: it is hard for a compiler
to find that an array copy is redundant.

Regarding declaration of temporaries for array arguments,
we use automatic arrays whenever possible, since they are
allocated on stack, which is the most efficient memory alloca-
tion method. For many MPI routines with array arguments,
either the arguments are already specified as an explicit-
shape array, or although the arguments are an assumed-size
array, their size is actually given by another argument, such
that we can use automatic arrays in both cases. In some
MPI routines, however, to get the size of an assumed-size
dummy array, we need to call other routines. For example,
in MPI_allgatherv, the length of two arguments recvcounts
and displs is determined by the group size, so we need to
call MPI_Comm_size to get that; whereas in MPI_Neighbor_

alltoallv, the two arguments’ length is determined by in-
degree of this process, so we need to call MPIR_Dist_graph_
neighbors_count instead. For this case, we use Fortran al-
locatable arrays for temporary arrays but allocate memory
only when kind(0) is not equal to c_int. Thus, in the com-
mon case, they have no overhead.

As mentioned before, MPI_File is a pointer in MPICH C.
We call fh_c = MPI_File_f2c(fh%MPI_VAL) to convert fh,
a Fortran MPI handle of type type(MPI_File), to fh_c, a
C file handle of type integer(c_File), and vice versa by
fh%MPI_VAL = MPI_File_c2f(fh_c). Note that MPI_File_

f2c/c2f are defined by MPI only in the C interface. We
extended them to Fortran.

Attention must be paid to integer arguments that are used
to represent array indices, for example the index/indices

argument in MPI_{Wait, Test}{any, some}. Since C uses
0-based indices and Fortran uses 1-based indices, we need
to adjust their value accordingly. However, in type creation
routines the displacement and index information, e.g., the
array_of_displacements argument of MPI_Type_indexed,
the array_of_starts argument of MPI_Type_create_subarray,
is 0-based in both C and Fortran. No extra work is needed
in this case.

LOGICAL MPI C uses integer to represent Booleans. For

a Fortran dummy argument (say, x) of type logical, its C
partner is x_c of type integer(c_int). We convert x to x_c

by x_c = merge(1, 0, x), and vice versa by x = (x_c /=

0). Here, merge is a Fortran intrinsic, and x and x_c can be
a scalar or an array.

CHARACTER In C, strings are terminated by a NULL
character, whereas in Fortran, strings are of fixed length,
possibly with trailing blank characters. We need to convert
between these two conventions. Generally, one more char-
acter is allocated to a C temporary string to accommodate
the null character. For example, for an input variable-length
string such as character(len=*)::string, its C partner is
character(kind=c_char)::string_c(len_trim(string)+1).
We copy string to string_c, append a C_NULL_CHAR, then
pass that to the backend C functions. For an output variable-
length or fixed-length string such as character(len=*)::string
or character(len=MPI_MAX_OBJECT_NAME)::string, its C
partner is character(kind=c_char)::string_c(len(string)+1)
or character(kind=c_char)::string_c(MPI_MAX_OBJECT_NAME+1).
When string_c is returned, we copy characters before the
NULL character to string and set the trailing characters to
blank. Note that the maximal string length constants such
as MPI_MAX_OBJECT_NAME should be one less in Fortran than
their partner in C. Additionally, MPI_Comm_spawn has an ar-
gument of type char**. In C, a char** argument is an array
of pointers to string. In Fortran, the argument is a 2-d char-
acter array. Similar things happen to an argument of type
char*** in MPI_Comm_spawn_multiple. Converting such ar-
guments between Fortran and C is even more complicated.
We skip the details here.

PROCEDURE User-defined callback function arguments
are declared with the procedure keyword in Fortran. Suppose
we have an input argument user_fn. We use c_funloc(user_
fn) to get a C function pointer of type type(c_funtpr) and
pass that to the backend C interface by value. In a multi-
language environment, a function passed in an MPI call in
one language may be invoked by an MPI call in another lan-
guage. MPICH attaches a language tag or sets a language
proxy to callback functions to make sure that such an in-
vocation will use the calling convention of the language the
function is bound to. In Fortran wrappers where a callback
function is passed in, we set the tag/proxy so that the right
calling sequence is generated when the callback function is
invoked.

MPI Status In MPICH Fortran and C interfaces, MPI Status
is a derived data type containing only integer or int compo-
nents. We represent them by type(MPI_Status) and type(c_

Status) (see Listing 1, 3) in Fortran wrappers, respectively,
and overload the assignment operator (=) to convert be-
tween them. If kind(0) == c_int, they are basically the
same type. But unfortunately, we cannot mimic the coding
style in Listing 5 and write code like the following since the
compiler complains that MPIR_Recv_cdesc expects an argu-
ment of type(c_Status) but not type(MPI_Status), even
though they are in effect the same when kind(0) == c_int.

subroutine MPI_Recv_f08ts(buf , count , datatype , &
source , tag , comm , status , ierror)

use :: mpi_f08 , only : MPI_Status
use :: mpi_c_interface , only : c_Status
type(c_Status), target :: status_c
integer(c_int) :: ierror_c

if (c_int == kind (0)) then



ierror_c = MPIR_Recv_cdesc (..., status) ! Error
else

ierror_c = MPIR_Recv_cdesc (..., status_c)
status = status_c

end if
end subroutine MPI_Recv_f08ts

Listing 6: Pass MPI Status by object

Hence, we must always choose the else part for MPI Status
arguments. This is unpleasant since it is hard for a compiler
to optimize the copy away, leading to unnecessary runtime
overhead especially for routines with an array of MPI Status
argument (e.g., MPI_Testall/Waitall). Note that the code
above is simplified since we have not yet handled the spe-
cial status value MPI_STATUS_IGNORE. Handling that by the
current “pass by object” approach would further complicate
the code. Therefore, we choose another approach, detailed
next, when we consider named constants.

3.3 Named Constants
MPI sometimes assigns a special meaning to a special

value of a basic type argument. The value, with a name,
does not change between MPI initialization and MPI com-
pletion and thus is called a named constant. Named con-
stants are just special values of their types, but not special
types. When they are used as an actual argument, argu-
ment checking still applies. In Fortran, the value of a few
named constants could not be set at compile time since us-
ing special values for them through parameter statements is
not possible because an implementation cannot distinguish
these values from valid data. Thus, we call them link-time
named constants.

Typically (as in MPICH F77/F90 bindings), these con-
stants are implemented as predefined static variables in com-
mon blocks. Relying on the fact that the target compiler
passes data by address, these variables are passed to a spe-
cial C routine during Fortran MPI Init, and their addresses
are recorded so that later in C wrappers we can check an
argument’s address against the record to know whether a
special value is passed in. However, this approach implies C
wrappers are always needed for routines where named con-
stants can be passed in. Also, to enable C applications to
call Fortran libraries with MPI calls inside, we need to add
a test in MPI libraries to see whether the addresses of these
named constants are already recorded. If they are not, we
need to do some initialization. Since in the F08 binding we
want to reduce the layers of wrappers and avoid the extra
test due to Fortran-specific initialization, we do not follow
this old approach.

One might want to bind named constants in Fortran with
those in C. Doing so, however, is impossible. One reason is
that named constants are a value in Fortran and an address
in C. For example, MPI_STATUS_IGNROE in Fortran is of type
type(MPI_Status), whereas in C it is of type MPI_Status*.
Another reason is that the C header file mpi.h in MPICH
defines most named constants to some bad addresses. For
example, MPI_STATUS_IGNROE is defined as #define MPI_

STATUS_IGNORE (MPI_Status *)1. To maintain application
binary interface (ABI) compatibility with previous MPICH
releases, we do not want to change the bad values to some
good ones. But we can still take advantage of bind(C) to
simplify the design. We now discuss our implementation
strategies for link-time named constants.

MPI STATUS IGNORE is used by programmers to indi-
cate they want to ignore the return MPI Status. In the mpi_

f08 module, we declare it as an MPI Status object with a
target attribute, along with a bind(C) C pointer.

type(MPI_Status), target :: MPI_STATUS_IGNORE
type(c_ptr), bind(C, name=" MPIR_C_MPI_STATUS_IGNORE ") &

:: MPIR_C_MPI_STATUS_IGNORE

As we can see, the pointer is bound to a C global variable,
which is defined in C as follows.

MPI_Status *MPIR_C_MPI_STATUS_IGNORE;

During C MPI Init, MPIR_C_MPI_STATUS_IGNORE is initial-
ized to have the same value as MPI_STATUS_IGNROE in mpi.h.
Then we change the type of the status argument from
type(c_Status) to type(c_ptr),value in C functions de-
clared in mpi_c_interface_{cdesc, nobuf}.F90. For ex-
ample, the status argument in MPIR_Recv_cdesc is declared
as "type(c_ptr), value, intent(in)". With this new type,
the Fortran wrapper for MPI_Recv is coded as follows.

subroutine MPI_Recv_f08ts(buf , count , datatype , &
source , tag , comm , status , ierror)

use ,intrinsic :: iso_c_binding ,only : c_int ,c_loc ,c_associated
use::mpi_f08 , only : MPI_Status , assignment (=) &

MPI_STATUS_IGNORE , MPIR_C_MPI_STATUS_IGNORE
use:: mpi_c_interface ,only : c_Status ,MPIR_Recv_cdesc

type(MPI_Status), target :: status
type(c_Status), target :: status_c
type(c_ptr) :: status_ptr = c_loc(status)
type(c_ptr) :: ignore_ptr = c_loc(MPI_STATUS_IGNORE)

if (c_int == kind (0)) then
if (c_associated(status_ptr , ignore_ptr )) then
ierror_c= MPIR_Recv_cdesc (..., MPIR_C_MPI_STATUS_IGNORE)

else
ierror_c= MPIR_Recv_cdesc (..., c_loc(status ))

end if
else
if (c_associated(status_ptr , ignore_ptr )) then
ierror_c= MPIR_Recv_cdesc (..., MPIR_C_MPI_STATUS_IGNORE)

else
ierror_c= MPIR_Recv_cdesc (..., c_loc(status_c ))
status = status_c

end if
end if

end subroutine MPI_Recv_f08ts

Listing 7: Pass MPI Status by pointer

In this code, c_loc returns the C address of an object, and
c_associated tests whether two C addresses are the same.
When we detect MPI_STATUS_IGNORE is passed in by Fortran,
we forward the bad address to C. Otherwise, we just forward
the address of status. All these are transparent to the back-
end C. Note that when c_int == kind(0), we do not con-
vert between type(MPI_Status) and type(c_Status), thus
incurring no overhead. We also apply the“pass by C pointer”
trick to the following named constants, except MPI_IN_PLACE
and MPI_BOTTOM.

MPI STATUSES IGNORE is used to ignore an array of
MPI Statuses. In mpi_f08 it is "type(MPI_Status), di-

mension(1), target :: MPI_STATUSES_IGNORE".

MPI ERRCODES IGNORE is used to ignore the input
error codes argument. In mpi_f08 it is "integer, dimen-

sion(1), target :: MPI_ERRCODES_IGNORE".

MPI ARGV(S) NULL are used to indicate the argv ar-
gument in MPI_Comm_spawn or the argvs argument in MPI_

Comm_spawn_multiple are empty. They are defined as "char-
acter(len=1),dimension(1),target :: MPI_ARGV_NULL"

and "character(len=1), dimension(1,1), target::MPI_

ARGVS_NULL", respectively.



MPI UNWEIGHTED, MPI WEIGHTS EMPTY are used
for the weight array arguments in distributed graph creat-
ing routines to indicate either that all edges have the same
weight or that the process has no in/out edges. In mpi_f08,
they have the same type: integer,dimension(1),target.

MPI IN PLACE is used in collectives to indicate that the
output buffer is identical to the input buffer. Since it is used
as an actual argument for an assumed-type, assumed-rank
dummy argument, it can be of any type. Note that in C
wrappers, we get a C descriptor (cdesc) instead of a pointer
to the buffer (see details in Section 3.4). We decode the
cdesc to get the base address of the buffer. Thus we need
to know the Fortran MPI_IN_PLACE’s address on the C side.
In mpi_f08, we declare MPI_IN_PLACE as a bind(C) variable
with a C name MPIR_F08_MPI_IN_PLACE.

integer(c_int),bind(C, name=" MPIR_F08_MPI_IN_PLACE ") &
:: MPI_IN_PLACE

In C, we declare MPIR_F08_MPI_IN_PLACE as a global integer
variable. In C wrappers, we test the base address of a choice
buffer against &MPIR_F08_MPI_IN_PLACE to know whether
the Fortran MPI_IN_PLACE is passed in. If it is, we forward
C MPI_IN_PLACE to the backend.

MPI BOTTOM indicates the start of the address range.
In MPI calls, it can be used as a choice buffer argument
together with an absolute MPI data type. MPICH C imple-
ments it as a NULL pointer, indicating that C address starts
at 0. Since Fortran forbids passing a disassociated (e.g.,
NULL) pointer to a nonpointer dummy argument (e.g., an
assumed-type, assumed-rank argument), we cannot use the
same MPI_BOTTOM value in C from Fortran. Thus we followed
the style of MPI IN PLACE. In mpi_f08, MPI_BOTTOM is a
bind(C) variable. In C wrappers, we test against its address.
Note that MPI uses MPI_Get_address to get the address of a
location in memory and that MPI requires MPI_Get_address
to return the same value in all languages. Thus, for MPI_

Get_address, we need just to bind it directly to C, ignoring
the value of MPI_BOTTOM in Fortran.

3.4 C Wrappers
As mentioned, we need C wrappers for subroutines with

assumed-type, assumed-rank dummy arguments. Such an
argument is translated by the compiler into a C descrip-
tor argument of type CFI_cdesc_t* in the corresponding
bind(C) functions. CFI_cdesc_t is defined in ISO Fortran
binding.h, which also provides interfaces to query informa-
tion such as rank, dimension, stride, contiguousness, etc of
the actual choice buffer argument in Fortran. If the buffer
is contiguous, we call the backend C function directly. Oth-
erwise, it means the buffer is a strided subarray. We create
a potentially nested MPI hvector data type to describe it,
call the backend C routine, and then free the data type. See
more discussions in Section 5.

4 Testing
To test our implementation, we 1) ported the existing

MPICH F90 test suite to F08; 2) wrote a set of new tests in-
volving F08 subarrays; 3) ported the NASA parallel bench-
mark (NPB) 3.3 [3] to F08, which was originally written
using the F77 binding. The backend compilers we used in-
clude a development version of gfortran 4.10 and the Cray
Fortran compiler 8.3.0. We compared performance of NPB
in F08 with that in F77 and did not observe any perfor-

mance degradation. Porting the tests required changing the
declaration and accesses of MPI objects such as communica-
tors, statuses, datatypes, and RMA windows. Thanks to the
stronger type safety in the F08 binding, a bug was discov-
ered in the MPICH F90 test suite that had gone undetected
for years. A function call, MPI_Abort(1, MPI_COMM_WORLD,

ierror), incorrectly reordered the first comm and the second
errcode argument in MPI_Abort. Previously, the compiler
could not detect this error, since both arguments are of type
integer. With comm having a unique type type(MPI_Comm),
this error is revealed at compile time. Finding this error was
exemplary of the enhanced usability of the F08 binding.

5 Conclusions and Future Work
We discussed the design and implementation of the MPI-

3.0 Fortran 2008 binding in MPICH. Our design targets a
Fortran 2008 + TS 29113–capable compiler. It is neat, ef-
ficient and portable since we limit the layers of wrappers,
avoid Fortran-specific initialization, avoid unnecessary run-
time overhead in wrappers, and rely only on standard For-
tran and C. Experiments show that the F08 binding is great
at catching compile time errors.

Being able to pass noncontiguous subarrays is a nice fea-
ture of the new F08 binding. A potential use case is in
stencil computing, where one need to exchange noncontigu-
ous halos (e.g., border of a submatrix). To get performance,
programmers usually create MPI derived data types in ad-
vance to describe such halos. With the new feature, such
data type creation can be hidden in C wrappers so that it
could be convenient for programmers. But since these MPI
calls are usually embedded in loops, creating and freeing
MPI data types in every loop iteration will incur significant
overhead compared with that of a manually optimized code.
An interesting question to ask is whether we can have the
convenience of subarrays without losing performance. Notic-
ing that the shape of halos is actually fixed in stencil codes,
we wonder whether we can take advantage of this fact to
cache MPI data types or use MPI persistent requests, in or-
der to avoid repeated data type creation and freeing. Also,
in our code, Fortran wrappers are outside of a module, thus
eliminating some advantages of using modern Fortran (e.g.,
inlining). Can they be put within a module without break-
ing the MPI profiling interface in general? Answering those
questions is our future work.
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