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optimization, Abstract—MPI is the de facto standard
for portable parallel programming on high-end systems.
However, while the MPI standard provides functional porta-
bility, it does not provide sufficient performance portability
across platforms. We present a framework that enables
users to provide hints about communication patterns used
within MPI applications. These annotations are then used by
an automated program transformation system to leverage
different MPI operations that better match each system’s
capabilities. Our framework currently supports three au-
tomated transformations: coalescing of operations in MPI
one-sided communications; transformation of blocking com-
munications to nonblocking, which enables communication-
computation overlap; and selection of the appropriate com-
munication operators based on the cache-coherence support
of the underlying platform. We use our annotation-based
approach to optimize several benchmark kernels, and we
demonstrate that the framework is effective at automatically
improving performance portability for MPI applications.

Keywords-high performance computing, parallel program-
ming, automatic programming

I. INTRODUCTION

MPI [1] is a de facto standard for parallel programming
in scientific domains. Performance portability for MPI
programs, however, is challenging because of the hard-to-
predict relative cost of MPI operations across systems, due
to unknown variations in hardware parameters, system ca-
pabilities, and features provided by MPI implementations.

To elaborate, the rich communication semantics of MPI
provide users with multiple algorithmic choices so that the
same application functionality can be implemented using
a variety of different operations in MPI. For instance,
Fourier transform can either be implemented in a bulk
synchronous model where different processes compute
and collectively exchange data at regular synchronization
points (using MPI collective communication operations)
or through a more asynchronous model using MPI one-
sided communication where data is moved when it is
ready. While the two models are functionally equivalent,
the performance they achieve varies on different sys-
tems. For example, InfiniBand based clusters can utilize
hardware-supported asynchronous progress capabilities,
making them ideal platforms for using MPI one-sided
communications. On the other hand, platforms such as
IBM Blue Gene provide hardware support for collective
acceleration, making them ideal for using group commu-
nication operations. Which MPI communication routines

perform better is highly platform specific, making it hard
for the application developers to determine the right algo-
rithmic choice a priori in a portable manner. Unfortunately,
state-of-the-art MPI implementations, in spite of their
many aggressive dynamic optimizations, only see each
MPI operation individually and focus on optimizing it.
As a result, they cannot always handle such performance
differences internally due to the lack of a holistic view of
the application algorithms.

This paper presents an annotation-based program trans-
formation framework to help MPI applications enhance
their performance portability across different platforms.
The central idea is to build automated program transforma-
tions that utilize user-supplied hints about their underlying
algorithmic models as well as system-specific information
to automatically transform user applications to utilize the
best MPI operations for each platform. By modulating the
behaviors of both the application and MPI implementa-
tions, our approach enables applications to automatically
leverage system-specific capabilities that enhance the effi-
ciency of some MPI operations over others. Consequently,
it provides a portable means for accessing system-specific
features beyond the MPI standard.

The workflow of our framework is shown in Figure 1.
Specifically, we allow developers to annotate their appli-
cations with concise information about the MPI commu-
nication mechanisms used in varying blocks of statements
in their applications. Based on these user annotations
combined with additional information of the underlying
runtime platform, the optimization analysis component
of our framework determines possible program transfor-
mations to enhance the efficiency of MPI operations in
the user application. The transformation decisions are
then fed into a program transformation component, which
automatically specializes the annotated communication
blocks for the underlying platform before sending the user
application to the vendor compiler to generate executables.

Our framework currently supports a number of user
annotations that provide simple hints on the opportunities
of applying three program transformations: coalescing of
MPI one-sided communications, overlapping communica-
tions with computations, and automatic selection of the
appropriate communication operators based on the cache-
coherence support of the underlying platform. We present
experiment results using the Graph500 benchmark [2], a
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Figure 1: Annotation-based optimization workflow.

(1) start ::= annot block start | UNKNOWN UNTIL EOL start | ε
(2) annot block ::= “#” “pragma” “mpi” pragma BLOCK

pragma ::= dc annot|cco annot|rma annot|ldst annot|indep annot
(3) dc annot ::= “osc coalesce” win buf list overlap

overlap ::= “no overlap” | ε
win buf list::= win buf win buf list | ε
win buf ::= “(” ID “,” ID “,” TYPE “,” osc spec “)”
osc spec ::= ID | ID “,” osc spec

(4) cco annot ::= “cco” comm grp list
comm grp list::= comm grp comm grp list | ε
comm grp ::= mpi comm “(” ExpList “)”
mpi comm ::= “MPI Send” | “MPI Recv” | “MPI Wait” | “MPI Win”
ExpList ::= EXP “,” ExpList | EXP

(5) rma annot ::= “rma” win buf list
(6) ldst annot ::= “local ldst” win buf list overlap
(7) indep annot ::= “indep” comm grp list

* UNKNOWN UNTIL EOL: parse the current line as a list of unstructured strings;
* ID : an identifier; EXP: an expression of the underlying language;
* TYPE: a type expression in the underlying language;
* BLOCK: a single block of statements in the underlying language

Figure 2: BNF definitions of the annotation language.

stencil kernel, a synthetic benchmark, and the NAS FT
benchmark [3]. Our results demonstrate that our frame-
work can consistently achieve high performance across
different platforms better than what users can typically
achieve manually while retaining application portability.

Our contributions include: (1) we present and demon-
strate the effectiveness of a light-weight annotation-based
framework to enhance the performance portability of MPI
applications; and (2) we demonstrate the sensitivity of
several important application-level MPI optimizations to
varying runtime configurations and draw insights into how
to make careful optimization decisions.

The rest of the paper is organized as follows. Section II
presents our annotation language. Section III presents
our overall framework to support the associated program
transformations. Section IV presents performance results
demonstrating the benefits of our framework. Section V
presents related work, and Section VI concludes.

II. THE ANNOTATION LANGUAGE

The syntax of our annotation language is summarized
in Figure 2 and includes the following components.

• Overall structure of the input program. As specified
at Line 1 of Figure 2, our framework parses the whole
input program as a sequence of annotated statement
blocks (annot block) or single lines of unknown
strings (UNKNOWN UNTIL EOL). Therefore, only
the annotated code segments of a large MPI applica-
tion will be parsed while the rest of the application
will simply be saved as unstructured strings.

• The structure of each annotated block. Line 2 of
Figure 2 specifies that each annotated block must start
with #pragma mpi followed by a specific annotation
and a block of statements. Our framework currently
supports five annotations, defined at Lines 3–7.

• The data coalescing annotation (dc annot at Line
3), which starts with the keyword “osc coalesce”
followed by a list of the windows and buffers of
one-sided communications (win buf list) whose
data could be coalesced. An optional specification,
no overlap, can be used to indicate that the data of
different MPI operations are never sent to the same
addresses (by default, overlapping is assumed when
MPI Accumulate is involved).

• The cco annotation (cco annot at Line 4), which
starts with the keyword “cco” followed by a list of
the MPI communications, each specified as an MPI
operator (e.g., MPI Send) followed by an optional
list of parameters or as an MPI window (MPI Win)
followed by a window name, that could be moved to
better overlap with independent computations.

• The remote-memory access annotation (rma annot at
Line 5), which includes a keyword “rma” followed by
a list of the windows and buffers of one-sided com-
munications (win buf list) that may be converted
to local loads and stores when appropriate.

• The local load/store annotation (ldst annot at Line
6), which includes a keyword “local ldst” followed
by a list of the windows and buffers (win buf list)
being operated by the annotated block through lo-
cal load/store operations. An optional specification,
no overlap, can be used to specify that there is no
aliasing or overlapping among these buffers.

• The independent annotation (indep annot at Line 7),
which includes the keyword “indep” followed by a
list of the MPI communications that are independent
of the statement block being annotated; that is, the
annotated statements do not interfere with or use any
data received from the listed MPI communications.

Our Optimization Analyzer in Figure 1 uses the above
annotations to ensure both the safety and the profitability
of the relevant program transformations, through the anal-
ysis algorithm shown in Figure 3. The algorithm takes
as input the underlying platform configuration (config)
and the input MPI code to optimize. It traverses the input
program, searches for occurrences of user-annotated code
segments, and then invokes the corresponding optimizing
transformations to modify the input code accordingly
based on current platform configurations. Each of the
annotations at Lines 3–6 of Figure 2 is used to enable
an automated transformation currently supported within
our framework, and the independent annotation at Line
7 is combined with the other annotations to ensure the
correctness of the program transformations.

In essence, our framework requires developers to man-
ually insert annotations to automate the necessary trans-
formations of porting their applications to varying execu-
tion platforms. The annotations themselves are minimally



optimization analysis(input, config)
input: input MPI program to optimize;
config: architecture configurations of the underlying system;

foreach annotated MPI block (annot, body) in input:
(1) if (is data coalesce annot(annot)):

foreach win ∈ win buf list(annot):
mpi osc data coalesce(win, has overlap(annot), body);

(2) if (is cco annot(annot)):
foreach comm ∈ comm groups of(annot):
mpi comp comm overlap(comm, innermost body of(body));

(3) if (is rma annot(annot)):
foreach win ∈ win buf list of(annot):
if (cache coh(config)): mpi rma 2 ldst(win,body);

(4) if (is ldst annot(annot)):
if (cache coh(config)): mpi ldst coh(win,has overlap(annot),body);
else mpi ldst incoh(win,has overlap(annot),body);

Figure 3: Optimization analysis algorithm.

intrusive to the original source code. While developers
need to deliberately consider alternative implementations
to insert annotations correctly, the annotations allow their
applications to automatically attain performance portabil-
ity without having to be manually specialized for each
MPI platform. In particular, our framework allows de-
velopers to specify a single, possibly simplest, algorithm
implementation and provides developers with the ability to
automatically synthesize alternative implementations from
the original one based on different platform configurations,
thereby significantly improving the productivity of porting
MPI applications to varying platforms.

III. ANNOTATION-BASED FRAMEWORK

As shown in Figure 1, the workflow of our overall
framework includes the following three key components.

• Platform analysis, which collects information about
the underlying platform, e.g., the number of available
nodes and processing cores, the cache coherence pro-
tocol, and the MPI library installed, by querying the
operating system or by empirically evaluating varying
MPI operations using different system configurations.

• Optimization analysis, which identifies opportunities
for modifying an MPI application to use more effi-
cient communications based on configurations gener-
ated by the platform analyzer and annotations inserted
by software developers in their applications.

• Program transformations, which include a collection
of program transformation routines invoked by the
optimization analyzer to modify the input application
for better performance. The modified MPI application
is then fed into a vendor compiler (e.g., icc or gcc)
to generate a machine executable.

Currently we have implemented the platform analyzer
using simple shell scripts that automatically detect the rele-
vant system configurations. Both the optimization analysis
and transformations are implemented using POET [4], an
interpreted program transformation language designed to
support the programmable control and parameterization
of source-to-source compiler optimizations. Our POET
scripts are extensively parameterized, and variations of
alternative implementations can be flexibly generated via
different configurations supplied by the platform analyzer.

Our framework currently supports the following opti-
mizing transformations for MPI communications.

MPI_Win_fence(win);
MPI_Accumulate(x[0], target, win);
MPI_Accumulate(x[1], target, win);
foo();
MPI_Put(y[0], target1, win);
MPI_Put(y[1], target2, win);
MPI_Put(y[2], target1, win);
MPI_Win_fence(win);

Figure 4: Example: MPI one-sided communication

A. Coalescing of One-Sided Communication Operations

MPI remote memory access (RMA) or one-sided com-
munication follows an epoch-based model for memory
consistency. Specifically, a group of processes can expose
a part of their memory as public memory, which is
referred to as a “window”. Then, a process can open an
epoch within which it can access such public memory
using RMA operations such as MPI Get, MPI Put, and
MPI Accumulate. Figure 4 shows an example of such an
RMA epoch, which operates inside window win using
both MPI Put and MPI Accumulate enclosed by a pair
of MPI Win fence(win) synchronizations.

Applications often issue multiple RMA operations per
epoch. When compatible, these operations can be com-
bined. For example, the first and third MPI Put operations
in Figure 4 can be combined into a single MPI put. The
end result is fewer messages being sent, thus reducing
communication overheads.

Note that the coalescing optimization could be rather
complex to apply manually for non-trivial codes, and the
degree to which it is beneficial depends on the system
and software architectures (e.g., network latency or ea-
ger message protocol threshold). It is difficult for the
MPI library to apply this optimization due to the lack
of application context and the knowledge of when to
prioritize latency, bandwidth, or communication/compu-
tation overlap. It is also not advisable for developers to
hardwire this optimization inside their applications as the
transformation could seriously detriment the readability of
their applications, and implementations specialized for one
platform may perform poorly on a different platform.

Our framework supports the coalescing of all MPI
operators (get, put, and accumulate) within a single epoch,
driven by the “osc coalesce” annotation. The transfor-
mation algorithm is summarized in Figure 6. Figure 5
illustrates the result of applying the algorithm to BFS, a
benchmark from Graph500 [2]. The annotation at Line 1
of Figure 5(a) specifies that the MPI one-sided communi-
cations in windows p2 win and q2 win can be coalesced
when appropriate. These communications start with the
two invocations of MPI Win fence at Lines 3–4, contain
two MPI Accumulate calls at Lines 9–10, and end with
two MPI Win fence calls at Lines 11–12. The transformed
code is shown in Figure 5(b), which contains the following
modifications to the original code for each of the annotated
windows (p2 win and q2 win).

• Declare and allocate arrays to save the informa-
tion for coalescing each communication operator, at
Lines 1–2 of Figure 5(b). In particular, four arrays
( data, cntr, tgt disp, and ctree) are used to track



1:#pragma mpi osc_coalesce(p2_win,pred2,int64_t,MPI_INT64_T,
MPI_COMM_WORLD) (q2_win,queue_bitmap2,unsigned long,
MPI_UNSIGNED_LONG,MPI_COMM_WORLD)

2:while (1) {......
3:MPI_Win_fence(MPI_MODE_NOPRECEDE, p2_win);
4:MPI_Win_fence(MPI_MODE_NOPRECEDE, q2_win);
5:for (i = 0; i < queue_nwords; ++i) { ......
6: for (bitnum = 0; bitnum < ulong_bits; ++bitnum) {......
7: for (qelem_idx = 0; qelem_idx < elts_per_queue_bit;

++qelem_idx) { ......
8: for (ei = g.rowstarts[v_local]; ei < ei_end; ++ei) {...
9: MPI_Accumulate(&local_vertices[v_local],1,MPI_INT64_T,
VERTEX_OWNER(w),VERTEX_LOCAL(w),1,MPI_INT64_T,MPI_MIN,p2_win);
10: MPI_Accumulate(&masks[((VERTEX_LOCAL(w)/elts_per_queue
_bit)%ulong_bits)],1,MPI_UNSIGNED_LONG,VERTEX_OWNER(w),VERTEX
_LOCAL(w)/elts_per_queue_bit/ulong_bits,1,MPI_UNSIGNED_LONG,
MPI_BOR,q2_win);

} } } }
11:MPI_Win_fence(MPI_MODE_NOSUCCEED, q2_win);
12:MPI_Win_fence(MPI_MODE_NOSUCCEED, p2_win); .......}

(a) Original code with annotation

1:int64_t** p2_win_MIN_data=alloc(int64_t*,comm_world_sz,NULL);
int **p2_win_MPI_MIN_tgt_disp=alloc(int*,comm_world_sz,NULL);
int *p2_win_MPI_MIN_cntr = alloc(int*,comm_world_sz,0);
ctree* p2_win_MPI_MIN_ctree=alloc(ctree,comm_world_sz,NULL);

2:... similar declarations for q2_win \& MPI_BOR...
while (1) {......

3:MPI_Win_fence(MPI_MODE_NOPRECEDE, p2_win);
4:MPI_Win_fence(MPI_MODE_NOPRECEDE, q2_win);
5:for (i = 0; i < queue_nwords; ++i) {......
6: for (bitnum = 0; bitnum < ulong_bits; ++bitnum) {......
7: for (qelem_idx = 0; qelem_idx < elts_per_queue_bit;

++qelem_idx) {......
8: for (ei=g.rowstarts[v_local]; ei<ei_end; ++ei) {...
9: /* optimized MPI_Accumulate call from p2_win */
9.1: if (p2_win_MIN_data[VERTEX_OWNER(w)]==NULL)

{ ...p2_win_MIN_data[VERTEX_OWNER(w)]= ... }
9.2: if(p2_win_MIN_data[VERTEX_OWNER(w)]==NULL)

/*no buffer; send it now using original MPI call*/
MPI_Accumulate(&local_vertices[v_local],...) ;

else {
9.3: if (p2_win_MIN_cntr[VERTEX_OWNER(w)]+1>=CL_FACTOR)

{ ... buffer is full; send it now ...}
9.4: /* now pack data*/

int idx = ctree_insert(p2_win_MPI_MIN_ctree,...);
if( idx==0) {...no conflict; simply pack data...}
else{ ... merge conflict before packing .... } }

10: ... similar MPI_Accumulate on q2_win_BOR_data ...
} } } }

11:{..send all data in the coalescing buffers for q2_win..}
MPI_Win_fence(MPI_MODE_NOSUCCEED, q2_win);

12:{..send all data in the coalescing buffers for p2_win..}
MPI_Win_fence(MPI_MODE_NOSUCCEED, p2_win);

13 ...free the coalescing buffers for p2\_win & q2\_win...;
...}

(b) Outline of transformed code
Figure 5: Example: applying data coalescing to Graph500.

the address, size, destination process, and overlapping
of destination addresses, respectively, of the coalesc-
ing buffer allocated for each MPI operator.

• Postpone communications until a coalescing buffer
is full, at Lines 9–10 of Figure 5(b). The code
at Line 9.1 first identifies p2 win MIN data[rank],
where rank identifies the destination process, as the
address of the coalescing buffer and allocates space
if the address is NULL. Lines 9.2 and 9.3 send the
buffered data if no space is available or if the buffered
data size exceeds a preset limit (CL FACTOR); oth-
erwise, Line 9.4 packs the data into the buffer while
using an AVL tree [5] (p2 win MIN ctree[rank]) to
track conflicting addresses.

• Modify each final synchronization of the communi-
cation epoch to send any data that have been buffered
but not yet sent, at Lines 11–12 of Figure 5(b).

• Free the coalescing buffers so that their spaces can
be used for other purposes, at Line 13 of Figure 5(b).

The above transformations are applied at Steps 5, 8, 9,
and 6 of the algorithm in Figure 6, respectively. Finally,

mpi osc data coalesce(win, ovlap, body)
win: info. of current one-sided communication window;
ovlap: whether different data accesses of win may overlap;
body: input code to optimize

(1) extra comm=””;
(2) foreach MPI remote-memory access call rma in body:
(3) coal buf = gen name(win name(win), operator(rma));
(4) if (not already processed(coal buf)):

remember processed(coal buf);
(5) insert new decl(body, gen dc buf decl(coal buf, win, ovlap));
(6) append new cleanup(body, gen dc buf free(coal buf, ovlap);
(7) extra comm∪ = gen dc extra comm(coal buf, win);
(8) replace stmt(rma, gen dc rma(rma,coal buf, win, ovlap));
(9) foreach syn end ∈ find osc synch end(win, body):

insert before(syn end, extra comm);
(10)foreach statement s ∈ find unsafe stmts(body, win):

insert before(s, extra comm);

Figure 6: Data coalescing transformation algorithm.

Step 10 of the algorithm searches the annotated block for
any statement (e.g., unknown function calls) that may in-
terfere with the communication windows being coalesced.
If found, it inserts statements to send off the coalesced
data to make sure that any new MPI communications that
may be triggered by the unsafe statement do not interrupt
the original flow of MPI communications. Developers can
use the independent annotation at Line 7 of Figure 2 to
declare statements as independent of the MPI windows
being optimized. These independent statements will be
treated as safe statements regarding the windows, so no
extra communications will be inserted before them.

The algorithm in Figure 6 adopts the following strate-
gies to guarantee the correctness of the transformation.

• Grouping of MPI communications. The algorithm al-
locates a dedicated buffer for each group of MPI com-
munications that belong to the same window, have the
same destination process, and communicate by using
the same MPI Put/MPI Get or the same reduction
operator in MPI Accumulate. This strategy ensures
that all the coalesced data will arrive at their original
destinations. Since MPI standard maintains that an
epoch does not enforce any sequential ordering of
communications, the coalesced communications have
the same semantics as the original ones.

• Overlapping of destination addresses. When using
MPI Put and MPI Get, the addresses to place the
communicated data on the destination process are not
allowed to overlap by MPI standard. When invoking
MPI Accumulate, however, the displacement of the
data can indeed overlap, and values sent to the
same location need to be accumulated by using the
reduction operator of MPI Accumulate. When the
developer does not rule out such overlapping using a
“no overlap” clause, our transformation uses an AVL
tree [5] to keep track of the displacements of all the
data being communicated via MPI Accumulate. And
whenever an overlapping is detected, local reduction
of the data within the coalescing buffer is invoked.

• Handling unknown function calls. When an MPI
epoch invokes unknown function calls, the functions
could include MPI synchronizations that end the
epoch being optimized. Our transformation algorithm
considers each unknown function call as an unsafe



1:#pragma mpi cco MPI_SendRecv(ew_comm,ns_comm)
2:for( i=0; i<niter; i++ ){
3: fill_nssnd_buf( data, nsnd_buf, ssnd_buf, nx, ny, nz );
4: fill_ewsnd_buf( data, esnd_buf, wsnd_buf, nx, ny, nz );
5: if (ns_id > 0 )
6: MPI_Send(nsnd_buf,ny*nz,MPI_DOUBLE,ns_id-1,0,ns_comm);
7: if (ns_id < ns_comm_size-1)

MPI_Recv(ns_buf+ny*nz,ny*nz,MPI_DOUBLE,ns_id+1,0,ns_comm,&s);
8: if (ns_id < ns_comm_size-1)

MPI_Send(ssnd_buf,ny*nz,MPI_DOUBLE,ns_id+1,0,ns_comm);
9: if (ns_id > 0 )

MPI_Recv(ns_buf,ny*nz,MPI_DOUBLE,ns_id-1,0,ns_comm, &s);
10: ... similar send/recv operations along ew_comm...
11: #pragma mpi indep MPI_SendRecv(ew_comm, ns_comm)

{ compute_inner_stencil(data_next, data, nx, ny, nz);
update_front_rear(data_next, data, nx,ny,nz); }

12: #pragma mpi indep MPI_SendRecv(ew_comm)
{ update_north_south(data_next,data,nx,ny,nz,ns_buf);}

13: #pragma mpi indep MPI_SendRecv(ns_comm)
{ update_east_west( data_next,data,nx,ny,nz,ew_buf); }

14: update_corners( data_next,data,nx,ny,nz,nsrcv_buf,ew_buf);
15: tmp = data_next; data_next = data; data = tmp;

}

(a) Original code with annotation

1: for( i=0; i<niter; i++ ){
2: ...declarations for new variables...
3: fill_nssnd_buf( data, nsnd_buf, ssnd_buf, nx, ny, nz );
4: fill_ewsnd_buf( data, esnd_buf, wsnd_buf, nx, ny, nz );
5: if (ns_id > 0 )

MPI_Isend(nsnd_buf,ny*nz,MPI_DOUBLE,ns_id-1,0,ns_comm,&_r1);
6: if (ns_id < ns_comm_size-1)

MPI_Irecv(ns_buf+ny*nz,ny*nz,MPI_DOUBLE,ns_id+1,0,ns_comm,&_s1);
7: if (ns_id < ns_comm_size-1)

MPI_Isend(ssnd_buf,ny*nz,MPI_DOUBLE,ns_id+1,0,ns_comm,&_r2);
8: if (ns_id > 0 )

MPI_Irecv(ns_buf,ny*nz,MPI_DOUBLE,ns_id-1,0,ns_comm,&_s2);
9: ... similar Isend/Irecv operations along ew_comm...
10:#pragma mpi indep MPI_SendRecv(ew_comm,ns_comm)

{ compute_inner_stencil(data_next, data, nx, ny, nz);
update_front_rear(data_next, data, nx,ny,nz); }

11: ... MPI_Wait operations for ns_comm Isend/Irecv ...
12:#pragma mpi indep MPI_SendRecv(ew_comm)

{ update_north_south(data_next,data,nx,ny,nz,ns_buf);}
13: ... MPI_Wait operations for ew_comm Isend/Irecv ...
14:#pragma mpi indep MPI_SendRecv(ns_comm)

{ update_east_west( data_next,data,nx,ny,nz,ew_buf); }
15:update_corners( data_next,data,nx,ny,nz,nsrcv_buf,ew_buf);
16:tmp = data_next; data_next = data; data = tmp;
}

(b) Outline of transformed code
Figure 7: Example: comp/comm overlapping.

statement and automatically inserts communications
to send the coalesced data before the invocation,
unless these calls have been annotated by developers
as independent of the MPI window being optimized.

B. Overlapping of Computation and Communications

MPI provides several nonblocking operations, e.g.,
MPI_Isend and MPI_Irecv, to overlap computation
and communication. However, the right amount of com-
putation to be perfectly overlapped with communication
is specific to a given platform, the destination process
of the communication (e.g., whether the process can be
reached over shared memory or the network), and the
kind of data being communicated (e.g., contiguous data
vs. noncontiguous data). Such constraints make it hard to
portably decide on the right amount of computation that
needs to be interleaved with communication operations.

Our framework allows developers to implement their al-
gorithms using simple blocking MPI send/recv operations
and then simply insert a few annotations to enable the
transformations to be automatically applied when desired.

Within our framework, the computation-communication
overlapping transformation is driven by the cco annota-
tion, illustrated at Line 1 of Figure 7(a), which specifies
that the MPI Send and MPI Recv operations with either

mpi comp comm overlap(com grp,input)
com grp: communication group specification;
input: innermost block containing com grp;

(1) comms = find matching comms(com grp, input);
(2) indep stmts = find indepstmts(com grp, input);
(3) foreach MPI send/recv call c ∈ comms:
(4) (decl,ncomm,wait) = mpi blocking 2 nonblocking(c);
(5) (before,in1,in2,after) = split stmt block(input, ncomm,wait);
(6) insert new decl(input, decl);
(7) move comm up(in1, indep stmts, before);
(8) move comm down(in2, indep stmts, after);

Figure 8: Algorithm: overlapping comp & comm.

ew comm or ns comm as handles in the annotated block
could be optimized for a 2-D stencil kernel. Figure 7(b)
outlines the result of the transformation by invoking the
algorithm in Figure 8 to perform the following steps.

1) Find all the MPI operations that match the specifica-
tions included in the cco annotation. In Figure 7(a),
these include all the MPI Send/Recv invocations
with ew comm or ns comm as handles.

2) Find all the statements that are independent of
each communication based on the independent an-
notations contained within input. In Figure 7(a),
they include statements at Lines 11 and 12 for
MPI SendRecv(ew comm) and statements at
Lines 11 and 13 for MPI SendRecv(ns comm).

3) For each MPI communication c found at Step 1,
perform transformation Steps 4–8.

4) Replace c with an equivalent combination of an
asynchronous operation (ncomm) and a MPI Wait
operation (wait). Then, create declarations (decl)
for the new request and handle variables.

5) Break up the statements in input into four groups,
before, in1, in2, and after, where before and
after contain statements that appear before ncomm
and after wait respectively, and in1 and in2 contain
the ncomm and the wait operations respectively, so
that in1 and in2 can be easily interchanged with
statements immediately before or after them later.

6) Insert new variable declarations. In Figure 7(b),
these declarations are inserted at Line 2, the begin-
ning of the innermost body of the annotated block.

7) Safely move up in1, which contains the asyn-
chronous operation ncomm, so that it can be eval-
uated as early as possible. In Figure 7(b), the
asynchronous MPI operations for ew comm and
ns comm are placed at Lines 5–9, since they cannot
be moved further up in the original code.

8) Safely move down in2, which contains the MPI
wait operation for ncomm, so that it can be eval-
uated as late as possible. In Figure 7(b), the wait
operations for ns comm and ew comm are moved
to Line 11 and Line 13, respectively.

The correctness of the transformation algorithm in Fig-
ure 8 hinges on careful implementations of Steps 5, 7, and
8. Note that in the optimization analysis algorithm in Fig-
ure 3, the innermost body of the annotated block is used as
the input parameter when invoking the cco transformation
algorithm. Therefore, the transformation rearranges only
the relative execution order of the statements within the



#pragma mpi rma(win,buf,int,MPI_INT,wsize,wrank)
{

MPI_Win_lock(MPI_LOCK_SHARED, i, 0, win);
for (j = 0; j < BUF_PER_PROC ; j++) {

MPI_Put(&wrank,1,MPI_INT,i,base+j,1,MPI_INT,win);
}

MPI_Win_unlock(i, win);
}

(a) Remote memory access with annotation

#pragma mpi local_ldst(win,buf,int,MPI_INT,wsize,wrank)
no_overlap

{
MPI_Win_lock( MPI_LOCK_EXCLUSIVE, i, 0, win );
for (j = 0; j < BUF_PER_PROC ; j++) {

buf[base+j] = wrank;
}
MPI_Win_unlock(i, win);

}

(b) Local load/store with annotation
Figure 9: Example: RMA and local load/store operations.

innermost loop body without changing the iteration order
of their surrounding loops. The algorithm requires that all
the annotated MPI communications be immediately nested
inside the innermost body. Specifically, they may be inside
if-conditionals but not surrounded by any additional loops.
Consequently, no dependence is violated by separating
out these communication operations from other statements
that may lie in the same if-conditional. Our algorithm
currently relies on the independent annotations inserted
by developers to determine the safety of moving the
communication operations. The algorithm, however, does
examine the MPI operations and determine that these
operations are independent of each other if they operate on
distinct buffers and use different communicators (handles).

C. Transformations for Cache-coherent Architectures

MPI allows direct load/store accesses to the buffers
associated with one-sided communication windows, illus-
trated in Figure 9(b). However, as shown in this example,
these operations often need to be enclosed inside an exclu-
sive lock to avoid conflict with the other nonlocal accesses.
This conservative strategy enables portability across a
wide variety of systems but imposes an unnecessary
overhead on systems with cache-coherent hardware, where
concurrent load/store and RMA operations are permitted
as an extension to the MPI standard.

Figure 9 illustrates two equivalent MPI epochs that
modify the memory (buf ) associated with an MPI
one-sided communication window. Both versions work
correctly on all platforms irrespective of their cache-
coherence support, but both need to pay a performance
penalty to ensure their portability. On a cache-coherent
system, to improve performance, the MPI Put operations
in (a) should be replaced with local load/stores, and the
exclusive lock in (b) with a shared lock. On a non-cache-
coherent system, the version in (a) is likely to perform
better than (b) because the extra overhead of the exclusive
lock in (b). Based on the rma and local ldst annotations in
both versions, our framework can automatically specialize
these implementations based on the requirement of the
underlying platform.

The transformation algorithms in Figure 10 are straight-
forward and include the following components.

mpi rma 2 ldst(win,input)
win: info. of current one-sided communication window;
input: input code to optimize

(1) foreach MPI remote-memory access call rma in input:
(2) cond = is equal(get comm rank(win),get des rank(rma));
(3) repl = gen ldst stmt(get src(rma), get des(rma), get op(rma));
(4) replace stmt(rma, gen if(cond, repl, rma));

mpi ldst coh(win,ovlap,input);
win: info. of current one-sided communication window;
ovlap: whether different data access of win may overlap;
input: input code to optimize

(1) if (ovlap) return;
(2) foreach MPI Win lock call l in input:
(3) if (get lock type(l) == MPI LOCK EXCLUSIVE):

change lock type(l, MPI LOCK SHARED);

mpi ldst incoh(win,ovlap,input)
win: info. of current one-sided communication window;
ovlap: whether different data access of win may overlap;
input: input code to optimize

(1) foreach assignment stmt s: l=r in input:
if (is array access(l) && get array(l) == get buf(win)):

replace stmt(s, gen rma call(”MPI Put”, win,addr of(r));
else if (is array access(r) && get array(r) == get buf(win)):

replace stmt(s, gen rma call(”MPI Get”, win,addr of(l));
(2) if (ovlap is false):

foreach MPI Win lock call l in input:
if (get lock type(l) == MPI LOCK EXCLUSIVE):

change lock type(l, MPI LOCK SHARED);

Figure 10: Algorithm: translating RMA & local load/store.

1) Translating RMA operations to local loads/stores
(mpi rma 2 ldst), which is driven by the rma an-
notation and applied when the underlying plat-
form supports cache coherence. The transformation
searches for each RMA operation and then replaces
it with an if-conditional so that when the rank of
the local process equals the rank of the destination
process, a local load/store operation is used instead.

2) Eliminating exclusive locks (mpi ldst coh), which is
driven by the local ldst annotation and invoked to
replace the exclusive locks surrounding local load/-
store operations with shared locks if the underlying
platform does support cache coherence and if the
memory accessed by the operations never overlaps.

3) Translating local load/store operations to RMA op-
erations (mpi ldst incoh), which is driven by the
local ldst annotation and applied when the underly-
ing platform does not support cache coherence. The
transformation includes two steps: (1) for each local
assignment involving the communication buffer, re-
place the assignment with an equivalent invocation
of MPI Put or MPI Get; and (2) if the buffers being
accessed in the MPI epoch never overlap, change all
the lock types from exclusive locks to shared locks.

D. Generality of the Framework

Among the three groups of optimizations supported
by our framework, data-coalescing and computation-
communication overlapping have been well-acknowledged
as important optimizations for MPI applications, while the
conversion between RMA and local load/store operations
targets at specializing MPI applications for varying plat-
forms in order to improve their performance portability.
Manually applying these optimizations is cumbersome



Table I: Benchmark details

Name Benchmark Description Transformation
Applied

bfs graph500 breadth-first search of
an undirected graph

OSC data coa-
lescing

rma-ldst synthetic random communica-
tions using MPI Put

RMA vs. local
ld/st translation

stencil synthetic 3D stencil using MPI
send/recv

comp-comm
overlapping

FT NAS 3D PDE using MPI
all-to-all

collective vs.
one-sided
communication

and compromises both the readability and the portability
of applications. By allowing developers to single out
important regions of code that implement epochs of MPI
communications, a lightweight program transformation
system has been used to automatically specialize MPI ap-
plications and thus significantly enhance their performance
portability across different systems. With the help of devel-
oper supplied algorithmic hints, the overhead of applying
the necessary program transformations becomes negligible
(linear to the size of code regions being transformed). The
scalability of the overall approach can be enhanced by
utilizing optimizing compilers to automatically determine
the dependence constraints within the application and by
utilizing performance modeling techniques to automati-
cally identify hot regions of code to specialize, both of
which are topics of our future work.

IV. EXPERIMENTAL RESULTS

Attaining performance portability is the ultimate goal of
high performance computing. While the small collection
of program transformations currently supported within
our framework is far from addressing the full range of
performance portability issues in MPI programming, our
proposed lightweight annotation-based approach serves to
demonstrate a migration path that may eventually lead
to fully portable MPI applications. We have studied four
benchmarks, shown in Table I, to validate the potential of
this annotation-based approach and to demonstrate the sen-
sitivity of our application-level optimizations to varying
runtime configurations. Three of these benchmarks, bfs,
stencil, and NAS FT, represent well-acknowledged impor-
tant scientific computations, while rma-ldst is a synthetic
kernel we developed to study the sensitivity of MPI RMA
vs local load/store operations. We have optimized bfs,
rma-ldst,, and stencil, by manually inserting annotations
into selected functions and then applying our framework
to automatically optimize their MPI communications for
varying platforms. The NAS FT benchmark, however,
was transformed manually without using our framework,
as its MPI communications are scattered across several
procedures and thus beyond the capacity of our existing
framework. Since supporting automated inter-procedural
optimization of MPI communications is a topic of our
future work, we present our performance study of FT.

We evaluated our benchmarks on two supercomputers at
Argonne National Laboratory: Fusion, a cluster with 320
compute nodes, each with two Intel Nehalem Quad-Core
2.6 GHz processors and 36 GB of memory, interconnected

via InfiniBand QDR at 4 GB/s per link; and Surveyor,
a Blue Gene/P system with 1024 compute nodes, each
with a quad-core 850 MHz PowerPC 450 processor and
2 GB memory. On both machines, we compiled the
benchmarks using the default mpicc compilers, which use
mvapich2 1.4.1 and gcc 4.1.2 on the Fusion machine and
use gcc 4.4.6 on Surveyor. We compiled all benchmarks
using the -O2 optimization flag, which enables all the
relevant advanced optimizations within gcc but avoids
some overly aggressive optimizations in -O3 which might
actually slow down the applications. For Graph500 and FT,
we present the default performance metrics reported by the
benchmarks, specifically the average time of running the
Graph500 bfs kernel 64 times and the total elapsed time
of running 6 iterations of the FT computation. For both
the stencil and the rma-ldst benchmarks, we report their
average performance across 10 different runs.

A. Optimizing the Graph500 Benchmark

The Graph500 benchmark suite [2] currently includes
one reference graph algorithm, a breadth-first search (bfs)
of undirected graphs. We inserted an osc coalesce anno-
tation inside an implementation of the search kernel that
uses MPI one-sided communications, an outline of which
is shown in Figure 5(a). The original implementation of
bfs in Figure 5(a) has two MPI Accumulate invocations,
each sending a single data item, at the innermost loop.
Although these communications are overlapped with other
computations (omitted as ...... in Figure 5), the com-
munication overhead may be too high. Our framework
automatically coalesced the many small messages so that
an actual communication is triggered only when the size of
the coalesced message exceeds a predetermined threshold
(CL FACTOR at Line 9.3 of Figure 5(b)).

An overhead of applying data-coalescing is the extra
memory required. Our framework allows the user to
specify a limit on the overall size of memory used for
the coalescing buffers. For example, if this limit is 64 MB
when using 64 processes, each process is allowed to use
at most 1 MB for message coalescing. If the process runs
out of memory, it stops coalescing.

Figure 11 shows the overall execution time of Graph500
when running both the original and the coalesced imple-
mentations of bfs, using a variety of different coalescing
factors and memory limit, on the Fusion machine using
64, 128, and 256 processes, respectively, with 8 processes
allocated to each node of the cluster. The input is an
undirected graph of 216 vertices and 216 ∗ 12 edges.
Because Graph500 uses some Assembly intrinsics that
work only on Intel architectures and because the Surveyor
machine uses PowerPC processors, we were not able to
collect results for bfs on the Surveyor machine.

From Figure 11, the best optimization speedup from
data coalescing is around 190x when using 64 processes.
Because the graph size is constant in all the evaluations,
as the number of processes increase, each process has a
smaller amount of work, resulting in fewer remote memory
accesses and thus less optimization benefit.
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Figure 11: Result of applying data coalescing to one-sided communications of Graph500 bfs on machine Fusion.

From all three graphs in Figure 11, having a larger
amount of memory available for coalescing does increase
the effectiveness of the optimization, especially when
using a large number of processes. In order to obtain the
best speedup, the coalescing factor needs to be adjusted
based on the amount of memory available. In particular,
when the memory demand is high, it is better to make
coalescing buffers smaller (i.e., using smaller coalescing
factors) so that the coalesced data can be sent sooner and
thus free up more available memory for other needs.

In summary, the performance benefit of data coalescing
depends on the number of small messages that are sent
to the same destinations and thus could be coalesced;
the speedup could be orders of magnitude. It is difficult
to automatically determine the best memory limit and
coalescing factors a priori because their best configurations
are sensitive to the internal memory demands of the
application, although a reasonable default configuration
can be used. Note that while data coalescing appears to be
beneficial for Graph500, it can be rather platform-sensitive
when considered together with overlapping computation
with communication, discussed in Section IV-D.

B. Optimizing Stencil Computations
Stencil computations are among the most important

kernels of scientific computing and are good candidates
for exploring overlapping of computation with communi-
cations since each process needs to communicate only with
its neighbors about their boundary values. An outline of
the original stencil code we used is shown in Figure 7(a),
which uses MPI blocking primitives for better readability.
Our optimizations can similarly work if the original code
is written using MPI Isend/Irecv operations.

Figure 12 shows the performance of both the origi-
nal 3-D stencil and the transformed code, which uses
asynchronous MPI operations to better overlap the com-
munications with the inner stencil computation of each
process. The stencil size is 2048*2048*4096 on Fusion
and 2048*2048*1024 on Surveyor, since each node on
Surveyor has smaller memory than the nodes on Fusion.

The transformed code has consistently performed better,
with 15% to 2.4x speedup, on both machines. However,
one anomaly exists when using 256 processes on Surveyor,
where the original blocking communications result in less
stress on the high memory demand of each process. This
demonstrates that while overlapping computation with
communication typically results in better performance of
MPI applications, using blocking communications can
sometimes perform better.

Since the stencil size stays constant on each machine, as
more processes participate in the computation, the ratio be-
tween the amount of computation and communication per
process decreases, and it becomes increasingly important
to hide the latency of the communications in order to re-
duce their overhead, therefore resulting in more significant
performance benefit from the overlapping transformation.

In summary, while it is profitable to overlap commu-
nications with computations in most situations, blocking
synchronizations can sometimes outperform asynchronous
operations. It is advantageous for developers to use an-
notations to facilitate the optimization instead of directly
modifying their applications since MPI blocking commu-
nications are easier to debug and maintain and allows
the logistics of local computations to be better grouped
together. Further, this optimization could become highly
platform-sensitive when considered together with the data
coalescing transformation, discussed in Section IV-D.

C. Cache-Coherence-Aware Transformations

To compare the efficiencies of different MPI operations
on varying platforms, we developed a synthetic bench-
mark, illustrated in Figure 9(a), which randomly sends data
to other processes using the MPI Put operation. The code
is then annotated with our rma annotation so that it can
be automatically translated to equivalent local load/store
operations on platforms that support cache coherence.

Figure 13 shows the performance of running our syn-
thetic benchmark to perform 1 million RMA accesses
(99% are local memory accesses), with and without our
cache-coherence-aware transformation using 8–1024 pro-
cesses. Since both machines support cache coherence, in
all cases the local-load/store version automatically gener-
ated by our framework performed significantly better than
the RMA version.

Among the three groups of optimizations currently
supported in our framework, the cache-coherence-aware
optimizations are the most platform sensitive and therefore
need to be automated via application-level transforma-
tions. Our annotation-based framework is lightweight and
can be supported as a preprocessor of MPI applications
within a mpicc compiler before the vendor compiler (e.g.,
gcc) is invoked.

D. Optimizing The NAS FT Benchmark

While both the data-coalescing and computation-
communication overlapping optimizations are profitable
in most situations, combining them often results in a
tradeoff in performance. In particular, while frequently
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Figure 12: Result of applying computation-communication overlapping to stencil on (left) Fusion and (right) Surveyor.
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Figure 13: Result of translating RMA to local load/store operations on (left) Fusion and (right) Surveyor.
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Figure 14: Result of optimizing the NAS FT benchmark on (left) Fusion and (right) Surveyor.
for(...){

for(each i=...)
for(each j=...)

computation using array(i,j);
exchange array using blocking communications

}

(a) Original code using all-to-all communications.
for(...){

for(each i=...) {
for(each j=...)

computation using array(i,j);
exchange array(i) using MPI one-sided communications

} }

(b) Optimized code using one-sided communications.
Figure 15: Optimizing MPI communications in NAS FT.

sending small messages does not fully utilize the network
bandwidth, it is easy to hide the latency of frequent small
communications by overlapping them with independent
computations. On the other hand, while coalescing small
messages may reduce the overhead of communication, the
coalesced messages may not overlap well with local com-
putations due to the delays in sending the messages. We
demonstrate the issues in making optimization decisions
using FT from the NAS parallel benchmarks [3]. Because
MPI communications within FT are scattered across a
number of subroutines, we have manually applied the
transformations for the performance study.

Figure 15(a) illustrates the original communication pat-
tern of NAS FT, which solves a 3-D partial differential
equation (PDE) using forward and inverse FFTs. It first
computes an entire 3D array and then scatters the data
across all processes using MPI Alltoall. In contrast, the
manually transformed code in (b) scatters a single row

of the 3D array immediately after each row of the array
has be computed, using MPI one-sided communications.
In essence, the original code coalesces all the communica-
tions and wait until the end before sending all the data us-
ing a single MPI Alltoall operation, while the transformed
code breaks up the communications into smaller messages
to enable better overlapping with local computations.

Figure 14 shows the performance of the original and
manually transformed code on both the Fusion and Sur-
veyor machines, where the transformed code was able to
attain 5%-25% speedup on Surveyor but resulted in almost
2x slowdown on Fusion. The results clearly indicate that
careful optimization decisions need to be made based on
the underlying node structures and network connections
of each parallel platform, as the efficiencies of different
MPI operations vary significantly across platforms.

V. RELATED WORK

Existing work on optimizing MPI codes mostly focused
on producing efficient implementations of MPI libraries.
Gropp et al. [6] studied options and the associated cost
of implementing the synchronization mechanisms of MPI
one-sided communications. Almási et al. [7] optimized
implementations of MPI collectives targeting microbench-
marks on Blue Gene/L. Sur et al. [8] exploited RDMA read
and selective interrupt-based asynchronous progress in or-
der to provide better computation/communication overlap
on InfiniBand clusters. Faraj [9] presented a system that
produces efficient MPI collective communication imple-
mentations customized for each platform by automatically
generating topology-specific routines and then empirically



selecting the best implementations. Xu and Kuang [10]
developed a systematic method to estimate the commu-
nication overhead of three message-passing operations
(point-to-point communication, collective communication,
and collective computation). Our work focuses on utilizing
developer annotations and automated program transforma-
tions to improve the use of MPI operations within user
applications instead of MPI libraries.

Similar to our work, Danalis et al. investigated
program transformations directed toward improving
communication-computation overlap in MPI applications
that use collective operations [11] and proposed the devel-
opment of MPI-aware compilers that exploit the knowl-
edge of MPI call effects [12]. Preissl et al. [13] explored
automated identification of communication patterns from
dynamically generated MPI traces to support debugging
of communications and enable performance optimiza-
tions [14]. Our work also focuses on optimizing MPI
applications but emphasizes automatically supporting their
performance portability through a light-weight annotation-
based program transformation framework.

VI. CONCLUSIONS

This paper presents an annotation-based program trans-
formation framework where users can annotate MPI appli-
cations with concise information about the communication
mechanisms used inside varying blocks of statements,
so that these blocks can be modified to use alternative
communication mechanisms in MPI in order to achieve
portable high performance on different platforms. Our
framework currently supports three optimizations: data
coalescing for MPI one-sided communications, overlap-
ping communications with independent computations, and
automatic selection of communication operators based on
the cache-coherence support of the underlying platform.
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