
PROCEEDINGS Open Access

SWAP-Assembler: scalable and efficient genome
assembly towards thousands of cores
Jintao Meng1,2,3, Bingqiang Wang4, Yanjie Wei1*, Shengzhong Feng1, Pavan Balaji5

From RECOMB-Seq: Fourth Annual RECOMB Satellite Workshop on Massively Parallel Sequencing
Pittsburgh, PA, USA. 31 March - 05 April 2014

Abstract

Background: There is a widening gap between the throughput of massive parallel sequencing machines and the
ability to analyze these sequencing data. Traditional assembly methods requiring long execution time and large
amount of memory on a single workstation limit their use on these massive data.

Results: This paper presents a highly scalable assembler named as SWAP-Assembler for processing massive
sequencing data using thousands of cores, where SWAP is an acronym for Small World Asynchronous Parallel model. In
the paper, a mathematical description of multi-step bi-directed graph (MSG) is provided to resolve the computational
interdependence on merging edges, and a highly scalable computational framework for SWAP is developed to
automatically preform the parallel computation of all operations. Graph cleaning and contig extension are also included
for generating contigs with high quality. Experimental results show that SWAP-Assembler scales up to 2048 cores on
Yanhuang dataset using only 26 minutes, which is better than several other parallel assemblers, such as ABySS, Ray, and
PASHA. Results also show that SWAP-Assembler can generate high quality contigs with good N50 size and low error
rate, especially it generated the longest N50 contig sizes for Fish and Yanhuang datasets.

Conclusions: In this paper, we presented a highly scalable and efficient genome assembly software, SWAP-
Assembler. Compared with several other assemblers, it showed very good performance in terms of scalability and
contig quality. This software is available at: https://sourceforge.net/projects/swapassembler

Background
To cope with massive sequence data generated by next-
generation sequencing machines, a highly scalable and
efficient parallel solution for fundamental bioinformatic
applications is important [1,2]. With the help of high
performance computing, cloud computing [3,4], and
many-cores in GPU [5], successful scalable examples have
been seen in many embarrassingly parallel applications:
sequence alignment [6-8], SNP searching [9,10], expres-
sion analysis [11], etc. However, for tightly coupled graph
related problems, such as genome assembly, a scalable
solution is a still a big challenge [12,13].
State-of-the-art trials on parallel assemblers include

ABySS [14], Ray [15], PASHA [16], and YAGA [17-19].

ABySS adopts the traditional de Bruijn graph data
structure proposed by Pevzner et. al. [20] and follows
the similar assembly strategy as EULER SR [21] and
Velvet [22]. The parallelization is achieved by distribut-
ing k-mers to multi-servers to build a distributed de
Bruijn graph, and error removal and graph reduction
are implemented over MPI communication primitives.
Ray extends k-mers (or seeds) into contigs with a heur-
istical greedy strategy by measuring the overlapping
level of reads in both direction. Based on the observa-
tion that the time consuming part of genome assembly
are generating and distributing k-mers, constructing
and simplifying the distributed de Bruijn graph,
PASHA concentrates its effort on parallelizing these
two stages to improve its efficiency. However, PASHA
allows only single process for each unanimous path,
and this limits its degree of parallelism. In their experi-
ments, ABySS and PASHA take about 87 hours and

* Correspondence: yj.wei@siat.ac.cn
1Shenzhen Institutes of Advanced Technology, Chinese Academy of
Sciences, 518055 Shenzhen, P.R. China
Full list of author information is available at the end of the article

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

© 2014 Meng et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

https://sourceforge.net/projects/swapassembler
mailto:yj.wei@siat.ac.cn
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

21 hours to assembly the Yoruban male genome with a
coverage of 42X.
To avoid merging k-mers on two different servers, which

can result in too many small inter-process messages
and the communication latency, YAGA constructs a dis-
tributed de Bruijn graph by maintaining edge tuples in a
community of servers. Reducible edges belonging to one
unanimous path are grouped into one server using a list
rank algorithm [23], then these unanimous paths are
reduced locally on separated servers. The complexity of

YAGA is bounded by O(
n

p
) computing time, O(

n

p
) com-

munication volume, and O(log2(n)) communication
rounds, where n is the number of nucleotides in all reads,
and p denotes the number of processors. Due to the fact
that the recursive list ranking algorithm used in YAGA

has a memory usage of O(
n log n

p
), this will use large

amount of memory and cause low efficiency.
Our previous work [24] tries to avoid access collision

of merging two neighbor edges. In this work, 1-step bi-
directed graph and a computational model named as
SWAP are proposed for edge merging operation. In its
experiments, the prototype of edge merging algorithm
using SWAP can scale to 640 cores on both Yeast and
C.elegans dataset. However this exploratory work only
focuses on the edge merging operation of genome
assembly, some other important problems are not
addressed, for example, contig extension, complexity
analysis etc.
The scalability of previous assemblers is affected by the

computational interdependence on merging k-mers/edges
in unanimous paths. Sequential assemblers, for example
Velvet and SOAPdenovo, process each path sequentially.
Parallel assemblers can process several paths in parallel,
however k-mers/edges sharing one path are merged one
by one. SWAP-Assembler resolves the computational
interdependence on merging edges sharing the same path
with MSG. For each path, at most half of its edges can
be merged concurrently in each round, and merging mul-
tiple edges on the same path can be done in parallel
using SWAP computational framework. In Figure 1, the
parallel strategy of SWAP-Assembler is compared with
other assemblers using an example of two linked paths,
we can see that a deeper parallelism on edge merging
can be achieved by SWAP-Assembler.
In this paper, we present a highly scalable and efficient

genome assembler named as SWAP-Assembler, which can
scale to thousands of cores on processing massive sequen-
cing data such as Yanhuang (500G). SWAP-Assembler
includes five fully parallelized steps: input parallelization,
graph construction, graph cleaning, graph reduction and
contig extension. Compared with our previous work, two

fundamental improvements have been made for graph
reduction. Firstly MSG is presented as a comprehensive
mathematical abstraction for genome assembly. Using
MSG and semi-group theory, the computational interde-
pendence on merging edges is resolved. Secondly, we have
developed a scalable computational framework for SWAP,
this framework triggers the parallel computation of all
operations with no interference. In this paper, complexity
of this framework and SWAP-Assembler is also analyzed
and proved in detail. In addition, two steps in SWAP-
Assembler are used to improve the quality of contigs. One
is graph cleaning, which adopts the traditional strategy of
removing k-molecules and edges with low frequency, and
the other one is contig extension, which resolves special
edges and some cross nodes using a heuristic method.
Experimental results show that SWAP-Assembler can
scale up to 2048 cores on Yanhuang dataset using only 26
minutes, which is the fastest compared with other assem-
blers, such as ABySS, Ray and PASHA. Conitg evaluation
results confirm that SWAP-Assembler generates good
results on N50 size with lowest error rate for S. aureus
and R. sphaeroides datasets. When processing larger data-
sets (Fish and Yanhuang) without using external error cor-
rection tools, SWAP-Assembler generates the longest N50
contig sizes of 1309 bp and 1368 bp for these two datasets.

Methods
In this section, our method for genome assembly towards
thousands of cores is presented. We first abstract the gen-
ome assembly problem with MSG. Generating longer
sequences (contigs) from shorter sequences corresponds
to merging semi-extended edges to full-extended edges in
MSG. In addition, computational interdependence of edge
merging is resolved by introducing a semi-group over a
closed edge set Es V 0 in MSG. The edge set Es V 0 is
proved to be a semi-group with respect to edge merging
operation. According to the associativity law of semi-
group, the final results will be the same as long as all
edges have been merged regardless of the merging order,
thus these edge merging operations can be computed in
parallel.
In order to maximally utilize the potential parallelism

resolved by MSG, a scalable SWAP computational fra-
mework is developed. As one edge may be accessed by
two merging operations in two different processes at the
same time, a lock-computing-unlock mechanism intro-
duced in [24] is adopted for avoiding the conflict. For
the problems which can be abstracted with semi-group,
the corresponding operations can be done in parallel,
and SWAP computational framework can achieve line-
arly scale up for these problems.
Based on MSG and SWAP computational framework,

SWAP-Assembler is developed with five steps, including

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 2 of 17

input parallelization, graph construction, graph cleaning,
graph reduction, and contig extension. In the following,
we first present MSG and the SWAP computational
framework, then details of SWAP-Assembler’s five steps
will be followed.

Mathematical formulation of genome assembly using
MSG
Given a biological genome sample with reference sequence
w ∈ Ng , where N = {A, T, C, G}, g = |w|, a large number of
short sequences called reads, S = {s1, s2, ..., sh}, can be gen-
erated from the sequencing machines. Genome assembly
is the process of reconstructing the reference genome
sequence from these reads. Unfortunately, the genome
assembly problem of finding the shortest string with all
reads as its substring falls into a NP-hard problem [25].
Finding the original sequence from all possible Euler

paths cannot be solved in polynomial time [26]. In real

cases, gaps and branches caused by uneven coverage,
erroneous reads and repeats prevent obtaining full
length genome, and a set of shorter genome sequences
called contigs are generated by merging unanimous
paths instead. Our method focuses on finding a mathe-
matical and highly scalable solution for the following
standard genome assembly (SGA) problem, which is
also illustrated in Figure 2.
Problem of Standard Genome Assembly (SGA)
Input: Given a set of reads without errors S = {s1,

s2, ..., sh}
Output: A set of contigs C = {c1, c2, ..., cw}
Requirement: Each contig maps to an unanimous

path in the De Bruijn graph constructed from the set of
reads S.
Preliminaries
We first define some variables. Let s ∈ Nl be a DNA
sequence of length l. Any substring derived from s with

Figure 1 Parallel strategy comparison on k-mers/edges merging for different assemblers. Two linked paths with 3 nodes and 5 nodes are
given as an example, merging a linked path with 3 nodes needs 2 operations/rounds, and merging a path with 5 nodes needs 4 operations/rounds.
To assemble these two paths, sequential assemblers need 6 operations, and parallel assemblers need 4 rounds. For SWAP-Assembler different
processes can merge several edges on the same path in parallel using the SWAP computational framework, and merging of these 2 paths can be
finished in 2 rounds. For a given sequencing data, if we treat the sequencing coverage as an constant number, the upper bound of the three assemby
strategies on merging k-mers/edges are bounded by O(g), O(log(g)), and O(log(log(g))) respecitively, here g denotes the genome size and the longest
path for a genome of length g will be bounded by O(log(g)). The upper bound of edge merging operations in SWAP-Assembler and expected length
of longest path are proved in Appedix 3. Reference of the k-mers merging strategy for these assemblers can be found in their papers or codes.
For velvet 1.1.04, the k-mers merging method can be found in its code “./src/concatenatedGraph.c"; for SOAPdenovo-V1.05, its method is in the
code “./src/31mer/contig.c"; for ABySS 1.3.5, the method can be found in “./Parallel/NetworkSequenceCollection.cpp"; for YAGA, the method has been
descripted in the last paragraph in the methods section [18]; for Pasha, its method is presented in the last paragraph at the graph simplification
subsection [16].

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 3 of 17

length k, is called a k-mer of s, and it is denoted by a =
s[j]s[j + 1] . . . s[j + k − 1], 0 ≤ j < l − k + 1. The set of
k-mers of a given string s can be written as Z(s, k),
where k must be odd. The reverse complement of a
k-mer a, denoted by α′ , is obtained by reversing a and
complementing each base by the following bijection of
M, M : {a ® t, t®a, c®g, g ® c}. Note that α = α′′ .
A k-molecule α̂ is a pair of complementary k-mers {a,

a’}. Let . > be the partial ordering relation between the
strings of equal length, and α. > β indicates that a is lexi-
cographically larger than b. We designate the lexicographi-
cally larger one of two complementary k-mers as the
positive k-mer, denoted as a+, and the smaller one as the
negative k-mer, denoted as a−, where α+. > α− .
We choose the positive k-mer a+ as representative k-mer
for k-molecule {a, a’}, denoted as a+, implying that
α̂ = α+ = {α+, α−} = {α, α′} . The relationship between k-
mer and k-molecule is illustrated in Figure 3. The set of all
k-molecules of a given string s is known as k-spectrum of s,
and it can be written as S(s, k). Noted that S(s, k) = S(s’, k).

Notation suf (a, l) (pre(a, l), respectively) is used to
denote the length l suffix (prefix) of string a. The
symbol ○ is introduced to denote the concatenation
operation between two strings. For example, if s1 =
“abc“, s2 = “def “, then s1 °s2 = “abcdef “. The number of
edges attached to k-molecule aˆ is denoted as degree
(α̂). All notations are listed in Table 1.
1-step Bi-directed Graph
Definition 1: 1-step bi-directed graph. The 1-step bi-
directed de Bruijn graph of order k for a given string s
can be presented as,

G1
k (s) = {Vs, E1

s } (1)

In the rest of the paper, 1-step bi-directed de Bruijn
graph of order k is abbreviated as 1-step bi-directed
graph. In equation (1), the vertex set Vs is the k-spectrum
of s,

Vs = S(s, k) (2)

Figure 2 The process of genome assembly and the standard genome assembly (SGA) problem.

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 4 of 17

and the 1-step bi-directed edge set E1
s is defined as

follows,

E1
s = {e1

αβ = (α, β , dα , dβ , c1
αβ)∀α̂, β̂ ∈ S(s, k), su f (α, k − 1) =

pre (β , k − 1)̂(α◦β[k − 1]) ∈ (Z(s, k + 1) ∨ Z(s′, k + 1)))} (3)

Equations (3) declares that any two overlapped
k-molecules can be connected with one 1-step bi-directed
edge when they are consecutive in sequence s or the
complementary sequence s’. Here da denotes the direction

of k-mer a, if a = a+, da =’+’, otherwise da = ‘-’. c1
αβ is the

content or label of the edge, and is initialized with b[k −

1], that is c1
αβ = β[k − 1] , and we have su f (α◦c1

αβ , k) = β .

Lemma 1. Given two k-molecules α̂, β̂ ∈ S(s, k) , there
are four possible connections, and for each type of con-
nection exactly two equivalent 1-step bi-directed edge
representations exist,

1 e1
α+β+ = (α+, β+, +, +, c1

α+β+), e1
β−α− = (β−, α−, −, −, c1

β−α−)

2 e1
α+β− = (α+, β−, +, −, c1

α+β−), e1
β+α− = (β+, α−, +, =, c1

β+α−)

3 e1
α−β+ = (α−, β+, −, +, c1

α−β−), e1
β−α+ = (β−, α+, −, +, c1

β−α+)

4 e1
α−β− = (α−, β−, −, −, c1

α−β−), e1
β+α+ = (β+, α+, +, +, c1

β+α+)

In each type of connection, the first bi-directed edge
representation and the second one are equivalent. The
first bi-directed edge is associated with k-molecule α̂ , and
the second one is associated with β̂ . Figure 4 illustrates
all four possible connections. For example in Figure 4-(a),
a positive k-mer “TAG” points to positive k-mer “AGT”
with a label “A”, and the corresponding edge is
e1

T AG AGT = (TAG, AGT, +, +, T) .

Given a set of reads S = {s1, s2, . . . , sh}, a 1-step bi-
directed graph derived from S with order k is,

G1
k (S) = {Vs, E1

S} = { ∪
1≤i≤h

Vsi, ∪
1≤i≤h

E1
si} (4)

Figure 3 Each k-molecule consists of one positive k-mer and one negative k-mer.

Table 1 List of notations.

Definition Notation Example

set of nucleotides N N = {A, T, C, G}

reference sequence W w = “T AGT CGAGG“

read set S S = { “T AGT CG“, “AGT CGA“, “T CGAGG“ }

k-mer a or a/ a = “T AG“, a/ = “CT A“

positive k-mer a+ a+ = “T AG“

negative k-mer a− a− = “CT A“

representative k-mer a+ a+ = “T AG“

k-molecule α̂ = α+ = {α+, α−} α̂ = {”T AG“, “CT A“}

set of k-mers ℤ(s, k) ℤ(”T AGT CG“, 3) ={"TAG”,"AGT”,"GTC”,"TCG"}

set of k-molecules S(s, k) ℤ(”T AGT C“, 3) = {{”T AG“, “CT A“}, {”AGT “, “ACT “}, {”GT C“, “GAC“}, {”T CG“, “CGA“}}

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 5 of 17

Each read si corresponds to a path in G1
k (S), and read

si can be recovered by concatenating (k − 1)-prefix of
the first k-molecule and the edge labels on the path con-
sisted by S(si, k). As an example, an 1-step bi-directed
de Bruijn graph derived from S = {”T AGT CG“, “AGT
CGA“, “T CGAGG“} is plotted in Figure 5.
Multi-step Bi-directed Graph and Its Properties
Definition 2: edge merging operation. Given two 1-step

bi-directed edges e1
αβ = (α, β , dα , dβ .C1

αβ) and

e1
βγ = (β , γ , dβ , dγ , C1

βγ) in a 1-step bi-directed graph, if

e1
αβ .dβ = e1

βγ .dβ and degree(β̂) = 2, we can obtain a

2-step bi-directed edge e2
αγ = (α, γ , dα , dγ , c2

αγ) by mer-

ging edges e1
αβ and e1

βγ , c2
αγ = c1

αβ ◦ c1
βγ . Using symbol ⊗

to denote edge merging operation between two bi-
directed edges attached to the same k-molecule with the
same direction, and the 2-step bi-directed edge is written as,

e1
αβ ⊗ e1

βγ = e2
αγ or e1

γβ ⊗ e1
βα = e2

γα (5)

Two edges e2
αγ and e2

γα in equation (5) are equivalent,
indicating it is same to apply edge merging operation on
e1
αβ and e1

βγ , and to apply edge merging operation on e1
γβ

and e1
βα . Figure 6 shows an example on edge merging

operation.
Zero edge 0 is defined to indicate all non-existing bi-

directed edges. Note that 0 ⊗ ex
αβ = 0, ex

αβ ⊗ 0 = 0 .
A z-step bi-directed edge can be obtained by,

ez
αγ =

⎧⎨
⎩

ex
αβ ⊗ ey

βγ , if∃β , ex
αβ �= 0, ey

βγ �= 0, z = x + y
ex
αβ .dβ = ey

βγ .dβ , degree(β̂) = 2
0 otherwise

(6)

Definition 3: Multi-step Bi-directed Graph(MSG).
A MSG derived from a read set S = {s1, s2, . . . , sh}, is
written as,

Gk(S) = {VS, ES} = {
⋃

1≤i≤h

Vsi,
⋃

1≤j≤g

(
⋃

1≤i≤h

Ej
si)} (7)

where g is the length of reference sequence w,

Ej
si + {ej

αβ—∀α̂, β̂ ∈ S(si, k)} . A MSG is obtained through

edge merging operations.
Given an x-step bi-directed edge ex

αβ = (α, β , dα , dβ , cx
αβ) ,

if there exists edge ey
γα or ez

βγ satisfying ey
γα ⊗ ex

αβ �= 0 or

ex
αβ ⊗ ez

βγ �= 0 , then we call edge ex
αβ as a semi-extended

Figure 4 The illustration of four possible connections.

Figure 5 An example of 1-step bi-directed graph. Here semi-extended k-molecules are colored with yellow, and semi-extended edges are
plotted with dashed line.

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 6 of 17

edge, and the corresponding k-molecule aˆ or bˆ as semi-
extended k-molecule. If ex

αβ cannot be extended by
any edge, this edge is called as full-extended edge, and
k-molecule α̂ and β̂ are full-extended k-molecules.
In Figure 5 and 6, semi-extended k-molecule and
full-extended k-molecule are plotted with different colors
(yellow for semi-extended k-molecules and blue for
full-extended k-molecules), semi-extended edge and
full-extended edge are drawn with different lines (broken
line for semi-extended edges and real line for full-extended
edges).
Property 1. If the set of full-extended edges in the

MSG defined in equation 7 is denoted as E∗
S , then the

set of labels on all edges in E∗
S can be written as,

L∗
S = {cx

αβ |ex
αβ = (α, β , dα , dβ , cx

αβ), ex
αβ ∈ E∗

S} (8)

and we have L∗
S = C , C is the set of contigs. The proof

is presented in Appendix 1.
Property 2. Edge merging operation ⊗ over the multi-

step bi-directed edge set ES ∨ 0 is associative, and Q
(ES ∨ 0 ,⊗) is a semigroup. The proof is presented in
Appendix 1.
The key property of 1-step bi-directed graph G1

k (S) is
that each read s corresponds to a path starting from the
first k-molecule of s and ending at the last k-molecule.
Similarly, each chromosome can also be regarded as a
path. However because of sequencing gaps, read errors,
and repeats in the set of reads, chromosome will be bro-
ken into pieces, or contigs. Within a MSG, each contig
corresponds to one full-extended edge in Gk(S) , and this
has been presented and proved in Property 1. Property 2
ensures that the edge merging operation ⊗ over the set of
multi-step bi-directed edges has formed a semi-group, and

this connects the standard genome assembly (SGA) pro-
blem with edge merging operations in semi-group.
According to the associativity law of semi-group, the final
full-extended edges or contigs will be the same as long as
all edges have been merged regardless of the merging
order, thus these edge merging operations can be
computed in parallel. Finally in order to reconstruct the
genome with a large set of contigs, we need to merge
all semi-extended edges into full-extended edges in
semi-group Q(ES ∨ 0 , ⊗).

SWAP computational framework
The lock-computing-unlock mechanism of SWAP was
first introduced in our previous work [24], where no
implementation details and complexity analysis is given.
In this section, we present the mathematical description
of the problems which can be solved by SWAP, then a
scalable computational framework for SWAP model and
its programming interface are presented. Its complexity
and scalability is analyzed in Appendix 3.
Definition 4: small world of operations. Semi-group

SG(A, R) is defined on set A with an associative operation
R : A × A ® A. R(ai, aj) is used to denote the associative
operation on ai and aj, ai, aj ∈ A. The elements ai and
aj, together with the operation R(ai, aj) are grouped as a
small world of the operation R(ai, aj). We denote this
small world as [ai, aj], and [ai, aj] = {R(ai, aj), ai, aj}.
Activity ACT (A, s) are given on a semi-group SG(A,

R) as the computational works performed by a graph
algorithm, where operation set s is a subset of R.
In real application, an operation corresponds to a basic

operation of a given algorithm. For example, for MSG
based genome assembly application, an operation can
be defined as edge merging. For topological sorting, re-
ordering a pair of vertices can be defined as an operation.

Figure 6 An example for edge merging operation.

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 7 of 17

For any two small worlds [a1, a2], [b1, b2], where a1 ≠
b1, a1 I= b2, a2 ≠ b1, a2 ≠ b2, the corresponding opera-
tions R(a1, a2) and R(b1, b2), can be computed indepen-
dently, thus, there exists potential parallelism in
computing activity induced from the semi-group SG(A,
R). We use SWAP for such parallel computing. The
basic schedule of SWAP is Lock-Computing-Unlock.
For an operation R(a, b) in s, the three-steps of SWAP
are listed below:

1 Lock action is applied to lock R(a, b)’s small world
[a, b].
2 Computing is performed for operation R(a, b),
and the values of a, b are updated accordingly. In
MSG, this corresponds to merging two edges.
3 Unlock action is triggered to release operation R
(a, b)!s small world [a, b].

In SWAP computational framework, all operations s
in activity ACT (A, s) can be distributed among a group
of processes. Each process needs to fetch related ele-
ments, for example a and b, to compute operation R(a,
b). At the same time, this process also has to cooperate
with other processes for sending or updating local vari-
ables. Each process should have two threads, one is
SWAP thread, which performs computing tasks using
the three-steps schedule of SWAP, and the other is ser-
vice thread, which listens and replies to remote pro-
cesses. In the implementation of our framework, we
avoid multi-threads technology by using nonblocking
communication and finite-state machine in each process
to ensure its efficiency.
The activity ACT (A, s) on set A with operations in s

can be treated as a graph G(s, A) with s as its vertices
and A as its edges. Adjacent list is used to store the
graph G(s, A), and a hash function hashF un(x) is used

to distribute the set s into p subset for p processes,

where σ =
p−1⋃
i=0

σi , and Ai is associated with si. Note that

ACT(A, σ) =
p−1⋃
i=0

ACTi(Ai, σi) , which is illustrated in

Figure 7. In Appendix 2, the pseudocodes of SWAP
thread and service thread are demonstrated in
Algorithm 1 and Algorithm 2, respectively.
Algorithm 1 describes the three-steps of SWAP

computational framework, and Algorithm 2 on remote
processers can cooperate with Algorithm 1 for running
this schedule. The message functions, internal func-
tions, and user-defined functions in Algorithm 1 and
Algorithm 2 are listed in Table 2, where user-defined
functions can be redefined for user-specific computa-
tional problems.
Similar to CSMA/CA in 802.11 protocol [27],

Algorithm 1 adapts random back-off algorithm to avoid
lock collision. A variety of backoff algorithms can be
used, without loss of generality, binary exponential back-
off [27] is used in SWAP thread. Note that all collided
operations in si share only one binary backoff, so the
cost can be ignored as long as the number of relations
in si is huge.
The complexity and scalability analysis for SWAP com-

putational framework are presented in Appendix 3. When
the number of processes is less than the number of opera-
tions in s, which is true for most cases, equation (??)
shows that SWAP computational framework can linearly
scale up with the increasing number of cores. When the
number of processes is larger than the number of opera-
tions, according to equation (??) the running time will be
dominated by the communication round, which is
bounded by log(dmax), where dmax is the diameter of graph
G(s, A).

Figure 7 Illustration of the distribution of an activity ACT (A, s) on a cluster using SWAP computational framework. Operation set s is

distributed over p processors, here σ =
p−1⋃
i=0

σi

p−1⋂
i=0

σi = 0 and ACT(A, σ) =
p−1⋃
i=0

ACTi(Ai, σi) .

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 8 of 17

Implementation of SWAP-Assembler
Based on MSG and SWAP computational framework,
SWAP-Assembler consists with five steps, including
input parallelization, graph construction, graph cleaning,
graph reduction, and contig extension. Complexity
analysis of SWAP-Assembler are presented in the end
of this section.
Input parallelization
As the size of data generated by next generation sequen-
cing technology generally has hundreds of Giga bytes,
loading these data with one process costs hours to finish
[14,16]. Similar to Ray [15] and YAGA [18], we use
input parallelization to speedup the loading process.
Given input reads with n nucleotides from a genome of
size g, we divide the input file equally into p virtual data
block, p is the number of processes. Each process
reads the data located in its virtual data block only
once. The computational complexity of this step is

bounded by O(
n

p
) . For E.coli dataset of 4.4G bytes,

SWAP-Assembler loads the data into memory in
4 seconds with 64 cores while YAGA uses 516.5 seconds
[18], and for Yanhuang dataset SWAP-Assembler loads
the data in 10 minutes while Ray costs 2 hour and
42 minutes.
Graph construction
This step aims to construct a 1-step bi-directed graph
G1

k (S) = {Vs, E1
s } , where Vs and E1

s are k-molecule set

and 1-step bi-directed edge set. In this step, input
sequences are broken into overlapping k-molecules by
sliding a window of length k along the input sequence.
A k-molecule can have up to eight edges, and each
edge corresponds to a possible one-base extension, {A,
C, G, T} in either direction. The adjacent k-molecule
can be easily obtained by adding the base extension to
the source k-molecule. The generated graph has O(n)

k-molecules and O(n) bi-directed edges distributed
among p processors. Graph construction of 1-step

bi-directed graph can be achieved in O(
n

p
) parallel

computing time, and O(
n

p
) parallel communication

volume.
An improvement to our previous work [24] is that the

time usage on graph construction is overlapped with the
previous step. As CPU computation and network com-
munication can be performed when only partial data are
loaded from the first step, they can be overlapped and
combined as a pipeline. Computation and communica-
tion time used in this step are hid behind the time used
on disk I/O in previous step.
Graph cleaning
This step cleans the erroneous k-molecules, based on the
assumption that the erroneous k-mers have lower fre-
quency compared with the correct ones [19]. Assuming
that the errors are random, we identify the k-molecules
with low frequency as erroneous k-molecules, and delete
them from the vertex set. SWAP-Assembler also removes
all edges with low frequency in the 1-step bi-directed
graph, and the k-molecules without any attached edges.
The frequency threshold can be set by users, or our
method will calculate it automatically based on the average
coverage of k-molecules. In our case, we prefer 3 ~ 10% of
the average coverage as the threshold depending on the
species.
All the operations in this step can be finished in

O(
n

p
) parallel computation time, and about 60 ~ 80%

of the k-molecules can be removed from our graph.
Graph reduction
In order to recover contigs, all semi-extended edges in
MSG need to be merged into full-extended edges. This

Table 2 Description of message functions, internal functions, and user-defined functions used in Algorithm 1 and 2.

Class Function name Function description

Message functions Msg Lock(a, p) Lock a in process p

Msg Unlock(a, p) Unlock a in process p

Msg Read(a, p) Fetch associated values of a

Msg Write(a, newa, p) Update associated values of a with newa

Msg Locksuccess(a, R(a, b), p) Send Locksuccess Message back to R(a, b)

Msg Lockfailed(a, R(a, b), p) Send Lockfailed Message back to R(a, b)

Msg ReadBack(a, R(a, b), p) Send associated value of a back to R(a, b)

Msg End() Command to stop the service thread

Internal functions proc(a) Get process ID of a

trylock(a) Lock a

unlock(a) Unlock a

User-defined functions GetSmallWorld(R(a, b)) Get small world [a, b] from operation R(a, b)

Operation(a,b) Compute the operation R(a, b)

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 9 of 17

task can be defined as edge merging computing activity
and denoted as ACT (Es ∨ 0, σ), where the edge merging
operation set s is,

σ = {(eu
βα, ev

αγ)|ev
βα ⊗ ev

αγ �= 0, eu
βα , ev

αγ ∈ Es} (9)

in which eu
βα indicates an u-step bi-directed edge con-

necting two vertices b and a. All semi-extended edges
of Es will be merged into full-extended edges finally.
In order to compute edge merging operations in si

using our SWAP computational framework, two user-
defined functions in Table 2 are described as Algorithm 3
and Algorithm 4 in Appendix 2. For each process, the

edge merging step has a computing complexity of O(
n

p
) ,

communication volume of

(
n log(log(g))

p

)
, and com-

munication round of O(log(log(g))). The proposed meth-
ods has much less computation round of O(loglog(g)) than
YAGA with O(log(n)2) [18,19]. The detailed complexity
analysis is provided in Appendix 4.
Contig extension
In order to extend the length of contigs while maintain-
ing as less errors as possible, three types of special edges
and two type of special vertices are processed in our
method.
The first type of special edge is tip edge, which is

connected with an terminal vertex and has a length less
than k, where k is the k-mer size. These tip edges are
deleted from the graph. The second type is self-loop edge,
whose beginning vertex and terminal vertex are same. If
this vertex has another edge which can be merged with
this self-loop edge, they will be merged, otherwise it will
be removed. The last type is multiple edge, whose two ver-
tices are directly connected by two different edges. In this
case the edge with lower coverage will be removed.
In addition, processing two special vertices can help

further improve the quality of contigs. The first is cross
vertex shown in Figure 8-(e), which has more than two
edges on both sides. For each cross vertex, we sort all its
edges according to their coverage. When the coverage dif-
ference between the two edges is less than 20%, then these
two edges are merged as long as they can be merged
regardless of other edges. The second vertex is virtual cross
vertex shown in Figure 8-(f). We treat edge e0 with its two
end vertices as one virtual vertex A* and A* has more than
two edges on both sides. All its edges are ranked according
to their coverage. When the coverage difference between
two edges on different nodes is less than 20%, these two
edges will be merged with the edge e0 regardless of other
edges. By processing these two special vertices using the
heuristic method, we can partly resolve some of the repeats
satisfying our strict conditions at the cost of introducing
errors and mismatches into contigs occasionally.

The graph reduction step and contig extension step
need to be iterated in a constant number of rounds to
extend full-extended edges or stop when no special edges
and special vertices can be found. The number of errors
and mismatches introduced in contigs can be controlled
by the percentage of special edges and vertices processed
in contig extension stage. In our method, we process all
edges and vertices aiming at obtaining longer contigs. The
computing complexity for contig extension step will be

bounded by O(
n

p
) . As the graph shrinks greatly after

graph reduction and contig extension step, all the remain-
ing edges are treated as contigs. The complexity of
SWAP-Assembler is dominated by graph reduction step,

which is bounded by O(
n

p
) parallel computing time,

O
(

n · log(log(g))
p

)
communication volume, and O(log

(log(n))) communication round. According to complexity
analysis results of graph reduction step in equation (??),
when the number of processors is less than the length of
longest path dmax, the speedup of SWAP-Assembler can
be calculated as follows,

Speedup =
n

Run Time
=

p
bL log(3cq · log(g)) + rS + 1

(10)

Figure 8 Two type of special vertex defined in contig
extension step.

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 10 of 17

Equation (10) indicates that, for a given genome with
fixed length g, the speedup is proportional to the num-
ber of processors; while for a given number of proces-
sors p, the speedup is inversely proportional to
logarithm of the logarithm of the genome size g. How-
ever when the number of processors is larger than the
length of longest path dmax, the running time will be
bounded by the number of communication round,
which is presented in equation (??) in Appendix 4. In
either situation, we can conclude that the scalability or
the optimal number of cores will increase with larger
genomes.

Results
SWAP-Assembler is a highly scalable and efficient gen-
ome assembler using multi-step bi-directed graph
(MSG). In this section, we perform several computa-
tional experiments to evaluate the scalability and assem-
bly quality of SWAP-Assembler. In the experiments,
TianHe 1A [28] is used as the high performance cluster.
512 computing nodes are allocated for the experiment
with 12 cores and 24GB memory on each node. By
comparing with several state-of-the-art sequential and
parallel assemblers, such as Velvet [22], SOAPdenovo
[29], Pasha [16], ABySS [14] and Ray [15], we evaluate
the scalability, quality of contigs in terms of N50, error
rate and coverage for SWAP-Assembler.

Experimental data
Five datasets in Table 3 are selected for the experiments.
S. aureus, R. sphaeroides and human chromosome 14
(Hg14) datasets are taken from GAGE project [30], Fish
dataset is downloaded from the Assemblathon 2 [31,32],
and Yanhuang dataset [33] is provided by BGI [34].

Scalability evaluation
The scalability of our method is first evaluated on a
share memory machine with 32 cores and 1T memory.
Five other assemblers including Velvet, SOAPdenovo,
Pasha, ABySS and Ray, are included for comparison.
Only the first three small datasets in Table 3 are used in
this test due to the memory limitation. The results are
presented in Table 4, and the corresponding figures are
plotted in Figure 9. According to Table 4, SWAP-
Assembler has the lowest running time on all three

datasets for 16 cores and 32 cores, and SOAPdenovo has
the lowest time usage on 4 cores and 8 cores. According
to Figure 9, SOAPdenovo, Ray and SWAP-Assembler can
scale to 32 cores, however Pasha and ABySS can only
scale to 16 cores. Figure 9 also shows that Ray and
SWAP-Assembler can achieve nearly linear speedup and
SWAP-Assembler is more efficient than Ray.
The time usage for each step of SWAP-Assembler on

the share memory machine is also presented in Table 5
and Figure 10. The input parallelization step is over-
lapped with graph construction, thus we treat these two
steps as one in this experiment. According to Table 5,
for all three datasets the most time-consuming step is
graph reduction, and the fastest steps are graph cleaning
and contig extension. Figure 10 shows that input paral-
lelization & graph construction, graph cleaning and
graph reduction can achieve nearly linear speedup when
the number of cores increases from 4 to 32 cores,
whereas the contig extension step does not benefit as
much as other steps.
To further evaluate the scalability of SWAP-Assembler

from 64 to 4096 cores on TianHe 1A, we have com-
pared our method with two parallel assemblers, ABySS
and Ray, and the results are included in Table 6.
According to Table 6 SWAP-Assembler is 119 times
and 73 times faster than ABySS and Ray for 1024 cores
on the S. aureus dataset. On the same dataset, ABySS
and Ray cannot gain any speedup beyond 64 and 128
cores, respectively. However SWAP-Assembler scales up
to 512 cores. For the R. sphaeroides dataset, ABySS, Ray,
and SWAP-Assembler can scale up to 128, 256, and
1024 cores, respectively.
For three larger datasets, Table 6 shows that scal-

ability of SWAP-Assembler is also better than the
other two methods. On Hg14 dataset, SWAP-Assem-
bler is 280 times faster than ABySS, and 38 times fas-
ter than Ray when using 1024 cores. Similar to the
results on R. sphaeroides dataset, three assemblers still
hold their turning point of scalability at 128, 256 and
1024 cores, respectively. Fish and Yanhuang dataset
cannot be assembled by ABySS and Ray in 12 hours,
so their running times are not recorded in Table 6.
For 1024 cores, SWAP-Assembler assembles Fish
dataset in 16 minutes, while it takes 26 minutes with
2048 cores to assemble the Yanhuang dataset. The

Table 3 Details about the five short read datasets.

- S. aureus R. sphaeroides Hg14 Fish YanHuang

Fastq data size (Gbytes) 0.684 0.906 14.2 425 495

Read length (bp) 37, 101 101 101 101 80-120

No. of reads (million) 4.8 4.1 62 1910 1859

Coverage 90X 90X 70X 192X 57X

Reference size (Mbp) 2.90 4.60 88.6 1000 3000

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 11 of 17

speedup curves of SWAP-Assembler on processing
five datasets are shown in Figure 11. It shows that the
speedup of assembling two small datasets have a turn-
ing point at 512 cores, and linear speedup to 1024

cores is achieved for other three larger datasets.
SWAP-Assembler can still benefits from the increas-
ing cores up to 2048 cores on processing Yanhuang
dataset.

Table 4 Time usage results of three small datasets on a share memory machine with 32 cores.

Assembler Cores S. aureus R. sphaeroides Hg14

Velvet 1 159 265 5432

SOAPdenovo 4 44 71 1004

8 44 69 933

16 36 57 742

32 38 45 584

Pasha 4 215 342 5494

8 159 255 3938

16 147 255 3436

32 183 289 4852

ABySS 4 174 302 4138

8 146 234 3079

16 139 226 2588

32 147 235 2596

Ray 4 1247 1778 24145

8 707 1050 13116

16 454 688 7222

32 351 467 4235

SWAP-Assembler 4 81 129 2167

8 42 69 1187

16 24 38 685

32 13 21 408

(Time unit: seconds)

Figure 9 Time usage comparison on a share memory machine for three small datasets (Time unit: seconds in logarithmic scale). In this
test, the length of k-mer for all assemblers is set to be 31 and the k-mers cutoff threshold is set to be 3. For the three datasets, the sequencing
data filtered by ALLPATH-LG is their input data. The time usage is recorded until the contig is generated. The horizontal axis is marked with the
name of assemblers and the number of cores used.

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 12 of 17

Memory footprint is a bottleneck for assembling large
genomes, and parallel assemblers is a solution for large
genome assembly by using more memory on the com-
putational nodes. For our case, Fish and Yanhuang gen-
ome assembly needs 1.6T bytes and 1.8T bytes memory,
respectively. As in Tianhe 1A each server has 24G
memory, Fish genomes cannot be assembled on a clus-
ter with 64 servers. The same reasoning applies to Yan-
huang dataset.
SWAP-Assembler has better scalability compared

with Ray and ABySS due to two important

improvements. Firstly, computational interdepen-
dence of edge merging operations on one single
unanimous path is resolved by MSG. Secondly,
SWAP computational framework can trigger parallel
computation of all operations without interference,
and the communication latency is hidden by improv-
ing the computing throughput. Ray and ABySS can-
not merge the k-mers in a single linear chain in
parallel, and PASHA can only parallelize the k-mer
merging work on different chains, which limits their
degree of parallelism.

Figure 10 Time usage details of SWAP-Assembler’s five steps on processing three small datasets using a share memory machine with
32 cores (Time unit: seconds in logarithmic scale). In this test, the length of k-mer for SWAP-Assembler is set to be 31 and the k-mers cutoff
threshold is set to be 3. For the three datasets, the sequencing data filtered by ALLPATH-LG is their input data. The horizontal axis is marked
with the name of datasets and the number of cores used.

Table 5 Time usage details of SWAP-Assembler’s five steps on processing three small datasets using a share memory
machine with 32 cores.

Steps 4 cores 8 cores 16 cores 32 cores

S. aureus input parallelization & graph construction 31.29 16.32 9.55 4.91

graph cleaning 2.14 1.07 0.6 0.3

graph reduction 45.75 24.2 13.23 7.67

contig extension 1.54 0.89 0.6 0.52

R. sphaeroides input parallelization & graph construction 49.19 26.42 14.88 7.79

graph cleaning 3.63 1.99 0.97 0.54

graph reduction 73.78 39.31 20.83 12.19

contig extension 2.37 1.33 0.85 0.64

Hg14 input parallelization & graph construction 628 327 184 98

graph cleaning 71 37 19 10

graph reduction 1328 734 413 242

contig extension 140 89 69 58

(Time unit: seconds)

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 13 of 17

Assembly quality assessment
This part evaluate the assembly quality of SWAP-
Assembler. To be compatible with the comparison
results from GAGE, we follow the error correction
method of GAGE. ALLPATH-LG [35] and Quake [36]
are used to correct errors for S. aureus and R. sphaer-
iodes datasets. The corrected reads are used as the input
to ABySS, Ray and SWAP-Assembler. In addition, two
other sequential genome assemblers, Velvet and SOAP-
denovo, are selected in this experiment for comparison,
and a machine with 1TB memory is used. The k-mer
size for all assemblers varies between 19 and 31, and
best assembly results from the experiments of different

k-mer sizes for each assembler are reported in Table 7
and Table 8.
Table 7 presents the results of four metrics for evalua-

tion: the number of contigs, N50, number of erroneous
contigs and error-corrected N50. Error-corrected N50 is
used to exclude the misleading assessment of larger N50
by correcting erroneously concatenated contigs. Each
erroneous contig is broken at every misjoin and at every
indel longer than 5 bases. From Table 7, SWAP-Assem-
bler generates 3 and 7 error contigs on S. aureus and R.
sphaeriodes datasets, respectively, which are the smallest
compared with other assemblers. N50 size and error-
corrected N50 size for SWAP-Assembler are also longer

Table 6 Scalability evaluation on parallel assemblers 1 (Time unit: seconds).

dataset software 64 128 256 512 1024 2048 4096

S. aureus (2.87 Mb) ABySS 248 269 334 554 831 -2 -

Ray 244 198 202 266 510 - -

SWAP-Assembler 23 15 8 5 7 13 -

R. sphaeroides (4.60 Mb) ABySS 492 454 522 718 1312 - -

Ray 287 183 181 190 285 - -

SWAP-Assembler 43 29 15 7 7 7 -

Hg14 (88.29 Mb) ABySS 6472 5299 6935 9045 16530 - -

Ray 2926 1746 1288 1517 2266 - -

SWAP-Assembler 585 428 203 128 59 67 -

Fish (1 Gb ABySS * 3 4 + + + - -

Ray * + + + + - -

SWAP-Assembler + 13941 8622 3263 962 971 2582

Yanhuang (3 Gb) ABySS * + + + + - -

Ray * + + + + - -

SWAP-Assembler * 11243 5761 4021 1783 1608 1778

1 This table records the time usage on assembling all five datasets with different number of cores, and the length of k-mer is set to be 23. For ABySS and Ray,
the time is recorded until contigs are generated.

2 − denotes assembler with this parameter has not been tested.

3 * denotes assembler with this parameter has run out of memory.

4 + denotes assembler with this parameter has run out of time, the time limit is 12 hours.

Figure 11 Linear speedup of SWAP-Assembler on processing five datasets.

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 14 of 17

than two other parallel assemblers, Ray and ABySS.
SOAPdenovo has minimal number of contigs and lar-
gest N50 size for both datasets.
Table 8 summarizes the statistics of contigs generated

for these two datasets. Three metrics in [30] are used to
evaluate the quality of the contigs. In this table, “assem-
bly size” close to its genome size is better. Larger “chaff
size” can be indicative of the assembler being unable to
integrate short repeat structures into larger contigs or
not properly correcting erroneous bases. Coverage can
be measured by the percentage of reference bases
aligned to any assembled contig, which is “100%-Una-
ligned ref bases” [30]. SWAP-Assembler and Ray both
have the smallest chaff size of 0.13% on R. sphaeroides
dataset, and they show very close coverage and assembly
sizes. In terms of S. aureus dataset, Ray has a lower
chaff size of 0.10% compared with SWAP-Assembler,
however, SWAP-Assembler generates better assembly
size of 99.3% and larger coverage of 99.2%.
We also analyzed the contig statistics for three larger

datasets and the results are presented in Table 9.
Because these datasets do not have a standard reference
set and the original script provided by GAGE requires a
reference set, we wrote a script to analyze the assembly
results using the number of contigs, N50 size, max
length of contigs and bases in the contigs for evaluation.
The original data of three datasets are directly processed
by five assemblers with a fixed k-mer size of 31.

According to Table 9, the N50 size of contigs generated
by SWAP-Assembler is longest for all three datasets.
For Fish and Yanhuang datasets, SWAP-Assembler also
performs best in the number of contigs and max length
of contigs. However for SWAP-Assembler on Hg14
dataset, whose reads are extracted from the human
dataset by mapping the human chromosome 14, the
number of contigs, max length of contigs and bases in
contigs have a rank of second, third, and second, respec-
tively. SWAP-Assembler has a best N50 size for all data-
sets. This is because it has efficient graph cleaning and
contig extension steps, which can handle sequencing
errors efficiently. Four other assemblers, without the
help from external tools on error correction, are affected
by the quality of input reads on larger datasets.
In conclusion, SWAP-Assembler is a highly scalable

and efficient genome assembler. The evaluation shows
that our assembler can scales up to 2048 cores, which is
much better than other parallel assemblers, and the
quality of contigs generated by SWAP-Assembler is the
best in terms of error rate for several small datasets and
N50 size for two larger data sets.

Conclusion
In this paper, SWAP-Assembler, a fast and efficient gen-
ome assembler scaling up to thousands of cores, is pre-
sented. In SWAP-Assembler, two fundamental
improvements are crucial for its scalability. Firstly, MSG

Table 7 Assembly results of S.aureus and R. sphaeriodes datasets.

Software S. aureus Contigs R. sphaeroides Contigs

Num N50(kb) Errors N50 corr. (kb) Num N50(kb) Errors N50 corr.(kb)

Velvet 162 48.4 28 41.5 583 15.7 35 14.5

SOAPdenovo 107 288.2 48 62.7 204 131.7 414 14.3

ABySS 302 29.2 14 24.8 1915 5.9 55 4.2

Ray 221 36.6 15 35.6 752 11.5 17 11.2

SWAP-Assembler 183 51.1 3 37.8 529 16.2 7 12.3

Table 8 Contig statistics on the assembly results of S.aureus, R. sphaeroides datasets. (Unit: Percentage %).

Dataset Software Assembly Chaff Unalign Unalign Duplicate Compress

Size Size Ref bases ASM bases Ref bases Ref bases

S. aureus Velvet 99.2 0.45 0.79 0.03 0.1 1.28

(2.9 Mb) SOAPdenovo 101.3 0.35 0.38 0.01 1.44 1.41

ABySS 127 66 1.37 <0.01 23.3 0.99

Ray 98.4 0.1 0.88 0.04 0.08 1.26

SWAP-Assembler 99.3 0.28 0.8 0.02 1.29 1.45

Velvet 97.8 0.54 1.6 0.01 0.29 0. 92

SOAPdenovo 99.9 0.45 0.88 0.02 1.07 0.51

R. sphaeroides (4.6 Mb) ABySS 108 1.65 3.01 0.15 10.04 0.04

Ray 99 0.13 1.03 <0.01 0.27 0.73

SWAP-Assembler 99.1 0.13 1.08 0.11 0.83 0.75

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 15 of 17

is presented as a comprehensive mathematical abstrac-
tion for genome assembly. With MSG the computa-
tional interdependence is resolved. Secondly, SWAP
computational framework triggers the parallel computa-
tion of all operations without interference. Two addi-
tional steps are included to improve the quality of
contigs. One is graph cleaning, which adopts the tradi-
tional methods of removing k-molecules and edges with
low frequency, and the other is contig extension, which
resolves special edges and some cross nodes with a
heuristic method. Results show that SWAP-Assembler
can scale up to 2048 cores on Yanhuang dataset using
only 26 minutes, which is the best compared to other
parallel assemblers, such as ABySS and Ray. Conitg eva-
luation results confirm that SWAP-Assembler can gen-
erate good results on contigs N50 size and retain low
error rate. When processing massive datasets without
using external error correction tools, SWAP-Assembler
is immune from low data quality and generated longest
N50 contig size.
For large genome and metagenome data of Tara bytes,

for example the human gut microbial community
sequencing data, highly scalable and efficient assemblers
will be essential for data analysis. Our future work will
extend our algorithm development for massive matage-
nomics dataset with additional modules.
The program can be downloaded from https://source-

forge.net/projects/swapassembler.

Additional file 1
Appendix. Appendix 1 property proof of MSG, Appen-
dix 2 algorithms for SWAP-Assembler, Appendix 3
complexity analysis of SWAP computational framework,
Appendix 4 complexity analysis of graph reduction.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JT carried out the parallel genome assembly studies, participated in the
development of SWAP-Assembler and drafted the manuscript. BQ
participated in the design and optimization of SWAP-Assembler. YJ
participated in the development of SWAP-Assembler and modification of
this manuscript. SZ participated in the design of the study and design of the
performance test. Pavan conceived of the study, and participated in its
design and coordination and helped to draft the manuscript. All authors
read and approved the final manuscript.

Acknowledgements
The authors would like to thank for the suggestions and modifications from
Francis YL Chin, SM Yiu, C.M. Leung, Yu Peng and Yi Wang from the
University of Hongkong, and anonymous reviewers invited by Recomb-seq
2014. The calculations of this work were performed on TianHe-1A at
National Supercomputer Center in Tianjin.

Declarations
Funding for the publication of this article was provided by National Science
Foundation of China under grant No. 11204342, the Science Technology
and Innovation Committee of Shenzhen Municipality under grant No.
JCYJ20120615140912201, and Shenzhen Peacock Plan under grant No.
KQCX20130628112914299.
This article has been published as part of BMC Bioinformatics Volume 15
Supplement 9, 2014: Proceedings of the Fourth Annual RECOMB Satellite
Workshop on Massively Parallel Sequencing (RECOMB-Seq 2014). The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/15/S9.

Authors’ details
1Shenzhen Institutes of Advanced Technology, Chinese Academy of
Sciences, 518055 Shenzhen, P.R. China. 2Institute of Computing Technology,
Chinese Academy of Sciences, 100190 Beijing, P.R. China. 3University of
Chinese Academy of Sciences, 100049 Beijing, P.R. China. 4Beijing Genomics
Institute, 518083 Shenzhen, P.R. China. 5Mathematics and Computer Science
Division, Argonne National Laboratory, 60439-4844 USA.

Published: 10 September 2014

References
1. Schatz MC, Langmead B, Salzberg SL: Cloud computing and the dna data

race. Nature biotechnology 2010, 28(7):691.

Table 9 Contig statistics of Hg14, Fish and Yanhuang datasets.

Dataset Software Contigs

Num N50 (bp) Max (bp) BasesInContig (Mbp)

Velvet 90,784 1688 25,729 83.3

Hg 14 (88.3 Mb) SOAPdenovo 200,153 836 21,144 96.4

ABySS 190,693 1914 26,697 107.4

Ray 76,950 964 14,399 68.4

SWAP-Assembler 88,609 2036 21,246 96.4

Fish (1 Gb) Velvet - - - -

SOAPdenovo 3291290 378 7181 1,134.40

ABySS - - - -

Ray - - - -

SWAP-Assembler 2881443 1309 35,962 1,097.90

Velvet - - - -

Yanhuang (3 Gb) SOAPdenovo 8,584,515 841 23,782 3396.2

ABySS 9,218,967 1059 24,428 3691.8

Ray 3,755,103 266 6,765 1620.1

SWAP-Assembler 2,379,151 1368 31,152 2434.3

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 16 of 17

https://sourceforge.net/projects/swapassembler
https://sourceforge.net/projects/swapassembler
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S9
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S9

2. Stein LD, et al: The case for cloud computing in genome informatics.
Genome Biol 2010, 11(5):207.

3. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G,
Patterson D, Rabkin A, Stoica I, et al: A view of cloud computing.
Communications of the ACM 2010, 53(4):50-58.

4. Dean J, Ghemawat S: Mapreduce: simplified data processing on large
clusters. Communications of the ACM 2008, 51(1):107-113.

5. Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC: Gpu
computing. Proceedings of the IEEE 2008, 96(5):879-899.

6. Matsunaga A, Tsugawa M, Fortes J: Cloudblast: Combining mapreduce
and virtualization on distributed resources for bioinformatics
applications. eScience, 2008 eScience’08 IEEE Fourth International Conference
On IEEE; 2008, 222-229.

7. Wall DP, Kudtarkar P, Fusaro VA, Pivovarov R, Patil P, Tonellato PJ: Cloud
computing for comparative genomics. BMC bioinformatics 2010, 11(1):259.

8. Liu CM, Wong T, Wu E, Luo R, Yiu SM, Li Y, Wang B, Yu C, Chu X, Zhao K,
et al: Soap3: ultra-fast gpu-based parallel alignment tool for short reads.
Bioinformatics 2012, 28(6):878-879.

9. Schatz MC: Cloudburst: highly sensitive read mapping with mapreduce.
Bioinformatics 2009, 25(11):1363-1369.

10. Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL: Searching for snps
with cloud computing. Genome Biol 2009, 10(11):134.

11. Langmead B, Hansen KD, Leek JT, et al: Cloud-scale rna-sequencing
differential expression analysis with myrna. Genome Biol 2010, 11(8):83.

12. McPherson JD: Next-generation gap. Nature Methods 2009, 6:2-5.
13. Shendure J, Ji H: Next-generation dna sequencing. Nature biotechnology

2008, 26(10):1135-1145.
14. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol : Abyss: a

parallel assembler for short read sequence data. Genome research 2009,
19(6):1117-1123.

15. Boisvert S, Laviolette F, Corbeil J: Ray: simultaneous assembly of reads
from a mix of high-throughput sequencing technologies. Journal of
Computational Biology 2010, 17(11):1519-1533.

16. Liu Y, Schmidt B, Maskell DL: Parallelized short read assembly of large
genomes using de bruijn graphs. BMC bioinformatics 2011, 12(1):354.

17. Jackson BG, Aluru S: Parallel construction of bidirected string graphs for
genome assembly. Parallel Processing 2008, ICPP’08. 37th International
Conference On, pp. 346-353 (2008). IEEE.

18. Jackson BG, Schnable PS, Aluru S: Parallel short sequence assembly of
transcriptomes. BMC bioinformatics 2009, 10(Suppl 1):14.

19. Jackson BG, Regennitter M, Yang X, Schnable PS, Aluru S: Parallel de novo
assembly of large genomes from high-throughput short reads. Parallel &
Distributed Processing (IPDPS), 2010 IEEE International Symposium On 2010,
1-10, IEEE.

20. Pevzner PA, Tang H, Waterman MS: An eulerian path approach to dna
fragment assembly. Proceedings of the National Academy of Sciences 2001,
98(17):9748-9753.

21. Chaisson MJ, Pevzner PA: Short read fragment assembly of bacterial
genomes. Genome research 2008, 18(2):324-330.

22. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly
using de bruijn graphs. Genome research 2008, 18(5):821-829.

23. Dehne F, Song SW: Randomized parallel list ranking for distributed
memory multiprocessors. International journal of parallel programming
1997, 25(1):1-16.

24. Meng J, Yuan J, Cheng J, Wei Y, Feng S: Small world asynchronous
parallel model for genome assembly. Network and Parallel Computing
Springer, Gwangju; 2012, 145-155.

25. Pop M, Salzberg SL, Shumway M: Genome sequence assembly:
Algorithms and issues. Computer 2002, 35(7):47-54.

26. Kapun E, Tsarev F: De bruijn superwalk with multiplicities problem is np-
hard. BMC bioinformatics 2013, 14(Suppl 5):7.

27. Andrew S: Computer Networks. Prentice Hall, The Netherlands; 2003.
28. Yang XJ, Liao XK, Lu K, Hu QF, Song JQ, Su JS: The tianhe-1a

supercomputer: its hardware and software. Journal of Computer Science
and Technology 2011, 26(3):344-351.

29. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K,
et al: De novo assembly of human genomes with massively parallel
short read sequencing. Genome research 2010, 20(2):265-272.

30. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen TJ,
Schatz MC, Delcher AL, Roberts M, et al: Gage: A critical evaluation of

genome assemblies and assembly algorithms. Genome Research 2012,
22(3):557-567.

31. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I,
Boisvert10 S, Chapman JA, Chapuis G, Chikhi R, et al: Assemblathon 2:
evaluating de novo methods of genome assembly in three vertebrate
species. arXiv preprint arXiv:1301.5406 2013.

32. Assemblathon 2. [http://assemblathon.org/assemblathon2].
33. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al:

Soapdenovo2: an empirically improved memory-efficient short-read de
novo assembler. GigaScience 2012, 1(1):18.

34. Huang Yan: The First Asian Diploid Genome.[http://yh.genomics.org.cn].
35. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ,

Sharpe T, Hall G, Shea TP, Sykes S, et al: High-quality draft assemblies of
mammalian genomes from massively parallel sequence data. Proceedings
of the National Academy of Sciences 2011, 108(4):1513-1518.

36. Kelley DR, Schatz MC, Salzberg SL, et al: Quake: quality-aware detection
and correction of sequencing errors. Genome Biol 2010, 11(11):116.

doi:10.1186/1471-2105-15-S9-S2
Cite this article as: Meng et al.: SWAP-Assembler: scalable and efficient
genome assembly towards thousands of cores. BMC Bioinformatics 2014
15(Suppl 9):S2.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Meng et al. BMC Bioinformatics 2014, 15(Suppl 9):S2
http://www.biomedcentral.com/1471-2105/15/S9/S2

Page 17 of 17

http://assemblathon.org/assemblathon2
http://yh.genomics.org.cn

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Mathematical formulation of genome assembly using MSG
	Preliminaries
	1-step Bi-directed Graph
	Multi-step Bi-directed Graph and Its Properties

	SWAP computational framework
	Implementation of SWAP-Assembler
	Input parallelization
	Graph construction
	Graph cleaning
	Graph reduction
	Contig extension

	Results
	Experimental data
	Scalability evaluation
	Assembly quality assessment

	Conclusion
	Additional file 1
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

