Optimizing MPI Implementation on Massively Parallel
Many-Core Architectures

Min Si*, Yutaka Ishikawa (Advisor)*, Pavan Balaji (Co—advisor)Jr

*Department of Computer Science, University of Tokyo, Tokyo, Japan, {msi@il.is.s, ishikawa@is.s}.u-tokyo.ac.jp
tMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA, balaji@mcs.anl.gov

I. INTRODUCTION

While multicore processor chips are the norm today,
architectures such as the Intel Xeon Phi take such chips
to a new level of parallelism, with dozens of cores and
hundreds of hardware threads. To efficiently utilize such
architectures, application programmers are increasingly
looking at hybrid programming models comprising a
mixture of processes and threads. In such models, one or
more threads utilize a distributed-memory programming
system, such as MPI, for their data communication.

My doctoral research focuses on exploiting the ca-
pabilities of these architectures on widely used MPI
implementations. The broad vision is to investigate the
characteristics of MPI on such massively threaded archi-
tectures and develop various design strategies that allow
MPI implementations to perform efficiently. While my
initial work is performed on the Intel Xeon Phi, we
believe that the research theme as well as our designs
are valid for a large variety of future architectures.

II. RESEARCH PLAN

My doctoral research plan is broadly divided into
three related pieces.

A. Internal Multithreading in MPI

A common mode of operation for hybrid
MPI+threads applications involves using multiple
threads to parallelize the computation, while one of
the threads issues MPI operations. This mode often
results in a model where most threads are idle during
MPI calls. In our research, we plan to investigate
techniques that allow MPI to share idle threads from
user applications. We also plan to utilize lightweight
user-level threads, to allow more flexible scheduling
of MPI tasks without oversubscribing the number of
threads.

B. Fine-Grained Consistency Management in MPI

An increasing number of applications are utilizing
MPI in a multithreaded mode in which multiple threads
can simultaneously make MPI calls. On massively
parallel systems, this model can significantly reduce
performance because the MPI implementation has to
perform various locks and atomic operations in order to
keep its internal state consistent. We plan to investigate
various techniques that allow applications to request for

a more restricted semantics for sharing of resources
between threads, thus allowing the MPI implementation
to partition resources to reduce contention.

C. MPI Tasklets

Some MPI applications still follow an MPI-only
mode, in which an MPI process is launched for each
available core. Such a model suffers not only from
the partitioning of resources but also from loss of
performance in a number of ways. In our research, we
plan to study the concept of MPI tasklets, in which a
single OS process can contain a large number of MPI
processes, as user-level threads, for example.

III. CURRENT STATUS OF RESEARCH

My research has so far focused on the first technique
(Section II-A). Specifically, in order to avoid thread
idleness during MPI calls, we reuse the idle cores inside
MPI when the user application is not using them.

In our initial work, we parallelized the MPI function-
ality used in stencil computation routines (specifically,
noncontiguous data movement), as a case study. Pre-
liminary results show that the parallel version provides
up to a 40-fold speedup in MPI performance when
parallelized across the entire Intel Xeon Phi board
(Figure 1), compared with what the original application
could achieve. We are also planning to implement paral-
lelism inside one-sided MPI synchronization functions,
an approach that is expected to improve the performance
of many data-intensive applications.

64

32 T ——SIZE1024
16 i —m-SIZE 2048
g / SIZE 4096
/ —SIZE8192
g ¢ —4—SIZE 16384
E 2 v/ SIZE 32768
a 4?,/"‘" S+ SIZE 65536
! \ SIZE 131072
03 \ SIZE 250000
025

1 2 4 8 16 32 o4 128 240

Thread number

Figure 1.
COProcessors.

Speedup of halo exchange between 2 Intel Xeon Phi



