
Online Performance Projection for Clusters with Heterogeneous GPUs

Lokendra S. Panwar∗, Ashwin M. Aji∗, Jiayuan Meng‡, Pavan Balaji†, Wu-chun Feng∗
∗Dept. of Computer Science, Virginia Tech. {lokendra, aaji, feng}@cs.vt.edu

†Mathematics and Computer Science Div., Argonne National Lab. balaji@mcs.anl.gov
‡Argonne Leadership Computing Facility, Argonne National Lab. jmeng@alcf.anl.gov

Abstract—We present a fully automated approach to project
the relative performance of an OpenCL program over different
GPUs. Performance projections can be made within a small
amount of time, and the projection overhead stays relatively
constant with the input data size. As a result, the technique
can help runtime tools make dynamic decisions about which
GPU would run faster for a given kernel. Usage cases of this
technique include scheduling or migrating GPU workloads over
a heterogeneous cluster with different types of GPUs.

I. INTRODUCTION

Accelerators are being increasingly adopted in today’s high-
performance computing (HPC) clusters. A diverse set of accel-
erators exist, including graphics processing units (GPUs) from
NVIDIA and AMD and the Xeon Phi coprocessor from Intel.
In particular, GPUs have accelerated production codes for
many scientific applications, including computational fluid dy-
namics, cosmology, and data analytics. To enable programmers
to develop portable code across these accelerator devices from
various vendors and architecture families, general-purpose
parallel programming models, such as the Open Computing
Language (OpenCL) [11] , have been developed and adopted.

Today, large-scale heterogeneous clusters predominantly
consist of identical nodes in order to ease the burden of
installation, configuration, and programming such systems;
however, we are increasingly seeing heterogeneous clusters
with different nodes on the path toward 10x10 [4], which
envisions the paradigm of mapping the right task to the right
processor at the right time. An early example of such a system
is Darwin at LANL, which consists of both AMD and NVIDIA
GPUs.

In order to improve the programmer productivity on such
heterogeneous systems, virtual GPU platforms, such as Virtual
OpenCL (VOCL) [24] and Remote CUDA (rCUDA) [9], have
been developed to decouple the GPU programmer’s view of
the accelerator resource from the physical hardware itself. For
example, a user of the VOCL platform writes an OpenCL
program without worrying about the physical location and
other architectural details of the device. The VOCL runtime
system in turn schedules and migrates application kernels
among GPU devices in the backend [23].

It is critical for such runtime systems to assign the optimal
GPU for a given kernel. Our experiments indicate that the peak
performance ratios of the GPUs do not always translate to the
optimal kernel-to-GPU mapping scheme. GPUs have different
hardware features and capabilities with respect to computa-
tional power, memory bandwidth, and caching abilities. As a

Panwar and Aji have contributed equally to this work.

result, different kernels may achieve their best performance or
efficiency on different GPU architectures.

However, no clear strategy exists that can help runtime
systems automatically choose the best GPU device for an in-
coming kernel. GPU performance analysis tools have recently
been developed to either predict the kernel’s performance on
a particular device [10] or to identify critical performance
bottlenecks in the kernel [16], [25]. While these techniques
provide insights into the kernel and device characteristics,
they are often tied to particular GPU families and require
static analysis or offline workload profiling, which makes them
infeasible to be used with runtime systems.

To address this issue, we propose a technique for online
performance projection, whose goal is to automatically select
the best-performing GPU for a given kernel from a pool of
devices. Our online projection requires neither source-code
analysis nor offline workload profiling, and its overhead in
casting projections has little to no effect with increase in input
sizes. We first build a static database of various device profiles;
the device profiles are obtained from hardware specifications
and microbenchmark characterizations and are collected just
once for each target GPU.

When projecting the performance of a GPU kernel, we first
obtain a workload’s runtime profile using a downscaled emu-
lation with minimal overhead, and then apply a performance
model to project the full kernel’s performance from the device
and workload profiles. This hybrid approach of emulation and
modeling is named as mini-emulation. The emulation code is
invoked by intercepting GPU kernel launch calls, an action
that is transparent from the user’s perspective. Our technique
is particularly suitable for projecting the relative performance
among GPU devices for kernels with large data sets.

Our specific contributions are as follows:
• An online kernel characterization technique that retrieves

key performance characteristics with relatively low over-
head by emulating a downscaled kernel execution.

• An online performance model that projects the perfor-
mance of full kernel execution from statistics collected
from the downscaled emulation.

• An end-to-end implementation of our technique that
covers multiple architectural families from both AMD
and NVIDIA GPUs.

We evaluate our online performance projection technique
by ranking four GPUs that belong to various generations
and architecture families from both AMD and NVIDIA. Our
workload consists of a variety of memory- and compute-bound
benchmarks from the AMD APP SDK [3]. We show that the

device selection recommended by our technique is the optimal
device in most cases.

The rest of the paper is organized as follows. Section II
discusses related work regarding GPU performance modeling
and analysis. Section III describes the OpenCL programming
model. Our performance projection framework is introduced
and explained in Section IV. In Section V we evaluate our
framework, and in Section VI we conclude the paper with a
brief summary.

II. RELATED WORK

Several techniques for understanding and projecting GPU
performance have been proposed. These techniques are often
used for performance analysis and tuning. We classify the
prior work into two categories: performance modeling and
performance analysis and tuning.

Performance Modeling: GPU performance models have
been proposed to help understand the runtime behavior of GPU
workloads [10], [25]. Some studies also use microbenchmarks
to reveal architectural details [10], [21], [22], [25]. Although
these tools provide in-depth performance insights, they often
require static analysis or offline profiling of the code by either
running or emulating the program.

Several cross-platform, performance-projection techniques
can be used to compare multiple systems, many of them
employ machine learning [13], [19]. However, the relationship
between tunable parameters and application performance is
gleaned from profiled or simulated data.

Performance Analysis and Tuning: Researchers have pro-
posed several techniques to analyze GPU performance from
various aspects, including branching, degree of coalescing,
race conditions, bank conflict, and partition camping [2], [5],
[18]. They provide helpful information for the user to identify
potential bottlenecks.

Several tools have also been developed to explore different
transformations of a GPU code [12], [14]. Moreover, Ryoo et
al. proposed additional metrics (efficiency and utilization) [17]
to help prune the transformation space. Furthermore, several
autotuning techniques have been devised for specific applica-
tion domains [6], [15].

The various techniques either require the source code for
static analysis or rely on the user to manually model the
source-code behavior; both approaches are infeasible for appli-
cation to a runtime system. Moreover, they often require offline
profiling, which may take even longer than the execution
time of the original workload. To our knowledge, no GPU
performance models have been developed that are suitable for
online device selection.

III. BACKGROUND

Here we describe the Open Computing Language (OpenCL)
and the Virtual OpenCL (VOCL) runtime system.

A. OpenCL and Its Performance Optimizations

OpenCL [11] is an open standard and parallel programming
model for programming a variety of accelerator platforms, in-
cluding NVIDIA and AMD GPUs, FPGAs, the Intel Xeon Phi

coprocessor, and conventional multicore CPUs. OpenCL fol-
lows a kernel-offload model, where the data-parallel, compute-
intensive portions of the application are offloaded from the
CPU host to the device. The OpenCL kernel is a high-level
abstraction with hierarchically grouped tasks or workgroups
that contain multiple workitems or worker threads.

OpenCL assumes a hierarchical memory model where the
bulk of the data is assumed to be in the device’s global
memory and accessible by all the workitems in the kernel.
Each workgroup also has its own local memory, which the
OpenCL implementation can map to the on-chip memory for
faster accesses. The local memory is typically used to share
and reuse data among threads within a workgroup and cannot
be accessed by any other workgroup.

Depending on the computational intensity and the memory
access patterns, the performance of an OpenCL kernel can be
limited by compute instructions, local memory accesses, or
global memory accesses.

B. VOCL

The VOCL platform is a realization of the OpenCL pro-
gramming model that enables the programmer to utilize both
local and remote accelerators through device virtualization.
The VOCL user can write a kernel for a generic OpenCL
device without worrying about the physical location and other
architectural details of the device. With virtual GPU frame-
works such as VOCL, all the OpenCL-capable devices in a
cluster can be used as if they were installed locally. The VOCL
runtime system internally manages scheduling workloads to
the devices in a cluster, forwarding the OpenCL calls and
transferring data to and from the remote GPU. However, no
clear strategy has been developed that can help such systems
automatically choose the best GPU device for an incoming
OpenCL kernel.

IV. PERFORMANCE PROJECTION

The goal of online performance projection is twofold:
(1) to accurately rank the GPU devices according to their
computational capabilities and (2) to do so reasonably quickly
in support of dynamic runtime scheduling of GPUs. The actual
execution of the kernel on the target GPUs serves as the
baseline to evaluate both the accuracy and the performance of
any performance projection technique. However, for a runtime
system in cluster environments, it is infeasible to always run
the kernel on all the potential devices before choosing the best
device, because of the additional data transfer costs. Below
we discuss the accuracy vs. performance tradeoffs of potential
online performance projection techniques for GPUs.

Cycle-accurate emulation, with emulators such as GPGPU-
Sim [1] and Multi2Sim [20], can be used predict the minimum
number of cycles required to execute the kernel on the target
device. The accuracy of the projection and the device support
directly depends on the maturity of the emulator. Moreover,
the overhead of cycle-accurate emulation is too high to be used
in a runtime system.

Static kernel analysis and projection can be done at (1) the
OpenCL code level, (2) an intermediate GPU language level
(e.g., PTX or AMD-IL), or (3) the device instruction level
(e.g., cubin). Performance projection from static analysis will
be inaccurate because it does not take into account the dy-
namic nature of the kernel, including memory access patterns
and input data dependence. The performance projection will,
however, not experience much overhead and is feasible to be
used at runtime.

Dynamic kernel analysis and projection involve a tradeoff
between the above approaches. The dynamic kernel character-
istics, such as instruction distribution, instruction count, and
memory access patterns, can be recorded by using functional
emulators, such as GPU-Ocelot [8] or the functional emulator
mode of GPGPU-Sim and Multi2Sim. The dynamic kernel
profile, in conjunction with the target device profile, can be
used to develop a performance projection model. While the
accuracy of this approach is better than that of static code
analysis, the emulation overhead of this approach will be
greater. On the other hand, the overhead will be much smaller
than with cycle-accurate emulation.

A. Approach

We realize a variant of the dynamic kernel analysis for per-
formance projection while significantly limiting the emulation
overhead with minimal loss in accuracy of projection. Our
online projection technique requires that all the target GPU
devices are known and accessible and that the workload’s input
data is available. However, we can intercept OpenCL’s kernel
setup and launch calls to obtain the required OpenCL kernel
configuration parameters.

As Figure 1 shows, our online projection consists of three
steps. First, we obtain the hardware characteristics through
offline profiling. The capability of the device may vary ac-
cording to the occupancy1 or the device utilization level. We
use microbenchmarks to profile the devices and their efficiency
in response to different occupancy levels.

Mini-
Emulator

(Single
workgroup)

GPU
Kernel

Effective
Instruction
Throughput

Effective
Global Memory

Bandwidth

Effective
Local Memory

Bandwidth

G
P

U
 1

G
P

U
 2

G
P

U
 3

G
P

U
 4

Relative GPU
Performances

Memory
Patterns

Bank Conflicts

Instruction
Mix

GPU 1 GPU 2
GPU

N

……

Instruction and Memory Benchmarks 1) Static Profiling

2) Dynamic Profiling

D
ev

ic
e

P
ro

fi
le

at

 a
ll

O
cc

u
p

an
cy

Le

ve
ls

Perf.
Limiter?

3) Performance Projection

Fig. 1: The Performance Projection Methodology.

1Occupancy refers to the ratio of active wavefronts to the maximum active
wavefronts supported by the GPU.

10

100

1000

10000

 1/32 1/16 1/8 1/4 1/2 1

Th
ro

u
gh

p
u

t
(G

B
/s

)

Occupancy

Global Memory Read Global Memory Write

Local Memory Read Local Memory Write

Fig. 2: Memory Throughput on the AMD HD 7970.

Second, we collect the dynamic characteristics of an incom-
ing kernel at runtime. We leverage existing GPU emulators
and develop a miniature emulator that emulates only one
workgroup of the kernel. With such an approach, we can obtain
dynamic workload characteristics including instruction mix,
instruction count, local and global memory accesses, and the
coalescing degree. The code for our mini-emulator is invoked
by transparently intercepting GPU kernel launch calls.

Third, with the per-workgroup characteristics and the per-
device hardware profile, we project the runtime of the full
kernel execution. Our projection also takes into account
various potential performance limiting factors and compares
the tradeoffs among devices. GPU runtime systems, such as
VOCL, can then select the ideal performing device for the
purposes of migration of an already running workload for
consolidation or scheduling subsequent invocations in case of
repeated execution.

B. Offline Device Characterization

Our device characterization focuses on three major com-
ponents of GPU performance: instruction throughput, local
memory throughput, and global memory throughput. The
instruction throughput of a device (or peak flop rate) can
be obtained from hardware specifications, and the memory
throughput under various occupancy levels and access patterns
are measured through offline profiling. We use microbench-
marks derived from the SHOC benchmark suite [7] to measure
the hardware’s dynamic memory performance under different
runtime scenarios, such as occupancy, type of the memory
accessed, and word sizes. The hardware characteristics are
collected only once per device.

For the global memory accesses, the microbenchmarks
measure the peak throughput of coalesced accesses for read
and write operations at various occupancy levels. For example,
Figure 2 shows the coalesced memory throughput behavior for
the AMD HD 7970 GPU. The throughput for uncoalesced
memory accesses are derived by analyzing the coalesced
throughputs along with the workload characteristics that are
obtained from the emulator, as described in Section IV-D.

Similar to global memory, the local memory benchmarks
measure the throughput of local memory at varying occupancy
levels of GPU. Our local memory throughput microbench-
marks do not account for the effect of bank conflicts, but our
model deduces the number of bank conflicts from the emula-

tor’s memory traces and adjusts the projected performance as
described in Section IV-D.

C. Online Workload Characterization

This subsection describes our fully automated approach
for dynamically obtaining a workload’s characteristics—in
particular, statistics for both dynamic instructions and dynamic
memory accessess— in order to cast performance projections.

Statistical measures about dynamic instructions include
the instruction count, branch divergence intensity, instruction
mixes, and composition of the very long instructions. The
dynamic memory access statistics include the local and global
memory transaction count, bank conflict count, and the distri-
bution of coalesced and uncoalesced memory accesses. The
above runtime characteristics can impact the actual kernel
performance in different ways on different GPUs. For example,
the HD 5870 is more sensitive to branching than the HD
7970 [3]. Similarly, the NVIDIA C1060 has fewer shared
memory banks and is more sensitive to bank conflicts than the
C2050. Emulators are useful tools to obtain detailed workload
characteristics without extensive source code analysis. How-
ever, the time to emulate the entire kernel is usually orders
of magnitude larger than the time to execute the kernel itself.
Therefore, off-the-shelf emulators are not suitable for online
projection.

1) Mini-Emulation: To alleviate the emulation overhead
problem, we propose a technique named “mini-emulation”,
which employs a modified emulator that functionally emulates
just a single workgroup when invoked. Our assumption is that
workgroups often exhibit similar behavior and share similar
runtime statistics, which is typical of data-parallel workloads.
Subsequently, the aforementioned runtime statistics of the full
kernel can be computed from the number of workgroups
and the statistics of a single workgroup, thereby significantly
reducing the emulation overhead.

To emulate both NVIDIA and AMD devices, we adopt
and modify two third party emulators: GPGPU-Sim [1] for
NVIDIA devices and Multi2sim [20] for AMD devices. We
note that our technique can employ other emulators as long
as they can generate the necessary runtime characteristics and
support the OpenCL frontend. Our modified mini-emulators
accept a kernel binary and a set of parameters as input,
emulates only the first workgroup, ignores the remaining
workgroups and outputs the appropriate statistics. We do not
change the task assignment logic in the emulator, i.e. the single
emulated workgroup still performs the same amount of work
as if it were part of the full kernel having many workgroups.

2) Deriving Full Kernel Characteristics: The mini-
emulator outputs characteristics of only a single workgroup. To
cast performance projections, however, we need to obtain the
characteristics of the full kernel. The scaling factor between
the characteristics of a single workgroup and that of a full
kernel depends on the device occupancy, which in turn depends
on the per-thread register usage and local memory usage,
which can be obtained by inspecting the kernel binary.

Using device occupancy as the scaling factor, we linearly
extrapolate statistics about dynamic instructions and memory
accesses of a single workgroup to that of the full kernel. The
derived characteristics of the full kernel can then be used to
project the kernel’s performance.

D. Online Relative Performance Projection

The execution time of a kernel on a GPU is primarily spent
executing compute instructions and reading and writing to the
global and the local memory. Hence, we follow an approach
similar to [25] in modeling three relevant GPU components for
a given kernel: compute instructions, global memory accesses
and local memory accesses. Moreover, GPUs are designed to
be throughput-oriented devices that aggressively try to hide
memory access latencies, instruction stalls and bank or channel
conflicts by scheduling new work. So, we assume that the ex-
ecution on each of the GPU’s components will be completely
overlapped by the execution on its other components, and the
kernel will be bound only by the longest running component.
We then determine the bounds of a given kernel for all the
desired GPUs and project the relative performances. While
our three component based model is sufficiently accurate for
relative performance projection, it is easily extensible to other
components such as synchronization and atomics for higher
levels of desired accuracy. We will now describe the approach
to independently project the execution times of the three GPU
components.

Compute Instructions (tcompute): When the given
OpenCL workload is run through the emulator, our model
obtains the total number of compute instructions and calculates
the distribution of instruction types from the instruction traces.
The throughput for each type of instruction can be found in
the GPU vendor manuals. We model the total time taken by
the compute instructions as

∑
i(

instructionsi
throughputi

) where i is the
instruction type.

Global Memory Accesses (tglobal): The global memory
performance of a GPU kernel can be affected by the memory
access patterns within a wavefront, because the coalescing
factor can influence the total number of read and write transac-
tions made to the global memory. For example, in an NVIDIA
Fermi GPU, a wavefront (containing 32 threads) can generate
up to thirty two 128B transactions for completely uncoalesced
accesses, but as low as a single transaction if all the accesses
are coalesced and aligned. Hence, there can be up to a 32-
fold difference in the bandwidth depending on the coalescing
factor on the Fermi. From the memory access traces generated
from the emulators, we can deduce the coalescing factor and
the number of memory transactions generated per wavefront.
Since the memory transaction size and coalescing policies
vary with each GPU, we calculate the number of transactions
using device-specific formulas. Since the throughput of global
memory also varies with the device occupancy, we inspect
our per-device characteristics database and use the throughput
value at the given kernel’s occupancy. We model the time taken
by global memory accesses as trasactions×transaction size

throughputoccupancy
.

We calculate the above memory access times separately for

TABLE I: Summary of GPU Devices.

GPU Arch.
Name

Compute
Units

Peak Perf.
(GFlops)

Peak Mem.
BW (GB/s)

Mem.
Transaction
Sizes (B)

Shared
Mem.
Banks

HD5870 Evergreen 20 2720 264 64 32

HD7970 Southern
Islands 32 3790 154 64 32

C1060 Tesla 30 933 102 32,64,128 16
C2050 Fermi 14 1030 144 128 32

read and write transactions and sum them to obtain the total
global memory access time.

Local Memory Accesses (tlocal): The local memory mod-
ule is typically divided into banks and accesses made to same
banks are serialized. On the other hand, accesses made to
different memory banks are serviced in parallel to minimize
the number of transactions. We inspect the GPU emulator’s
local memory traces and calculate the degree of bank conflicts.
Also, we use the local memory throughput at the given kernel’s
occupancy for our calculations. We calculate the total time
taken by the local memory accesses similar to that of global
memory, where we model the read and write transactions
separately and sum them to get the total local memory access
time.

The boundedness of the given kernel is determined by the
GPU component that our model estimates to be the most time
consuming, i.e. max(tcompute, tglobal, tlocal).

V. EXPERIMENTAL METHODOLOGY

In this section, we describe our experimental setup and
present the evaluation of our online performance projection
model.

A. System Setup

Our experimental setup consists of four GPUs: two from
AMD and two from NVIDIA. We used the AMD driver v9.1.1
(fglrx) for the AMD GPUs and the CUDA driver v285.05.23
for the NVIDIA GPUs. The host machines of each GPU were
running 64-bit Linux. We used Multi2sim v4.0.1 for simulating
the OpenCL kernels on AMD devices and GPGPU-Sim v3 for
simulating the NVIDIA GPUs.

Table I presents the architectural details of the GPUs.
Besides the differences in the number of computation units
and memory modules, these devices also represent a variety
of GPU architectures. While the AMD HD 5870 is based on
the previous VLIW-based ‘Evergreen’ architecture, the AMD
HD 7970 belongs to the new Graphics Core Next (GCN)
‘Southern Islands’ architecture, where it moves away from
the VLIW-based processing elements (PEs) to scalar SIMD
units. The architecture of HD 7970 closely resembles the
NVIDIA C2050 (Fermi) architecture in terms of the scalar
SIMD units and the presence of a hardware cache hierarchy.
The key differences between the NVIDIA C1060 ‘Tesla’ and
the NVIDIA C2050 ‘Fermi’ architectures are the hardware
cache support, improved double-precision support, and dual-
wavefront scheduling capabilities on the newer Fermi GPU.

TABLE II: Summary of Applications.

FloydWarshall FastWalshTrans. MatMul (gmem) MatMul (lmem)
Nodes = 192 Size = 1048576 [1024,1024] [1024,1024]

Reduction NBody AESEncryptDecr. Matrix Transpose
Size = 1048576 Particles = 32768 W=1536, H=512 [1024,1024]

P
re

d
ic

te
d

 T
im

e
(N

o
rm

al
iz

ed
)

0.01

0.1

1

10

100
C1060 Gmem

Lmem
Compute

0.01

0.1

1

10

100

1000

Fa
st

 W
al

sh
 T

ra
n

sf
o

rm

Fl
o

yd
 W

ar
sh

al
l

M
at

M
u

l (
G

m
e

m
)

N
b

o
d

y

A
ES

En
cr

yp
tD

ec
ry

p
t

R
ed

u
ct

io
n

M
at

M
u

l (
Lm

e
m

)

M
at

ri
xT

ra
n

sp
o

se

C2050

G G G

C

C

C L G

G G G G G

C

C

C

0.01

0.1

1

10

100
HD 5870

0.01

0.1

1

10

Fa
st

 W
al

sh
 T

ra
n

sf
o

rm

Fl
o

yd
 W

ar
sh

al
l

M
at

M
u

l (
G

m
e

m
)

N
b

o
d

y

A
ES

En
cr

yp
tD

ec
ry

p
t

R
e

d
u

ct
io

n

M
at

M
u

l (
Lm

e
m

)

M
at

ri
xT

ra
n

sp
o

se

HD 7970

G G G

C

L
G

L
G

G G G

C
C

G
L

G

Fig. 3: Analysis of the Performance Limiting Factor. The performance
limiter of an application is denoted at the top of each bar: G for
Gmem, L for Lmem and C for Compute.

Table II summarizes our chosen set of eight benchmarks
from the AMD APP SDK v2.7, which are all written in
OpenCL v1.1. We chose benchmarks that exhibited vary-
ing computation and memory requirements. We apply our
model-based characterization, as described in Section IV-D,
to identify the performance bottlenecks in computation, global
memory throughput, and local memory throughput. Figure 3
presents the projected normalized execution times for the
AMD and NVIDIA devices and characterizes the applications
by the performance limiting components.

Figure 3 shows that our set of benchmarks exhibits a good
mix of application characteristics, where the benchmarks are
bounded by different GPU components. Our model establishes
that the benchmarks FloydWarshall, FastWalsh, MatrixTrans-
pose, MatrixMultiply (global memory version), and NBody
retain their boundedness across all the GPUs, while the
boundedness of other applications changes across some of the
devices. Figure 3 also suggests that the performance limiting
components of AESEncryptDecrypt and MatrixMultiply (local
memory version) are not definitive because the projected
times are very close and within the error threshold. For
example, AESEncryptDecrypt can be classified as either local
memory bound or compute bound for the AMD devices, and
MatrixMultiply (local memory version) can be local memory
or global memory bound for the NVIDIA C1060. However,
the ambiguity in boundedness does not affect the relative
ranking of the GPUs because our model just picks one of
the competing components as the performance limiter.

0.1

1

10

100

Fa
st

 W
al

sh
Tr

an
sf

o
rm

Fl
o

yd
 W

ar
sh

al
l

M
at

ri
xM

u
lt

ip
ly

(G
m

em
)

N
b

o
d

y

A
ES

En
cr

yp
tD

ec
r.

R
ed

u
ct

io
n

M
at

ri
xM

u
lt

ip
ly

(L
m

em
)

M
at

ri
xT

ra
n

sp
o

se

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e

(N

o
rm

al
iz

e
d

 t
o

 C
1

0
6

0
) C1060 C2050 HD 5870 HD 7970

(a) Actual Execution Times.

0
10
20
30
40
50
60
70
80
90
100

0.1

1

10

100

Fa
st

 W
al

sh
Tr

an
sf

o
rm

Fl
o

yd
 W

ar
sh

al
l

M
at

ri
xM

u
lt

ip
ly

(G
m

em
)

N
b

o
d

y

A
ES

En
cr

yp
tD

ec
r.

R
ed

u
ct

io
n

M
at

ri
xM

u
lt

ip
ly

(L
m

em
)

M
at

ri
xT

ra
n

sp
o

se

R
e

la
ti

ve
 E

rr
o

r
(%

)

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e

(N

o
rm

al
iz

e
d

 t
o

 C
1

0
6

0
) C1060 C2050 HD 5870 HD 7970 Error

(b) Projected Execution Times by Single Workgroup Mini-Emulation.

0
10
20
30
40
50
60
70
80
90
100

0.1

1

10

100

Fa
st

 W
al

sh
Tr

an
sf

o
rm

Fl
o

yd
 W

ar
sh

al
l

M
at

ri
xM

u
lt

ip
ly

(G
m

em
)

N
b

o
d

y

A
ES

En
cr

yp
tD

ec
r.

R
ed

u
ct

io
n

M
at

ri
xM

u
lt

ip
ly

(L
m

em
)

M
at

ri
xT

ra
n

sp
o

se

R
e

la
ti

ve
 E

rr
o

r
(%

)

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e

(N

o
rm

al
iz

e
d

 t
o

 C
1

0
6

0
) C1060 C2050 HD 5870 HD 7970 Error

(c) Projected Execution Times by Full Kernel Emulation.

Fig. 4: Accuracy of the Performance Projection Model.

B. Evaluation

Our online performance projection technique needs to esti-
mate the relative execution time among devices within a small
amount of time. Therefore, we evaluate our technique from
two aspects: modeling accuracy and modeling overhead.

1) Accuracy of Performance Projection: In this section, we
evaluate the ability of our technique to project the relative
performance among target GPUs. Figure 4a shows the actual
execution time of all benchmarks on our four test GPUs,
and Figures 4b and 4c show the projected execution times
by the single workgroup mini-emulation and the full kernel
emulation, respectively. All the numbers are normalized to the
performance of NVIDIA C1060.

Optimal Device Selection: The main purpose of our
performance projection model is to help runtime systems
choose the GPU that executes a given kernel in the smallest
amount of time. We define the device selection penalty to be
the |T (B)−T (A)|

T (A) ×100, where T (A) is the runtime of the kernel
over its best performing GPU and T (B) is the runtime of the
kernel over the recommended GPU. Figure 4 shows that our
model picks the most optimal device for all cases except one:
the AES-Encrypt application. In this case, our model picks the
AMD HD 7970, whereas the most optimal device is C2050,

with an optimal device selection penalty of 33.72%.

Relative Performance among Devices: In some cases, the
runtime system may want to perform a global optimization to
schedule multiple kernels over a limited number of GPUs. In
those circumstances, the runtime may need information about
the kernel’s relative performance among the GPUs in addition
to the optimal GPU for each kernel. This helps the runtime
evaluate the tradeoffs of various task-device mappings and
make judicious decisions in scheduling multiple kernels.

We measure the error of the relative performance as follows.
Let us consider the kernel’s actual performance on the four
GPUs as one 4D vector, Tactual. Similarly, the kernel’s pro-
jected performance on the four GPUs can then be represented
as another 4D vector, Tprojected. T ′actual and T ′projected are
the normalized, unit-length vectors for Tactual and Tprojected,
respectively. They reflect the relative performance among the
GPUs. We then formulate the error metric of our relative per-
formance projection to be

||T ′
actual−T

′
projected||√
2

× 100%, which
ranges from 0% to 100% and correlates with the Euclidean
distance between T ′actual and T ′projected. Note that

√
2 is the

maximum possible Euclidean distance between unit vectors
with non-negative coordinates. For the single workgroup mini-
emulation mode, the average relative error of our model across
all kernels in our benchmark suite is 19.8%, with the relative
errors for the individual applications ranging from 10% to at
most 40%. On the other hand, if the full-kernel emulation
mode is used, then the average relative error becomes 16.7%.

Limitation of Our Performance Projection Model: We
note that the single workgroup mini-emulation mode does
not change the individual application-specific relative errors
from the full kernel emulation for most of the applications,
with the exception of Floyd Warshall. A key requirement for
the mini-emulation mode is that all the workgroups of the
kernel must be independent of each other and that all the
workgroups will execute in approximately the same amount
of time with the same number of memory transactions and
instructions. The Floyd Warshall application comprises a series
of converging kernels, where the input of one kernel is
dependent on the output of the previous kernel; that is, there
is data dependence between iterations. Since only a single
workgroup is being emulated in the mini-emulation mode, all
the data elements are not guaranteed to be updated by the
program iterations, thereby causing the memory and compute
transactions to change over iterations. Since Floyd Warshall
is a global memory bound application, we compared the
projected global memory transactions of the mini- emulation
mode and the full kernel emulation modes for similar global
memory bound kernels (Figure 5). We see that for the Floyd
Warshall application, the projected global memory transactions
using the mini-emulation mode is 2.5× less than the projected
transactions from the full kernel emulation mode for the C1060
GPU. For the C2050 GPU, this difference is less: 10%. The
data-dependent and iterative nature of the Floyd Warshall
application introduces errors into our mini-emulation–based
projection model, which may cause our model to pick the

TABLE III: Performance Model Overhead Reduction – Ratio of Full-Kernel Emulation Time to Single Workgroup Mini-Emulation Time.

Application Fast Walsh Transform Floyd Warshall MatMul (Gmem) Nbody AES Encrypt Reduction MatMul (Lmem) Matrix Transpose
C1060 2882.1 172.7 267.9 3.9 710.4 1710.7 240.7 554.2
C2050 2772.7 182.6 337.4 4.1 784.0 1709.0 196.6 556.1

HD 5870 2761.0 248.5 219.1 4.7 623.4 2629.1 201.5 469.2
HD 7970 2606.9 229.3 217.7 4.0 581.4 2700.0 209.6 457.1

0.E+00
2.E+06
4.E+06
6.E+06
8.E+06
1.E+07
1.E+07
1.E+07

Fa
st

 W
al

sh
Tr

an
sf

o
rm

(C
2

0
5

0
)

Fa
st

 W
al

sh
Tr

an
sf

o
rm

(C
1

0
6

0
)

Fl
o

yd
 W

ar
sh

al
l

(C
2

0
5

0
)

Fl
o

yd
 W

ar
sh

al
l

(C
1

0
6

0
)

M
at

ri
xM

u
lt

ip
ly

(G
m

em
 o

n
C

2
0

5
0

)

M
at

ri
xM

u
lt

ip
ly

(G
m

em
 o

n
C

1
0

6
0

)P
ro

je
ct

e
d

 G
lo

b
al

 M
e

m
o

ry

Tr
an

sa
ct

io
n

s

Full Kernel Emulation

Single Workgroup Mini-Emulation

Fig. 5: Global Memory Transactions for Select Applications.

wrong GPU in some cases.
2) Overhead of Performance Projection: The overhead of

our online projection includes time spent in online workload
characterization as well as casting the projected performance
for each device. Because hardware characterization is done
offline, once for each hardware, it does not incur any overhead
at the time of projection. Among the two sources of overhead,
casting performance projection need only calculate a few
scalar equations; it has a constant and negligible overhead.
The major source of overhead comes from the online work-
load characterization using mini-emulation, which functionally
emulates one workgroup to collect kernel statistics.

The state-of-the-art technique to obtain detailed runtime
statistics of a kernel is full kernel emulation. As Table III
shows, our mini-emulation approach reduces the emulation
overhead by orders of magnitude. Meanwhile, it obtains the
same level of details about runtime characteristics. In fact,
the mini-emulation overhead is often comparable to kernel
execution time with small or moderate-sized inputs and will be
further dwarfed if the kernel operates over a large data set, as is
often the case for systems with virtual GPU platforms. Such a
low overhead makes it worthwhile to employ our technique to
schedule kernels with large data sets; it also allows the runtime
system to evaluate the task-device mapping in parallel with
the workload execution, so that it can migrate a long running
workload in time. Below we further study the relationship
between input data size and the overhead of mini-emulation.

Impact of Input Data Sizes: Figure 6 shows the per-
formance impact of the input data size on the full-kernel
emulation and single workgroup mini-emulation overheads.
Figure 6a shows that the full-kernel emulation overhead for the
reduction kernel increases with data size. The reduction kernel
launches as many workitems as the data elements, thereby
having a one-to-one mapping between the workitem and the
data element. As the data size grows, the number of workitems
also increases, so that each workitem and workgroup has a
constant amount of computation. Since each workitem of the

kernel is simulated sequentially on the CPU, the overhead of
the full-kernel emulation also increases for larger data sizes.
On the other hand, our mini-emulation scheme simulates just
a single workgroup to collect the kernel profile irrespective of
the number of data elements. That is why we see a constant
overhead for the mini-emulation scheme for reduction kernel.

Figure 6b shows that both the full kernel emulation overhead
and the mini-emulation overhead for the matrix multiplication
kernel increases with data size. However, we observe that
the rate of increase of overhead (slope of the line) is linear
for the mini-emulation mode, while it is cubic for the full
kernel emulation mode. The matrix multiply kernel launches
as many workitems as the output matrix size, but unlike the
reduction kernel, each workitem and workgroup do not have a
constant amount of computation. The load on each workitem
increases linearly with the matrix length (we choose only
square matrices for the sake of simplicity). This is why we
see that the mini-emulation overhead increases linearly with
the matrix length for the matrix multiplication kernel.

However, the actual GPU execution time itself increases
in a cubic manner with the matrix length; thus, our mini-
emulation mode is asymptotically better and will take less
time than running the kernel on the device for larger data sizes.
Figure 7 shows that as the matrix length increases, the GPU
execution time approaches the kernel mini-emulation time for
the NVIDIA C2050 GPU. We were unable to store even larger
matrices on the GPU’s 3 GB global memory; but we can
infer that for even larger matrix sizes, our mini-emulation
technique will outperform the actual GPU execution. On the
other hand, if the mini-emulation time remains constant, as
with the reduction kernel, then it is obvious that the mini-
emulation approach will cause the least overhead for larger
data sizes, thereby making our model amenable to dynamic
decision-making runtime systems.

VI. CONCLUSION

We proposed, implemented, and evaluated an online perfor-
mance projection framework for optimal GPU device selec-
tion. The applications of our framework include runtime sys-
tems and virtual GPU environments that dynamically schedule
and migrate GPU workloads in cluster environments. Our
technique is based on offline device profiling and online
kernel characterization. To automatically obtain runtime kernel
statistics with an asymptotically lower overhead, we propose
the mini-emulation technique that functionally simulates a
single workgroup to collect per-workgroup statistics, which
can then be used to calculate full-kernel statistics. Our tech-
nique is especially suitable for online performance projection
for kernels with large data sets. Our experiments with GPU

0.01

0.1

1

10

100

65536 131072 262144 524288 1048576

K
e

rn
e

l E
m

u
la

ti
o

n
 T

im
e

 (
s)

Data Size (x)

Full Kernel Emulation (C2050)

Single Workgroup Emulation (C2050)

Full Kernel Emulation (HD 7970)

Single Workgroup Emulation (HD 7970)

(a) Kernel: Reduction.

0.1

1

10

100

1000

10000

64 128 256 512 1024

K
e

rn
e

l E
m

u
la

ti
o

n
 T

im
e

 (
s)

Data Size (x = y = z)

Full Kernel Emulation (C2050)

Single Workgroup Emulation (C2050)

Full Kernel Emulation (HD 7970)

Single Workgroup Emulation (HD 7970)

(b) Kernel: Matrix Multiplication (Using Local Memory).

Fig. 6: Kernel Emulation Overhead – Full Kernel Emulation vs.
Single Workgroup Mini-Emulation.

0.0001

0.001

0.01

0.1

1

10

100

64 128 256 512 1024 2048 4096 8192

K
e

rn
e

l E
xe

cu
ti

o
n

 T
im

e
 (

s)

Data Size (x = y = z)

Actual Device Execution (C2050)

Single Workgroup Emulation (C2050)

Fig. 7: Kernel Emulation Overhead – Single Workgroup Mini-
Emulation vs. Actual Device Execution.

devices of different vendors show our technique is able to
select the optimal device in most cases.

Acknowledgments

This work was supported in part by the U.S. DOE, Of-
fice of Science, Advanced Scientific Computing Research,
under contract DE-AC02-06CH11357, DE-AC02-06CH11357,
by the U.S. DOE contract DE-EE0002758 via the American
Recovery and Reinvestment Act of 2009, by the VT College
of Engineering SCHEV grant, by the NVIDIA CUDA Re-
search Center Program, a NVIDIA Professor Partnership and
a NVIDIA Graduate Fellowship.

REFERENCES

[1] T. Aamodt et al., “GPGPU-Sim 3.x manual,” 2012.
[2] A. M. Aji, M. Daga, and W. Feng, “Bounding the effect of partition

camping in GPU kernels,” in International Conference on Computing
Frontiers (CF). ACM, 2011.

[3] AMD. APP SDK v2.7. [Online]. Available:
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/
amd-accelerated-parallel-processing-app-sdk/

[4] S. Borkar and A. A. Chien, “The future of microprocessors,” Commu-
nications of the ACM, vol. 54, no. 5, 2011.

[5] M. Boyer, K. Skadron, and W. Weimer, “Automated dynamic analysis
of CUDA programs,” in Proceedings of 3rd Workshop on Software Tools
for MultiCore Systems, 2010.

[6] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of
sparse matrix-vector multiply on GPUs,” in ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), 2010.

[7] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (SHOC) benchmark suite,” in Proc. of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units. ACM,
2010.

[8] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: A dynamic
compiler for bulk-synchronous applications in heterogeneous systems,”
in International Conference on Parallel Architectures and Compilation
Techniques (PACT). ACM, 2010.

[9] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. Quintana-Orti, “rCUDA:
Reducing the number of GPU-based accelerators in high performance
clusters,” in International Conference on High Performance Computing
and Simulation (HPCS). IEEE, 2010.

[10] S. Hong and H. Kim, “An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness,” in International
Symposium on Computer Architecture (ISCA). ACM, 2009.

[11] Khronos Group Std., “The OpenCL Specification, Version 1.0,”
http://www.khronos.org/registry/cl/specs/opencl-1.0.33.pdf, 2009.

[12] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, A. Fasih,
A. Sarma, D. Nanongkai, G. Pandurangan, P. Tetali et al., “Pycuda:
Gpu run-time code generation for high-performance computing,” Arxiv
preprint arXiv, vol. 911, 2009.

[13] B. C. Lee and D. M. Brooks, “Accurate and efficient regression modeling
for microarchitectural performance and power prediction,” in Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2006.

[14] J. Meng, V. A. Morozov, K. Kumaran, V. Vishwanath, and T. D. Uram,
“GROPHECY: GPU performance projection from CPU code skeletons,”
in International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), 2011.

[15] J. Meng and K. Skadron, “Performance modeling and automatic ghost
zone optimization for iterative stencil loops on GPUs,” in International
Conference on Supercomputing. ACM, 2009.

[16] NVIDIA Corporation, “NVIDIA Corporation. NVIDIA Visual Profiler,”
http://developer.nvidia.com/content/nvidiavisualprofiler.

[17] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A.
Stratton, and W.-m. W. Hwu, “Program optimization space pruning for
a multithreaded GPU,” in IEEE/ACM international symposium on Code
Generation and Optimization (CGO). ACM, 2008.

[18] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “GPUPerf: A performance
analysis framework for identifying potential benefits in GPGPU appli-
cations,” in ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2012.

[19] V. Taylor, X. Wu, and R. Stevens, “Prophesy: An infrastructure for
performance analysis and modeling of parallel and grid applications,”
SIGMETRICS Perform. Eval. Rev., vol. 30, no. 4, 2003.

[20] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “ Multi2Sim: A
simulation framework for CPU-GPU computing ,” in International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
2012.

[21] V. Volkov and J. Demmel, “Benchmarking GPUs to Tune Dense Linear
Algebra,” in ACM/IEEE Conference on Supercomputing (ICS), 2008.

[22] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU microarchitecture through
microbenchmarking,” in International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2010.

[23] S. Xiao, P. Balaji, J. Dinan, R. Thakur, S. Coghlan, H. Lin, G. Wen,
J. Hong, and W.-c. Feng, “Transparent accelerator migration in a
virtualized GPU environment,” in IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), 2012.

[24] S. Xiao, P. Balaji, Q. Zhu, R. Thakur, S. Coghlan, H. Lin, G. Wen,
J. Hong, and W.-c. Feng, “VOCL: An optimized environment for trans-
parent virtualization of graphics processing units,” in IEEE Innovative
Parallel Computing (InPar), 2012.

[25] Y. Zhang and J. D. Owens, “A quantitative performance analysis
model for GPU architectures,” in International Symposium on High-
Performance Computer Architecture (HPCA), 2011.

