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Abstract. Achieving fair resource sharing is rapidly becoming an es-
sential requirement in cluster computing systems. Although many fair
scheduling algorithms have been proposed in recent decades, controlling
resource sharing among jobs on servers remains a challenging problem
that, if not handled well, may result in chaotic resource contention and
service-level agreement violation of jobs. To address this problem, we
propose a resource container–based job management approach for fair
resource sharing. In our approach, we first design and implement a gen-
eral container-based job management module, providing lightweight and
fine-grained resource allocation and isolation for job execution. With this
module, we propose a resource-aware management scheme to enable fair
resource sharing in job scheduling and dispatching. We conduct experi-
ments by implementing the proposed module and applying the scheme
on TCluster, a self-developed cluster computing system of a worldwide
top Internet corporation. Results show that our approach performs well
in guaranteeing fair resource sharing with negligible overhead.

1 Introduction

Unlike past decades when batch job submission prevailed, today various types of
jobs are being deployed simultaneously by using cluster computing systems. Each
job usually has a specific service-level agreement (SLA), which can be mapped to
resource requirements such as CPU, memory, or I/O bandwidth. How to fairly
partition and share such resources among running jobs in a cluster, is key to
guaranteeing SLAs.

Many job-scheduling algorithms based on fair strategies have been proposed
in recent decades [9,15,19,25,26,28]; they determine which job should be sched-
uled to run according to the job’s resource requirements and the available quota
of job owners. Controlling resource sharing among running jobs on servers re-
mains a challenge, however; and if not handled well, chaotic resource contention
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and SLA violation of jobs may result. Two popular approaches for resource
sharing are process-level sharing and virtual machine (VM)-level sharing. In a
process-level approach, it is difficult to track and control the resources used by
programs with multiple processes or with a newly spawned process while run-
ning. Moreover, fine-granularity isolation of important resources such as the CPU
and network bandwidth cannot be guaranteed [10]. The VM-level approach [16]
relies on various virtualization technologies such as XEN [11], VMware [8], and
KVM [4]. It typically runs programs inside a VM configured with the required
resources. Although the VM-level approach provides good resource-isolation,
it usually incurs high overhead for controlling, setting up, and running pro-
grams [25], especially in the case of small short-lived programs.

In this paper we propose to use a resource container to build a job manage-
ment approach for fair resource sharing on cluster computing systems. Resource
containers are based on OS-level virtualization that has been popularized in
recent decades; examples are LRP [10], VServer [25], OpenVZ [7], and Linux
Container (LXC) [5]. Resource containers partition the resources of a single op-
erating system into isolated groups and can give programs the illusion of running
on a separate machine. By running instructions native to the core CPU without
any special interpretation mechanisms, resource containers introduce little or no
overhead. Moreover, modern container technology such as LXC can provide fine-
grained resource partitioning, for example, assigning half a CPU to a program.
The features of low cost and fine-grained partitioning make resource containers
particularly suitable for job execution in cluster computing systems, in which
each server hosts a homogeneous operating system. Furthermore, recent con-
tainer technologies such as LXC provide good support for resource management
of multiprocess programs.

The contributions of our paper are twofold:

– We propose a general container-based job management module (CJMM) as
the kernel of our fair resource sharing approach, providing resource isolation
and a sharing mechanism for running jobs on one server.

– Based on CJMM, we present a resource-aware management scheme, includ-
ing resource-aware job scheduling and dispatching, that enables fair resource
sharing on cluster computers.

We note that our resource-aware management scheme provides only a frame-
work for implementing resource fairness using the proposed module. The job
scheduling and dispatching algorithms can be chosen as needed and thus are
not the focus of this paper. As the underlying container technology, we use
LXC, which is a recent implementation of OS-level virtualization and has been
included in the mainstream Linux kernel. Several other container technologies
(e.g., OpenVZ and VServer) are also popular and have performance comparable
to that of LXC. However, they all require customized Linux kernels. Moreover,
issues of security, stability, and maintenance make them less competitive, com-
pared to LXC, in production environments. The proposed module and scheme
are implemented on TCluster, a self-developed cluster computing system of a



worldwide top Internet corporation. Experiment results show that our approach
performs well in enabling fair resource sharing among running jobs. Also, the
proposed scheme helps improve the resource utilization of the whole cluster.

The rest of this paper is organized as follows. We introduce related work
in Section 2. The detailed design and implementation of the job management
module are discussed in Section 3. We present the resource-aware management
scheme in Section 4. In Section 5 we present our experimental results. We con-
clude in Section 6 with a brief look at future work.

2 Related Work

This section briefly discusses related work in two areas: fair scheduling algorithms
and resource containers.

2.1 Fair Scheduling Algorithms

Fair job scheduling is an important research problem for cluster computing sys-
tems. One approach to fair scheduling is lottery and stride scheduling [26], pro-
posed by Waldspurger, using both random and deterministic manner to allocate
resource for jobs. In [25], Soltesz et al. proposed using a hierarchical token bucket
to assign quotas among jobs in order to achieve fairness. Recently, with the pop-
ularization of Hadoop, some simple yet effective fair scheduling algorithms based
on a round-robin approach have been proposed [9, 28]. Isard et al. proposed a
fair scheduling named Quincy [19] for the Microsoft Dryad cluster by modeling
the scheduling as a network flow problem. For multiple resources cases, Ghodsi
et al. proposed a dominant resource fairness (DRF) scheduling algorithm [15].
However, all these algorithms focus only on how to determine a fair order of jobs
running in a cluster. They do not provide a mechanism for controlling resource
sharing of running jobs on servers.

2.2 Resource Containers

The concept of resource containers was first proposed by Gaurav Banga et
al. [10]. Similar concepts on non-Linux system are Solaris Zone and FreeBSD
Jail. Early resource containers on Linux systems are OpenVZ, VServer, and
FreeVPS. Most of these technologies require customized Linux kernels, however,
and thus are unacceptable in many product scenarios, especially for large corpo-
rations. On the other hand, LXC has been combined into the mainstream Linux
kernel; and, different from traditional machine-level virtualization, LXC requires
neither instruction-level emulation nor just-in-time compilation.

The building block of LXC’s resource sharing is the cgroup framework and
various subsystems [2,22]. The cgroup framework allows LXC to track, control,
and audit the resources used by process groups. Subsystems in current main-
stream Linux kernels, such as cpu, cpuset, cpuacct, memory, and net cls, enable
LXC to support sharing and accounting on such resources. For resource isolation,



LXC employs the kernel namespace [6] and the pivot_root system call. Addi-
tionally, the LXC toolkit provides a liblxc library and a series of userspace
tools for container management. Given the advantages and the popularity of
LXC, we use it as the underlying container technology in this paper.

3 Container-Based Job Management

In this section we describe the design and implementation of the container-based
job management module (CJMM).

3.1 Design of Job Management Module

The architecture of a typical cluster computing system can be separated into two
parts: a central manager that responsible for global control, and an execution
engine that is responsible for running and managing jobs on cluster servers. The
CJMM is plugged into the execution engine, taking over the job execution, re-
source provisioning, and isolation. More specifically, the execution engine passes
the job information to our job management module. The module then creates a
container, assigns resources, and starts the job inside it. A handler of the run-
ning job (e.g., the PID) will be returned to the execution engine for monitoring
and controlling. Each job runs in its own container, unaware of jobs in other
containers.

The CJMM consists of two components: JobManager exposes a simple, high-
level, container-based job management interface to the execution engine; and
Container represents the data structure and operations of a real container.

JobManager JobManager starts jobs and manages their containers. Job’s data
(e.g., executing function and arguments) is passed in via a JobPtr object when
starting. The PID of the job is stored and returned for monitoring and control.
While the configuration of a container (CPU shares, memory limits, etc.), is
stored in a ContainerConf object.

In addition, JobManager assigns and accounts for the resource usage on the
server. When a job is being started, JobManager checks whether the required
resource can be allocated according to the available amount. If allocatable, a
container is created and the required resources are deducted from the available
amount; they will be returned when the job finishes. Otherwise, the request is
declined. The resource requirement is stored in a ResInfo entity, an example of
which is “resinfo.cpus = 0.5; resinfo.memory = 3GB...”.

Container The Container represents the data structure and the operations of
a real container. For the sake of extensibility, Container is designed as a virtual
class. Two key operations of Container are task execution and resource usage
information retrieval. The execution command of a job will be passed to the real
container’s executing API via RunTask method. Real-time resource usage infor-
mation can be obtained via GetUsage. We have designed a class LXCContainer

inherited from Container using the LXC technology.
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Fig. 1. Modified job-startup mechanism in LXCContainer.

3.2 Implementation Issues

We have implemented a prototype of the job management module using C++
based on the LXC 0.7.2. In this version, the low-level control of programs outside
their containers is obscured. And the LXC toolkit has no direct method to obtain
the real-time resource usage. Next we describe our solutions to these two issues,
including the job-startup mechanism and resource usage information retrieval
for a container.

Job-Startup Mechanism LXC’s application execution mode allows starting a
program in a container through the lxc-execute command. However, because
of the hierarchical PID namespace, the PID of a running program in a container
is usually different from that outside. Neither the LXC userspace tools nor the
open API of liblxc provides a direct way to get the outer-layer PID. Moreover,
in LXC’s application mode, a process called lxc-init will be started with PID
1, acting as the parent of all other processes in the container. As a result, the
ending signal and exit code of a job cannot be captured by the execution engine,
which is undesirable for the JobManager.

To handle these problems, we hacked the program-starting mechanism of
LXC’s application mode in the LXCContainer as in Figure 1. We directly use the
lxc_handler structure in LXC’s source code as well as the open API of liblxc.
We first replace lxc-init with a function executing the job’s commands directly
(e.g., func), which makes the job itself the root process of a container. Then we
store a pointer of the function in the lxc_handler and invoke the lxc_spawn

method in liblxc’s open API, which will set up a container and start the job
finally. The job’s PID in the top-level namespace is stored in the lxc_handler

and passed to the execution engine.

Usage Information Retrieval We use the statistical functions of subsystems
with the cgroup framework to obtain real-time usage information of containers.

For CPU usage, we employ the subsystem cpuacct, which accumulates the
CPU time of all tasks in a group in cpuacct.usage. Given a timing period, we can
calculate the real-time CPU usage of a container by dividing its CPU time by the
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elapsed time. For simplicity, we let the timing period be the time between the
most recent two calls of the GetUsage method. For memory usage, we employ
the memory subsystem, and access the memory.usage in bytes to obtain memory
usage of all tasks in a group.

4 Resource-Aware Management Scheme

Based on the CJMM, we propose a management scheme and show its application
on the TCluster system.

4.1 TCluster

TCluster is a typical cluster computing system for job processing and cluster
resource management (Figure 2), which consists of four main modules: a Cli-
entInterface for submitting jobs, a scheduler for scheduling jobs, a dispatcher
for assigning jobs to servers, and an executor for running jobs on each server.
Using a process-level isolation and job-number based scheduling, the original
TCluster is not resource-aware and is unable to conduct SLA-guaranteed job
processing. To remedy this situation, we apply our resource-aware management
scheme on TCluster.

4.2 Resource-Aware Scheme on TCluster

Our proposed scheme consists of a resource-aware scheduler, a resource-aware
dispatcher, and a container-based execution engine, which can be applied on any
cluster computing system.



Resource-Aware Scheduler The resource-aware scheduler employs the re-
quired resources of each job as a key metric while scheduling. We require users
to declare the resource requirements for their submitted jobs and then employ
the DRF scheduling algorithm in TCluster’s scheduler, which works well in
multiresource scenarios. This renders TCluster’s scheduler able to generate fair
scheduling results in terms of multiple resources (e.g., both CPU and memory).

Resource-Aware Dispatcher The resource-aware dispatcher tries to find a
good match between jobs’ required resources and the available resources on
servers in assignment. We use a simple matching policy as blow among various
candidates (e.g., [12–14,17,18,21,23,24,27]).

Let
−−→
Rreq = {x1, x2, . . . , xi} be the required resources for a job, where xi is

the amount of the ith resource. Also let
−→
Rk = {y1, y2, . . . , yi} be the available

resources on server k. Both xi and yi are normalized values. We then find the
server m with the minimum Euclidean distance (Affinity Number) of

−−→
Rreq and

−→
Rk for the given job. This simple policy works well in scenarios where short-lived
jobs dominate and the scale of cluster is large (e.g., over 5,000 servers), reducing
both computation complexity (e.g. the backfilling with online bin-packing [20])
and resource fragments .

Container-Based Execution Engine We modified the executor of TCluster
by merging the JobManager class, taking over the job execution, and providing
resource guarantees and isolation. The executor reports the available resources
to the dispatcher in each heartbeat to facilitate the resource-aware assignment.

Additionally, resource requirements of each job is expressed using XML and
passed via the ClientInterface. An example is like “cpu num=0.5; memory=0.5GB”.

5 Performance Evaluation

In this section we evaluate our approach via experiments. The OS used on each
server is SUSE Linux Enterprise 11-sp1 with kernel version of 2.6.32.29-x86 64.
The version of the LXC toolkit used is 0.7.2.

To evaluate resource sharing, isolation, and utilization performance, we set
up a cluster consisting of six servers on the same rack and connected with 1G
Ethernet, and deploy TCluster on them. Each server is equipped with four Intel
3 GHz Xeon CPUs and 2 GB memory. One server hosts the ClientInterface, the
scheduler, and the dispatcher, and the other five servers run the container-based
executor. Here we focus on the CPU and memory resources. To see the CPU, we
employ two CPU-intensive programs: “loop-singleproc” and “loop-multiproc”.
Both programs repeatedly execute some increment instruction (e.g.,“i++”) with
single and multiple process respectively. And we increase the number of processes
in “loop-multiproc” gradually (i.e., 3, 4, 5, 6, 7, 10, 12, and 24). For each version
of TCluster, one job of “loop-multiproc” and three jobs of “loop-singleproc” are
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Fig. 3. CPU usage of each job in TCluster (ratio 8:4:2:1).

submitted simultaneously. In the modified TCluster, the CPU resource ratio set
to the “loop-multiproc” job, and the other three “loop-singleproc” jobs is 8:4:2:1.
For memory testing, we use a memory-intensive program that continuously al-
locates and touches memory.

In the overhead evaluation, we use an experimental IBM x3550 server. The
server is equipped with a quad-core Xeon E5504 2 GHz CPU and 15 GB memory.
We use GeekBench [3] and UnixBench [1] to evaluate the performance of CPU,
memory, disk I/O, and system operations.

5.1 Resource Sharing and Isolation

Figure 3(a) shows that the “loop-multiproc” job consumes a significant portion of
CPU, indicating that the original TCluster cannot ensure sharing and isolation
of CPU resource among jobs. While in the modified container-based TCluster,
the CPU times of the four jobs are approximately in accordance with the preset
ratio of 8:4:2:1 (Figure 3(b)), which means the container-based approach helps
guarantee fair sharing of the CPU.

Since no memory control mechanism was in original TCluster, we only eval-
uate the modified TCluster with the memory-intensive benchmark. We first set
the memory limit of the job to 500 MB with unlimited swap space, and then
limit the total space of swap and memory to 700 MB. In both cases the used
physical memory never exceed 500 MB (Figure 4(a) and Figure 4(b)). In former
the job can still obtain the memory since the swap space is unlimited, while
in latter the amount of used swap and physical memory drops to zero quickly
once the limit is reached. The reason is that in the memory subsystem, a default
out-of-memory (OOM) behavior is to kill the programs.

Next we show with our approach, the famous “forking attack” can be allevi-
ated. We implement a program called “bomb,” which keeps the forking process
using a nonpaused and infinite loop. We submit “bomb” to both versions of
TCluster, and establish SSH sessions to the server on which the “bomb” job is
assigned to see the isolation effect. On the original TCluster, when the “bomb”
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Fig. 4. Memory usage of the experimental job in modified TCluster.
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Fig. 5. Memory usage of bomb job and process number in system.

begins running, the SSH session quickly becomes unresponsive. On the modified
TCluster with memory limit of 200 MB and a total limit for swap and memory
of 300 MB, both memory usage and process number are well controlled (Fig-
ure 5(a) and Figure 5(b)), and the SSH session is completely responsive. The
reason is that the default OOM killer of the memory subsystem keeps killing the
processes forked by “bomb” and releases system resource.

5.2 Resource Utilization

Here we compare the resource utilization under the FF, RF in original TCluster
and affinity number-based best-fit (ANBF) in our resource-aware scheme, de-
scribed in Section 4.2.

The total available resources (CPU (cores) and memory (MB)) of the experi-
mental cluster are shown in Table 1. For each server, we reserve 0.2 CPU for the
executor process itself. The workload we use consists of a series of production
jobs with different resource requirements (Table 2).



Table 1. Available resources of
cluster.

Server ID CPU(s) Memory

1 3.8 1847
2 3.8 1851
3 3.8 1858
4 3.8 1859
5 3.8 1855

Table 2. Information of experi-
mental jobs.

Job ID CPU(s) Memory

1 1.2 1000
2 2.5 900
3 2.5 1200
4 3.0 800
5 3.0 1500
6 0.7 300
7 1.0 600
8 1.7 800
9 1.1 900
10 0.5 800
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Fig. 7. CPU and memory overhead
(Higher score is better).

We submit all ten jobs to the modified TCluster with FF, RF, and ANBF,
and the available resources of each server is shown in Table 3. And the status
of submitted jobs in TCluster with each assignment policy is: FF {running 8,
pending Jobs (8,9)}, RF {running 9, pending Job (9)}, ANBF {running 10, no
pending}. This result indicates that with our resource-aware scheme, TCluster
can produce fewer resource fragments and thus improve resource utilization. We
also calculate the average resource utilization of each server with avg util =
0.5 ∗ cpu util + 0.5 ∗mem util, and the results are shown in Figure 6. We can
see that in most cases, our approach with the ANBF policy can produce higher
resource utilization on cluster servers (over 85%).

5.3 Overhead

First we analyze the overhead of CPU and memory. From Figure 7 we see no
noticeable disparity between the two versions of TCluster. Hence our LXC-based
approach has negligible overhead for CPU or memory-intensive programs. Then
we observe the disk I/O overhead by comparing the data from UnixBench. From
Table 4 (higher score is better) we can see that our approach causes at most
1.78% degradation compared with that of the original TCluster. Finally we
observe the overhead on microsystem through UnixBench as well. The observed
items and scores are shown in Table 5. The modified TCluster incurs minor



Table 3. Free resources on each server.

Server ID
First-Fit Random-Fit ANBF

CPU(s) Mem(MB) CPU(s) Mem(MB) CPU(s) Mem(MB)

1 1.9 547 1.6 247 0.3 47
2 0.3 351 0.2 51 0.9 51
3 1.8 658 0.8 358 0.3 258
4 0.3 259 1.1 359 0.1 59
5 0.8 355 0.3 255 0.2 55

Table 4. Disk I/O overhead.

Original
TCluster

Modified
TCluster

Gain

File Copy
1024 buf-
size 2000
maxblocks

766476.3 761287.11
-
0.68%

File Copy
256 buf-
size 500
maxblocks

226551.2 222517.2
-
1.78%

File Copy
4096 buf-
size 8000
maxblocks

1609916.21606169
-
0.23%

Table 5. System operation overhead.

Original
TCluster

Modified
TCluster

Gain

Pipe Through-
put

1642770.81646751.10.24%

System Call
Overhead

2771390 2771562.90.01%

Process Cre-
ation

14374.9 13785
-
4.10%

Pipe-based
Context
Switching

259403.2 226531.7
-
12.67%

Shell Scripts
(1 concurrent)

6270.2 6345.1 1.19%

Shell Scripts
(8 concurrent)

2153.7 2171 0.80%

overheads in almost all items except the process creation and the pipe-based
context switching.

6 Conclusion and Future Work

Although many fair scheduling algorithms have been proposed for cluster com-
puting systems, few suitable mechanisms exist that control resource sharing
among jobs on servers. To address this problem, we introduced a container-based
job management approach. We first designed and implemented the CJMM to
control the resource sharing and isolation for jobs on servers. Based on CJMM,
we then proposed a resource-aware management scheme to enable fair resource
sharing. We experimented with our approach on TCluster, a self-developed clus-
ter computing system for a worldwide top Internet corporation. Results show
that our approach performs well in providing fair resource sharing at a very low
overhead, as well as a higher resource utilization of above 85%. An adaptive and
automatic reconfiguration mechanisms and strategies will be our future work.
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