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ABSTRACT
Scientific computing applications are quickly adapting to leverage
the massive parallelism of GPUs in large-scale clusters. However,
the current hybrid programming models require application devel-
opers to explicitly manage the disjointed host and GPU memo-
ries, thus reducing both efficiency and productivity. Consequently,
GPU-integrated MPI solutions, such as MPI-ACC and MVAPICH2-
GPU, have been developed that provide unified programming inter-
faces and optimized implementations for end-to-end data commu-
nication among CPUs and GPUs. To date, however, there lacks
an in-depth performance characterization of the new optimization
spaces or the productivity impact of such GPU-integrated commu-
nication systems for scientific applications.

In this paper, we study the efficacy of GPU-integrated MPI on
scientific applications from domains such as epidemiology simula-
tion and seismology modeling, and we discuss the lessons learned.
We use MPI-ACC as an example implementation and demonstrate
how the programmer can seamlessly choose between either the
CPU or the GPU as the logical communication end point, depend-
ing on the application’s computational requirements. MPI-ACC
also encourages programmers to explore novel application-specific
optimizations, such as internode CPU-GPU communication with
concurrent CPU-GPU computations, which can improve the over-
all cluster utilization. Furthermore, MPI-ACC internally imple-
ments scalable memory management techniques, thereby decou-
pling the low-level memory optimizations from the applications
and making them scalable and portable across several architec-
tures. Experimental results from a state-of-the-art cluster with hun-
dreds of GPUs show that the MPI-ACC–driven new application-
specific optimizations can improve the performance of an epidemi-
ology simulation by up to 61.6% and the performance of a seis-
mology modeling application by up to 44%, when compared with
traditional hybrid MPI+GPU implementations. We conclude that
GPU-integrated MPI significantly enhances programmer produc-
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tivity and has the potential to improve the performance and porta-
bility of scientific applications, thus making a significant step to-
ward GPUs being “first-class citizens” of hybrid CPU-GPU clus-
ters.

Categories and Subject Descriptors: C.1.3 [Processor Architec-
tures]: Other Architecture Styles – Heterogeneous (hybrid) sys-
tems; D.1.3 [Programming Techniques]: Concurrent Programming
– Parallel programming

Keywords: MPI; GPGPU; MPI-ACC; Computational Epidemiol-
ogy; Seismology

1. INTRODUCTION
Graphics processing units (GPUs) have gained widespread use

as general-purpose computational accelerators and have been stud-
ied extensively across a broad range of scientific applications [13,
20, 25, 30]. The presence of GPUs in high-performance computing
(HPC) clusters has also increased rapidly because of their unprece-
dented performance-per-power and performance-per-price ratios.
In fact, 62 of today’s top 500 fastest supercomputers (as of Novem-
ber 2012) employ general-purpose accelerators, 53 of which are
GPUs [4].

While GPU-based clusters possess tremendous theoretical peak
performance because of their inherent massive parallelism, the sci-
entific codes that are hand-tuned and optimized for such architec-
tures often achieve poor parallel efficiency [4, 9]. The reason is
partially that data must be explicitly transferred between the dis-
joint memory spaces of the CPU and GPU, a process that in turn
fragments the data communication model and restricts the degree
of communication overlap with computations on the CPU and the
GPU, thus effectively underutilizing the entire cluster. Also, signif-
icant programmer effort would be required to recover this perfor-
mance through vendor- and system-specific optimizations, includ-
ing GPU-Direct [3] and node and I/O topology awareness. Con-
sequently, GPU-aware extensions to parallel programming mod-
els, such as the Message Passing Interface (MPI), have recently
been developed, for example, MPI-ACC [6, 19] and MVAPICH2-
GPU [28]. While such libraries provide a unified and highly effi-
cient data communication mechanism for point-to-point, one-sided,
and collective communications among CPUs and GPUs, an in-depth
characterization of their impact on the execution profiles of scien-
tific applications is yet to be performed. In this paper, we study
the efficacy of GPU-integrated MPI libraries for GPU-accelerated



scientific applications, and we discuss the lessons learned. Our spe-
cific contributions are the following:

• We perform an in-depth analysis of hybrid MPI+GPU codes
from two scientific application domains, namely, computa-
tional epidemiology [7, 9] and seismology modeling [23],
and we identify the inherent inefficiencies in their fragmented
data movement and execution profiles.

• We use MPI-ACC as an example GPU-integrated MPI solu-
tion and explore new design spaces for creating novel appli-
cation specific optimizations.

• We evaluate our findings on HokieSpeed, a state-of-the-art
hybrid CPU-GPU cluster housed at Virginia Tech. We use
HPCToolkit [5], a performance analysis and visualization
tool for parallel programs, to understand the performance and
productivity tradeoffs of the different optimizations that were
made possible by MPI-ACC.

We demonstrate how MPI-ACC can be used to easily explore
and evaluate new optimization strategies. In particular, we overlap
MPI-ACC CPU-GPU communication calls with computation on
the CPU as well as the GPU, thus resulting in better overall cluster
utilization. Moreover, we demonstrate how MPI-ACC provides the
flexibility to the programmer to seamlessly choose between CPU or
GPU to execute the next task at hand, thus enhancing programmer
productivity. For example, in the default MPI+GPU programming
model, the CPU is traditionally used for prerequisite tasks, such
as data marshaling or data partitioning, before the GPU computa-
tion. In contrast, MPI-ACC provides a logical integrated view of
CPUs and GPUs so that the programmer can choose to move the
raw data to the remote GPU itself, then execute the prerequisite
tasks and the actual computation as consecutive GPU kernels. In
addition, MPI-ACC internally implements scalable memory man-
agement techniques, thereby decoupling the low-level memory op-
timizations from the applications and making them scalable and
portable across several architecture generations. In summary, we
show that with MPI-ACC, the programmer can easily evaluate and
quantify the tradeoffs of many communication-computation pat-
terns and choose the ideal strategy for the given application and
machine configuration. Our experimental results on HokieSpeed
indicate that MPI-ACC–driven optimizations and the newly created
communication-computation patterns can help improve the perfor-
mance of the epidemiology simulation by 14.6% to up to 61.6%
and the seismology modeling application by up to 44% over the
traditional hybrid MPI+GPU models.

The rest of the paper is organized as follows. Section 2 in-
troduces the current MPI and GPU programming models and de-
scribes the current hybrid application programming approaches for
CPU-GPU clusters. Sections 3 and 4 explain the execution profiles
of the epidemiology and seismology modeling applications, their
inefficient default MPI+GPU designs, and the way GPU-integrated
MPI can be used to optimize their performances while improving
productivity. Section 5 discusses related work, and Section 6 sum-
marizes our conclusions.

2. APPLICATION DESIGN FOR HYBRID
CPU-GPU SYSTEMS

2.1 Default MPI+GPU Design
Graphics processing units have become more amenable to general-

purpose computations over the past few years, largely as a result of

1 computation_on_GPU(gpu_buf);
2 cudaMemcpy(host_buf, gpu_buf, size, D2H ...);
3 MPI_Send(host_buf, size, ...);

(a) Basic hybrid MPI+GPU with synchronous execution – high
productivity and low performance.

1 int processed[chunks] = {0};
2 for(j=0;j<chunks;j++) {
3 computation_on_GPU(gpu_buf+offset, streams[j]);
4 cudaMemcpyAsync(host_buf+offset, gpu_buf+offset,
5 D2H, streams[j], ...);
6 }
7 numProcessed = 0; j = 0; flag = 1;
8 while (numProcessed < chunks) {
9 if(cudaStreamQuery(streams[j] == cudaSuccess) {

10 MPI_Isend(host_buf+offset,...); /* start MPI */
11 numProcessed++;
12 processed[j] = 1;
13 }
14 MPI_Testany(...); /* check progress */
15 if(numProcessed < chunks) /* find next chunk */
16 while(flag) {
17 j=(j+1)%chunks; flag=processed[j];
18 }
19 }
20 MPI_Waitall();

(b) Advanced hybrid MPI+GPU with pipelined execution – low
productivity and high performance.

1 for(j=0;j<chunks;j++) {
2 computation_on_GPU(gpu_buf+offset, streams[j]);
3 MPI_Isend(gpu_buf+offset, ...);
4 }
5 MPI_Waitall();

(c) GPU-integrated MPI with pipelined execution – high pro-
ductivity and high performance.

Figure 1: Designing hybrid CPU-GPU applications. For the man-
ual MPI+GPU model with OpenCL, clEnqueueReadBuffer and clEn-
queueWriteBuffer would be used in place of cudaMemcpy. For GPU-
integrated MPI models such as MPI-ACC, the code remains the same for
all platforms (CUDA or OpenCL) and supported devices.

the more programmable GPU hardware and increasingly mature
GPU programming models, such as CUDA [2] and OpenCL [15].
Today’s discrete GPUs reside on PCIe and are equipped with very
high-throughput GDDR5 device memory on the GPU cards. To
fully utilize the benefits of the ultra-fast memory subsystem, how-
ever, current GPU programmers must explicitly transfer data be-
tween the main memory and the device memory across PCIe, by
issuing direct memory access (DMA) calls such as cudaMemcpy
or clEnqueueWriteBuffer.

The Message Passing Interface (MPI) is one of the most widely
adopted parallel programming models for developing scalable, dis-
tributed memory applications. MPI-based applications are typi-
cally designed by identifying parallel tasks and assigning them to
multiple processes. In the default hybrid MPI+GPU programming
model, the compute-intensive portions of each process are offloaded
to the local GPU for further acceleration. Data is transferred be-
tween processes by explicit messages in MPI. However, the current
MPI standard assumes a CPU-centric single-memory model for
communication. The default MPI+GPU programming model em-
ploys a hybrid two-staged data movement model, where data copies
are performed between main memory and the local GPU’s device
memory that are preceded and/or followed by MPI communication



between the host CPUs (Figures 1a and 1b). This is the norm seen
in most GPU-accelerated MPI applications today [9, 10, 12]. The
basic approach (Figure 1a) has less complex code, but the blocking
and staged data movement severely reduce performance because of
the inefficient utilization of the communication channels. On the
other hand, overlapped communication via pipelining efficiently
utilizes all the communication channels but requires significant pro-
grammer effort, in other words, low productivity. Moreover, this
approach leads to tight coupling between the high-level applica-
tion logic and low-level data movement optimizations; hence, the
application developer has to maintain several code variants for dif-
ferent GPU architectures and vendors. In addition, construction of
such a sophisticated data movement scheme above the MPI runtime
system incurs repeated protocol overheads and eliminates opportu-
nities for low-level optimizations. Moreover, users who need high
performance are faced with the complexity of leveraging a multi-
tude of platform-specific optimizations that continue to evolve with
the underlying technology (e.g, GPUDirect [3]).

2.2 Application Design Using GPU-Integrated
MPI Frameworks

To bridge the gap between the disjointed MPI and GPU program-
ming models, researchers have recently developed GPU-integrated
MPI solutions such as our MPI-ACC [6] framework and MVAPICH-
GPU [28] by Wang et al. These frameworks provide a unified MPI
data transmission interface for both host and GPU memories; in
other words, the programmer can use either the CPU buffer or the
GPU buffer directly as the communication parameter in MPI rou-
tines. The goal of such GPU-integrated MPI platforms is to decou-
ple the complex, low-level, GPU-specific data movement optimiza-
tions from the application logic, thus providing the following ben-
efits: (1) portability: the application can be more portable across
multiple accelerator platforms; and (2) forward compatibility: with
the same code, the application can automatically achieve perfor-
mance improvements from new GPU technologies (e.g., GPUDi-
rect RDMA) if applicable and supported by the MPI implemen-
tation. In addition to enhanced programmability, transparent ar-
chitecture specific and vendor specific performance optimizations
can be provided within the MPI layer. For example, MPI-ACC
enables automatic data pipelining for internode communication,
NUMA affinity management, and direct GPU-to-GPU data move-
ment (GPUDirect) for all applicable intranode CUDA communica-
tions [6, 19], thus providing a heavily optimized end-to-end com-
munication platform.

Using GPU-integrated MPI, programmers only need to write GPU
kernels and regular host CPU codes for computation and invoke
the standard MPI functions for CPU-GPU data communication,
without worrying about the aforementioned complex data move-
ment optimizations of the diverse accelerator technologies (Fig-
ure 1c). In this paper, we design, analyze, and evaluate GPU-
accelerated scientific applications by using MPI-ACC as the chosen
GPU-integrated MPI platform. However, our findings on the effi-
cacy of MPI-ACC can directly be applied to other GPU-integrated
MPI solutions without loss of generality.

3. CASE STUDY: EPIDEMIOLOGY SIMU-
LATION

GPU-EpiSimdemics [7, 9] is a high-performance, agent-based
simulation program for studying the spread of epidemics through
large-scale social contact networks and the coevolution of disease,
human behavior, and the social contact network. The participating
entities in GPU-EpiSimdemics are persons and locations, which

are represented as a bipartite graph (Figure 2a) and interact with
each other iteratively over a predetermined number of iterations (or
simulation days). The output of the simulation is the relevant dis-
ease statistics of the contagion diffusion, such as the total number of
infected persons or an infection graph showing who infected whom
and the time and location of the infection.

3.1 Phases
Each iteration of GPU-EpiSimdemics consists of two phases:

computeVisits and computeInteractions. During the computeVis-
its phase, all the person objects of every processing element (or
PE) first determine the schedules for the current day, namely, the
locations to be visited and the duration of each visit. These visit
messages are sent to the destination location’s host PE (Figure 2a).
Computation of the schedules is overlapped with communication
of the corresponding visit messages.

In the computeInteractions phase, each PE first groups the re-
ceived visit messages by their target locations. Next, each PE com-
putes the probability of infection transmission between every pair
of spatially and temporally colocated people in its local location
objects (Figure 2b), which determines the overall disease spread
information of that location. The infection transmission function
depends on the current health states (e.g., susceptible, infectious,
latent) of the people involved in the interaction (Figure 2c) and the
transmissibility factor of the disease. These infection messages are
sent back to the “home” PEs of the infected persons. Each PE,
upon receiving its infection messages, updates the health states of
the infected individuals, which will influence their schedules for
the following simulation day. Thus, the messages that are com-
puted as the output of one phase are transferred to the appropriate
PEs as inputs of the next phase of the simulation. The system is
synchronized by barriers after each simulation phase.

3.2 Computation-Communication Patterns
and MPI-ACC-Driven Optimizations

In GPU-EpiSimdemics, each PE in the simulation is implemented
as a separate MPI process. Also, the computeInteractions phase
of GPU-EpiSimdemics is offloaded and accelerated on the GPU
while the rest of the computations are executed on the CPU [9].1

In accordance with the GPU-EpiSimdemics algorithm, the output
data elements from the computeVisits phase (i.e., visit messages)
are first received over the network, then merged, grouped, and pre-
processed before the GPU can begin the computeInteractions phase
of GPU-EpiSimdemics.

GPU-EpiSimdemics has two GPU computation modes: exclu-
sive GPU computation, where all the visit messages are processed
on the GPU, and cooperative CPU-GPU computation, where the
visit messages are partitioned and concurrently processed on both
the GPU and its host CPU. For each mode, we discuss the opti-
mizations and tradeoffs. We also describe how MPI-ACC can be
used to further optimize GPU-EpiSimdemics in both computation
modes.

3.2.1 Exclusive GPU computation mode
In the exclusive GPU computation mode, all incoming visit mes-

sages are completely executed on the GPU during the computeIn-
teractions phase. We present three optimizations with their trade-
offs.

1The current implementation of GPU-EpiSimdemics assumes one-
to-one mapping of GPUs to MPI processes.
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Figure 2: Computational epidemiology simulation model (figure adapted from [7]).
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(b) Cooperative CPU-GPU computation mode. Left: Manual
MPI+CUDA optimizations, where data partitioning happens on the
CPU. Right: New MPI-ACC–enabled optimizations, where the data
distribution happens on the GPU. The preprocessing of the GPU data
is still overlapped with communication.

Figure 3: Creating new optimizations for GPU-EpiSimdemics using MPI-ACC.

Basic MPI+GPU communication-computation pattern.

Internode CPU-GPU data communication: In the naïve data
movement approach, each PE first receives all the visit messages
in the CPU’s main memory during the computeVisits phase, then
transfers the aggregate data to the local GPU (device) memory
across the PCIe bus at the beginning of the computeInteractions
phase. The typical all-to-all or scatter/gather type of operation
is not feasible because the number of pairwise visit message ex-
changes is not known beforehand in GPU-EpiSimdemics. Thus,
each PE preallocates and registers fixed-sized persistent buffer frag-
ments with the MPI_Recv_init call and posts the receive re-
quests by subsequently calling MPI_Start_all. Whenever a
buffer fragment is received, it is copied into a contiguous visit vec-
tor in the CPU’s main memory. The computeInteractions phase of
the simulation first copies the aggregated visit vector to the GPU
memory. While the CPU-CPU communication of visit messages is
somewhat overlapped with their computation on the source CPUs,
the GPU and the PCIe bus will remain idle until the visit messages
are completely received, merged, and ready to be transferred to the
GPU.

Preprocessing phase on the GPU: As a preprocessing step in the
computeInteractions phase, we modify the data layout of the visit

messages to be more amenable to the massive parallel architecture
of the GPU [9]. Specifically, we unpack the visit message structures
to a 2D time-bin matrix, where each row of the matrix represents a
person-location pair and the cells in the row represents fixed time
slots of the day: that is, each visit message corresponds to a sin-
gle row in the person-timeline matrix. Depending on the start time
and duration of a person’s visit to a location, the corresponding row
cells are marked as visited. The preprocessing logic of data unpack-
ing is implemented as another GPU kernel at the beginning of the
computeInteractions phase. The matrix data representation enables
a much better SIMDization of the computeInteractions code execu-
tion, which significantly improves the GPU performance. However,
we achieve the benefits at the cost of a larger memory footprint for
the person-timeline matrix, as well as a computational overhead for
the data unpacking.

MPI-ACC–enabled optimizations.
In the basic version of GPU-EpiSimdemics, the GPU remains

idle during the internode data communication phase of compute-
Visits, whereas the CPU remains idle during the preprocessing of
the computeInteractions phase on the GPU. We use the perfor-
mance analysis tool HPCTOOLKIT to quantify the resource idle-
ness and identify potential code regions for MPI-ACC optimiza-



tion (Section 3.3: Figure 6a). With MPI-ACC, during the com-
puteVisits phase, we transfer the visit message fragments from the
source PE directly to the destination GPU’s device memory. Inter-
nally, MPI-ACC may pipeline the internode CPU-GPU data trans-
fers via the host CPU’s memory or use direct GPU transfer tech-
niques (e.g., GPUDirect RDMA), if possible, but these details are
hidden from the programmer. The fixed-sized persistent buffer
fragments are now preallocated on the GPU and registered with
the MPI_Recv_init call, and the contiguous visit vector is not
created in the GPU memory itself. Furthermore, as soon as a PE
receives the visit buffer fragments on the GPU, we immediately
launch small GPU kernels that preprocess on the received visit
data, that is, unpack the partial visit messages to the 2D data ma-
trix layout (Figure 3a). These preprocessing kernels execute asyn-
chronously with respect to the CPU in a pipelined fashion and thus
are completely overlapped by the visit data generation on the CPU
and the internode CPU-GPU data transfers. In this way, the data
layout transformation overhead is completely hidden and removed
from the computeInteractions phase. Moreover, the CPU, GPU,
and the interconnection networks are all kept busy, performing ei-
ther data transfers or the preprocessing execution.

MPI-ACC’s internal pipelined CPU-GPU data transfer largely
hides the PCIe transfer latency during the computeVisits phase of
GPU-EpiSimdemics. It still adds a non-negligible cost to the over-
all communication time when compared with the CPU-CPU data
transfers of the default MPI+GPU implementation. However, our
experimental results show that the gains achieved in the computeIn-
teractions phase due to the preprocessing overlap outweigh the
communication overheads of the computeVisits phase for most com-
binations of system configurations and input data sizes.

Advanced MPI+GPU optimizations without using
MPI-ACC.

MPI-ACC enables efficient communication-computation over-
lap by pipelining the CPU-GPU data transfers with the preprocess-
ing stages. However, the same optimizations can be implemented
at the application level without using MPI-ACC, as follows. The
fixed-sized persistent receive buffer fragments are preallocated on
the CPU itself and registered with the MPI_Recv_init call, but
the contiguous visit vector resides in GPU memory. Whenever a
PE receives a visit buffer fragment on the CPU, we immediately
enqueue an asynchronous CPU-GPU data transfer to the contigu-
ous visit vector and also launch the small GPU preprocessing ker-
nels. However, asynchronous CPU-GPU data transfers require the
CPU receive buffer fragments to be nonpageable (pinned) memory.
Without MPI-ACC, the pinned memory footprint increases with
the number of processes, thus reducing the available pageable CPU
memory and leading to poor CPU performance [26]. On the other
hand, MPI-ACC internally creates and manages a constant pool
of pinned memory for CPU-GPU transfers, which enables better
scaling. Moreover, MPI-ACC exposes a natural interface to com-
municate with the target device, be it either the CPU or the GPU.

3.2.2 Cooperative CPU-GPU computation mode
The exclusive GPU computation mode achieved significant over-

lap of communication with computation during the preprocessing
phase. When the infection calculation of the computeInteractions
phase was executed on the GPU, however, the CPU remained idle.
We again used HPCTOOLKIT to analyze the resource idleness and
identified opportunities for optimizations. Consequently, in the co-
operative computation mode, all the incoming visit messages are
partitioned and processed concurrently on the GPU and its host
CPU during the computeInteractions phase, an approach that gives

better parallel efficiency. Again, we present three optimizations
with their tradeoffs.

Basic MPI+GPU with data partitioning on CPU.
In the MPI+GPU programming model, the incoming visit vec-

tor on the CPU is not transferred in its entirety to the GPU. In-
stead, the visit messages are first grouped by their target locations
into buckets. Within each visit group, the amount of computation
increases quadratically with the group size because it is an all-to-
all person-person interaction computation within a location. Each
visit group can be processed independently of the others but has to
be processed by the same process or thread (CPU) or thread block
(GPU). Therefore, data partitioning in GPU-EpiSimdemics is done
at the granularity of visit groups and not individual visit messages.

At a high level, the threshold for data partitioning is chosen
based on the computational capabilities of the target processors
(e.g., GPUs get more populous visit groups for higher concurrency),
so that the execution times on the CPU and the GPU remain ap-
proximately the same. The visit messages that are marked for GPU
execution are then grouped and copied to the GPU device memory,
while the CPU visit messages are grouped and remain on the host
memory (Figure 3b).

Preprocessing and computation phases: In this computation
mode, preprocessing, in other words, unpacking the visit structure
layout to the person-timeline matrix layout, is concurrently exe-
cuted on the CPU and GPU on their local visit messages (Fig-
ure 3b). Next, the CPU and GPU simultaneously execute com-
puteInteractions and calculate the infections.

MPI-ACC–enabled optimizations with data partition-
ing on GPU.

In the MPI-ACC model, the computation of the computeInterac-
tions phase is executed on the CPU and GPU concurrently. While
this approach leads to better resource utilization, the data partition-
ing logic itself and the CPU-GPU data transfer of the partitioned
data add nontrivial overheads that may offset the benefits of concur-
rent execution. However, our results in Section 3.3 indicate that ex-
ecuting the data partitioning logic on the GPU is about 53% faster
than on the CPU because of the GPU’s higher memory bandwidth.
With MPI-ACC, the visit vector is directly received or pipelined
into the GPU memory, and the data partitioning logic is executed
on the GPU itself. Next, the CPU-specific partitioned visit groups
are copied to the CPU (Figure 3b). As a general rule, if the GPU-
driven data partitioning combined with the GPU-to-CPU data trans-
fer performs better than the CPU-driven data partitioning combined
with CPU-to-GPU data transfer, then GPU-driven data partitioning
is a better option. Our experimental results (Section 3.3) indicate
that for GPU-EpiSimdemics, the MPI-ACC enabled GPU-driven
data partitioning performs better than the other data partitioning
schemes.

The preprocessing phase on the GPU is still overlapped with the
internode CPU-GPU communication by launching asynchronous
GPU kernels, just like the exclusive GPU mode, thereby largely
mitigating the preprocessing overhead. While this approach could
lead to redundant computations for the CPU-specific visit groups
on the GPU, the corresponding person-timeline matrix rows can be
easily ignored in the subsequent execution phases. This approach
will create some unnecessary memory footprint on the GPU; how-
ever, the benefits of overlapped preprocessing outweigh the issue
of memory overuse. On the other hand, the preprocessing on the
CPU is executed only after the data partitioning and GPU-to-CPU
data transfer of CPU-specific visit groups. This step appears on the
critical path and cannot be overlapped with any other step, but it



causes negligible overhead for GPU-EpiSimdemics because of the
smaller data sets for the CPU execution.

Advanced MPI+GPU with data partitioning on GPU.
GPU-driven data partitioning can also be implemented without

using MPI-ACC, where the visits vector is created on the GPU and
the preprocessing stage is overlapped by the local CPU-GPU data
communication, similar to the advanced MPI+GPU optimization
of the exclusive GPU computation mode. The data partitioning on
the GPU and the remaining computations follow from the MPI-
ACC–enabled optimizations. As in the GPU exclusive computa-
tion mode, however, the pinned memory footprint increases with
the number of processes, which leads to poor CPU performance
and scaling. Moreover, from our experience, the back-and-forth
CPU-GPU data movement in the GPU-driven data partitioning op-
timization seems convoluted without a GPU-integrated MPI inter-
face. On the other hand, MPI-ACC provides a natural interface
for GPU communication, which encourages application developers
to explore new optimization techniques such as GPU-driven data
partitioning and to evaluate them against the default and more tra-
ditional CPU-driven data partitioning schemes.

3.3 Evaluation and Discussion
We conducted our experiments on HokieSpeed, a state-of-the-art,

212-teraflop hybrid CPU-GPU supercomputer housed at Virginia
Tech. Each HokieSpeed node contains two hex-core Intel Xeon
E5645 CPUs running at 2.40 GHz and two NVIDIA Tesla M2050
GPUs. The host memory capacity is 24 GB, and each GPU has a
3 GB device memory. The internode interconnect is QDR Infini-
Band. We used up to 128 HokieSpeed nodes and both GPUs per
node for our experiments. We used the GCC v4.4.7 compiler and
CUDA v4.0 with driver version 270.41.34.

We compare the combined performance of all the phases of GPU-
EpiSimdemics (computeVisits and computeInteractions), with and
without the MPI-ACC–driven optimizations discussed earlier. We
choose different-sized input data sets from synthetic populations
from two U.S. states: Washington (WA) with a population of 5.7 mil-
lion and California (CA) with a population of 33.1 million. We also
vary the number of compute nodes from 8 to 128 and the number
of GPU devices between 1 and 2. Each U.S. state begins its com-
putation from the smallest node-GPU configuration that can fit the
entire problem in the available GPU memory.

Our results in Figures 4a and 4b indicate that in the exclusive
GPU computation mode, our MPI-ACC–driven optimizations per-
form better than the basic blocking MPI+GPU implementations by
an average of 6.3% and by up to 14.6% for WA. Similarly, the new
optimizations perform better by an average of 6.1% and by up to
17.9% for CA, where the gains come from the computeInterac-
tions phase. The MPI-ACC–driven solution also outperforms the
advanced pipelined MPI+GPU implementations by an average of
24.2% and up to 61.6% for WA and by an average of 13.1% and
up to 32.5% for CA, but the gains come from the computeVisits
phase. We also observe that the new optimizations are better than
the basic MPI+GPU solution for smaller node configurations and
are superior to the advanced MPI+GPU solution for larger nodes.
For large number of nodes, however, the basic MPI+GPU solu-
tion can also outperform the MPI-ACC–enabled optimization by
at most 5% for WA and only 0.1% for CA. Also, we find that the
MPI-ACC–enabled solution is always better than or on par with the
advanced MPI+GPU solution.

We see identical trends in the cooperative CPU-GPU compu-
tation mode (Figure 4c), where the MPI-ACC–driven GPU data-
partitioning strategy usually performs better than both the MPI+GPU
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(a) Exclusive GPU mode for Washington.
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(b) Exclusive GPU mode for California.
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(c) Cooperative CPU-GPU mode for Washington.

Figure 4: Execution profile of GPU-EpiSimdemics over various node con-
figurations. The x-axis increases with the total number of MPI processes P,
where P = Nodes * GPUs.
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Figure 5: Analysis of MPI-ACC–enabled performance optimizations. The
x-axis indicates the MPI process count P, where P = Nodes * GPUs.

implementations of CPU-driven and GPU-driven data-partitioning
schemes. MPI-ACC is better than the CPU-driven MPI+GPU so-
lution for smaller number of nodes, while it heavily outperforms
the GPU-driven MPI+GPU solution for larger node configurations.
The data-partitioning logic, by itself, performs about 53% faster on
the GPU.

3.3.1 MPI-ACC–enabled optimization vs. basic
MPI+GPU

The top portion of Figure 5 depicts an in-depth analysis of the
benefits of overlapped preprocessing on the GPU in the exclusive
GPU mode for the WA state. However, the following analysis holds
good even for the CA state and the cooperative compute modes as
well. We can see from the top portion of Figure 5 that for the
MPI-ACC and advanced MPI+GPU implementations, the prepro-
cessing step (data unpacking) of the computeInteractions phase is
completely overlapped with the CPU to remote GPU communi-
cation. This is why the MPI-ACC solution outperforms the basic
MPI+GPU solution for most node configurations.

Scalability analysis. For larger node configurations, however,
the local operating data set in the computeInteractions phase be-
comes smaller, which means that the basic MPI+GPU solution takes
less time to execute the preprocessing (data unpacking) stage. Thus,
the gains over the basic MPI+GPU solution, achieved by overlap-
ping the preprocessing step with GPU communication, also get di-
minished. Note that MPI-ACC or any other GPU-integrated MPI,
by itself, does not impact the performance gains. In contrast, MPI-
ACC enables the developer to create newer optimizations for better
resource utilization, but the scalability of GPU-EpiSimdemics itself
limits the scope for performance improvement. Thus, we see com-
parable performances of the basic MPI+GPU and the MPI-ACC–
driven optimizations for larger number of nodes, but the threshold
node configuration at which we see diminishing returns from the
new optimization varies for different input data sets (states).

3.3.2 MPI-ACC–enabled optimization vs. advanced
MPI+GPU

The bottom portion of Figure 5 shows that the receive buffer
management time in the advanced MPI+GPU case increases rapidly
for larger numbers of nodes. The reason is that the pinned mem-

ory footprint is an increasing function of the number of MPI pro-
cesses, which largely reduces the available pageable CPU memory
and leads to poor performance [26]. This is why the MPI-ACC–
enabled solution outperforms the advanced MPI+GPU solution for
most node configurations, especially for larger node configurations.
We can also observe that for the same number of MPI processes,
the node configuration with two MPI processes (or GPUs) per node
performs worse than the node with a single MPI process (e.g. 64×2
vs. 128 × 1). This result is expected because both MPI processes
on each node create pinned memory buffers, thus leading to even
lesser pageable memory and poorer performance. On the other
hand, MPI-ACC provides a more scalable solution by (1) managing
a fixed-size pinned buffer pool for pipelining and (2) creating them
at MPI_Init and destroying them at MPI_Finalize. Note that
the pipelined data movement optimization, by itself, does not sig-
nificantly improve performance in the application’s context. In-
stead, MPI-ACC’s efficient buffer pool management for pipelining
provides huge benefits for the application.

The basic MPI+GPU solution has the preprocessing overhead
but does not suffer from any memory management issues. While
the advanced MPI+GPU implementation gains from hiding the pre-
processing overhead, it loses from nonscalable pinned memory man-
agement. Also, for the advanced MPI+GPU implementation, it
turns out that the performance loss due to the inefficient pinned
memory management is in general much more severe than the gains
achieved by hiding the preprocessing overhead (figure 5). On the
other hand, MPI-ACC gains from both hiding the preprocessing
overhead and efficient pinned memory management. It is possible
to create and manage an efficient pinned memory pool at the appli-
cation level in the advanced MPI+GPU case, but doing so increases
the complexity of the simulation and leads to poor programmer
productivity. Ideally, the lower-level memory management logic
should be decoupled from the high-level simulation implementa-
tion, as is made possible by MPI-ACC.

3.3.3 Analysis of resource utilization using
HPCToolkit

HPCTOOLKIT [5] is a sampling based performance analysis
toolkit capable of quantifying scalability bottlenecks in parallel pro-
grams. In this paper, we use an extension of HPCTOOLKIT that
works on hybrid (CPU-GPU) codes; the extension uses a combi-
nation of sampling and instrumentation of CUDA code to accu-
rately identify regions of low CPU/GPU utilization. HPCTOOLKIT
presents program execution information through two interfaces:
hpcviewer and hpctraceviewer. Hpcviewer associates
performance metrics with source code regions including lines, loops,
procedures, and calling contexts. Hpctraceviewer renders hi-
erarchical, timeline-based visualizations of parallel program exe-
cutions.

In Figure 6, we present snapshots of the detailed execution pro-
file of GPU-EpiSimdemics from the hpctraceviewer tool of
HPCTOOLKIT. Figure 6a depicts the application without the MPI-
ACC-driven optimizations. The hpctraceviewer tool presents
the timeline information of all CPU processes and their correspond-
ing CUDA streams. The call path pane on the right represents the
call stack of the process/stream at the current crosshair position.
Although we study a 32-process execution, we zoom in and show
only the 0th and 1st processes and their associated CUDA streams,
because the other processes exhibit identical behavior.

The figure depicts two iterations of the application, where a cou-
ple of computeInteractions phases, with the corresponding GPU
activity, are surrounding a computeVisits phase, where there is no
GPU activity. The GPU idle time during the computeVisits phase



(a) Manual MPI+CUDA optimizations. The visit messages are first
received on the CPU and copied to the device; then the preprocessing
(unpacking) takes place on the GPU.

(b) MPI-ACC optimizations. The visit messages are received directly
in the device. Preprocessing (unpacking) on the GPU is pipelined and
overlapped with data movement to the GPU. This leads to negligible
CPU waiting while the GPU preprocesses/unpacks the data.

(c) MPI-ACC optimizations. This figure combines (b) with activity
occurring on other streams. MPI-ACC employs multiple streams to
push the data to the device asynchronously, while the application ini-
tiates the unpacking of data.

Figure 6: Analysis and evaluation of MPI-ACC–driven optimizations using
HPCTOOKIT. Application Case Study: GPU-EpiSimdemics.

can be reduced by offloading parts of the computeVisits computa-
tion to the GPU; but that is beyond the scope of this paper.

In the basic hybrid MPI+GPU programming model, the applica-
tion launches kernels on the default CUDA stream for the com-
puteInteractions phase, including the preprocessing (or data un-
packing) and the main infection processing stages. In the figure,
we can see a corresponding set of bars on the default CUDA stream
in the computeInteractions phase, which denote the following: (1)
a small, negligible sliver showing cudaMemcpy of the visit mes-
sages from the CPU to the GPU; (2) a medium-sized bar show-
ing preprocessing (or data unpacking) on the GPU; and (3) a thick
band showing the main infection computation kernel. The figure
thus helps identify two distinct issues and opportunities for per-
formance improvement in the computeInteractions phase of GPU-
EpiSimdemics.

1. The thick band on the CUDA stream representing the main
kernel of the computeInteractions phase has a corresponding
thick cudaDeviceSynchronize band on the CPU side;
that is, the CPU is idle while waiting for the GPU, thus indi-
cating that some work from the GPU can be offloaded to the
CPU.

2. The medium-sized bar on the CUDA stream representing
the preprocessing (data unpacking) step has a correspond-
ing cudaDeviceSynchronize bar on the CPU, which
indicates that the CPU can start offloading the data to be un-
packed to the GPU in stages, thus overlapping data transfers
to the GPU with their unpacking on the GPU.

We resolve the first issue by using the cooperative CPU-GPU
computation mode. The second issue is resolved in both the cooper-
ative and the exclusive GPU modes, as discussed in Sections 3.2.1
and 3.2.2. We use MPI-ACC to pipeline the data unpacking be-
fore the computeInteractions phase by overlapping it with the com-
puteVisits phase. We use a custom CUDA stream to execute the
preprocessing kernel so that we can achieve an efficient overlap
between the H-D data transfers within MPI-ACC and the prepro-
cessing kernel of GPU-EpiSimdemics. Figure 6b, which represents
HPCTOOLKIT’s trace view on applying these optimizations, shows
that the time wasted by the CPU in cudaDeviceSynchronize
while the GPU unpacked the data has disappeared (compared with
Figure 6a). This reduction in the CPU idle time characterizes the
success of the MPI-ACC–driven optimizations.

Figure 6c shows a zoomed-in version of Figure 6b, where we can
see the internal helper streams that are created within MPI-ACC
along with the custom CUDA stream of one of the processes (only
a subset of MPI-ACC’s internal streams is shown here for brevity).
While the GPU kernels of the computeInteractions phase are exe-
cuted on the application’s custom stream, the staggered bars in the
MPI-ACC’s internal streams represent the pipelined data transfers
before the unpacking stage, thus showing efficient use of concur-
rency via multiple GPU streams.

Summary.
In summary, MPI-ACC helps achieve the following for both the

GPU computation modes of GPU-EpiSimdemics:

• Provides a natural way of moving data to the desired compu-
tational resource (CPU or GPU), which encourages applica-
tion developers to explore new optimization techniques such
as GPU-driven data partitioning and to evaluate them against
the more traditional optimization schemes



• Enables receiving and preprocessing the data on the GPU
concurrently with the data generation on the CPU, thus en-
hancing the utilization of all the computation and communi-
cation resources of the system

• Efficiently manages pinned buffer pool to help pipeline the
GPU data quickly via the host CPU

4. CASE STUDY: SEISMOLOGY MODEL-
ING

FDM-Seismology is our MPI+GPU hybrid implementation of
an application that models the propagation of seismological waves
using the finite-difference method by taking the Earth’s velocity
structures and seismic source models as input [23]. The appli-
cation implements a parallel velocity-stress, staggered-grid finite-
difference method [11, 14, 24] for propagation of waves in a lay-
ered medium. In this method, the domain is divided into a three-
dimensional grid, and a one-point-integration scheme [23] is used
for each grid cell. Since the computational domain is truncated
in order to keep the computation tractable, absorbing boundary
conditions (ABCs) are placed around the region of interest so as
to keep the reflections minimal when boundaries are impinged by
the outgoing waves [23]. This strategy helps simulate unbounded
domains. In our application, PML (perfectly matched layers) ab-
sorbers [8] are being used as ABCs for their superior efficiency and
minimal reflection coefficient. The use of a one-point integration
scheme leads to an easy and efficient implementation of the PML
absorbing boundaries and allows the use of irregular elements in
the PML region [23].

4.1 Computation-Communication Patterns
The simulation operates on the input finite-difference (FD) model

and generates a three-dimensional grid as a first step. Our MPI-
based parallel version of the application divides the input FD model
into submodels along different axes such that each submodel can
be computed on different CPUs (or nodes). This technique, also
known as domain decomposition, allows the computation in the ap-
plication to scale to a large number of nodes. Each processor com-
putes the velocity and stress wavefields in its own subdomain and
then exchanges the wavefields with the nodes operating on neigh-
bor subdomains, after each set of velocity or stress computation
(Figure 7a). These exchanges help each processor update its own
wavefields after receiving wavefields generated at the neighbors.

These computations are run for a large number of iterations for
better accuracy and convergence of results. In every iteration, each
node computes the velocity components followed by the stress com-
ponents of the seismic wave propagation. The wavefield exchanges
with neighbors take place after each set of velocity and stress com-
putations. This MPI communication takes place in multiple stages
wherein each communication is followed by an update of local
wavefields and a small postcommunication computation on local
wavefields. At the end of each iteration, the updated local wave-
fields are written to a file.

The velocity and stress wavefields are stored as large multidi-
mensional arrays on each node. In order to optimize the MPI com-
putation between neighbors of the FD domain grid, only a few ele-
ments of the wavefields, those needed by the neighboring node for
its own local update, are communicated to the neighbor, rather than
whole arrays. Hence, each MPI communication is surrounded by
data marshaling steps, where the required elements are packed into
a smaller array at the source, communicated, then unpacked at the
receiver to update its local data.

4.2 GPU Acceleration of FDM-Seismology
MPI+GPU with data marshaling on CPU (MPI+GPU): Our

GPU-accelerated version of the application performs the velocity
and stress computations as kernels on the GPU. In order to transfer
the wavefields to other nodes, it first copies the bulk data from the
GPU buffers to CPU memory over the PCIe bus and then transfers
the individual wavefields over MPI to the neighboring nodes (Fig-
ure 7a). All the data-marshaling operations and small postcommu-
nication computations are performed on the CPU itself. The newly
updated local wavefields that are received over MPI are then bulk
transferred back to the GPU before the start of the next stress or
velocity computation on the GPU.

MPI+GPU with data marshaling on GPU (MPI+GPU Adv): A
much faster GDDR5 memory module is available on the GPU. If
the memory accesses are coalesced, the data-marshaling module
performs much better than the CPU, which has the slower DDR3
memory. Also, the packing and unpacking operations of the data-
marshaling stages can benefit from the highly multithreaded SIMT
execution nature of GPU. Hence, it is a natural optimization to
move the data-marshaling operations to the GPU (Figure 7b). More-
over, the CPU-GPU bulk data transfers that used to happen before
and after each velocity-stress computation kernel are avoided. The
need to explicitly bulk transfer data from the GPU to the CPU arises
only at the end of the iteration, when the results are transferred to
the CPU to be written to a file.

However, such an optimization has the following disadvantage in
the absence of GPU-integrated MPI. All data-marshaling steps are
separated by MPI communication, and each data-marshaling step
depends on the preceding marshaling step and the received MPI
data from the neighbors. In other words, after each data-marshaling
step, data has to be explicitly moved from the GPU to the CPU
only for MPI communication. Similarly, the received MPI data
has to be explicitly moved back to the GPU before the next mar-
shaling step. In this scenario, the application uses the CPU only
as a communication relay. If the GPU communication technology
changes (e.g., GPU-Direct RDMA), we will have to largely rewrite
the FDM-Seismology communication code to achieve the expected
performance.

4.3 MPI-ACC–Enabled Optimizations
Since the MPI-ACC library enables MPI communication directly

from the GPU buffer, the new version of the application retains the
velocity and stress computation results on the GPU itself, performs
the packing and unpacking operations using multiple threads on
the GPU, and communicates the packed arrays directly from the
GPU. Similar to the MPI+GPU Adv case, the bulk transfer of data
happens only once at the end of each iteration, when results are
written to a file.

The MPI-ACC–driven design of FDM-Seismology with data mar-
shaling on the GPU greatly benefits from the reduction in the num-
ber of expensive synchronous bulk data transfer steps between the
CPU and GPU. Also, since the data-marshaling step happens multi-
ple times during a single iteration, the application needs to launch a
series of marshaling kernels on the GPU. While consecutive kernel
launches entail some kernel launch and synchronization overhead
per kernel invocation, the benefits of faster data marshaling on the
GPU and optimized MPI communication make the kernel synchro-
nization overhead insignificant.

GPU-driven data marshaling provides the following benefits to
MPI+GPU Adv and MPI-ACC–based designs of FDM-Seismology:
(1) it removes the need for the expensive bulk cudaMemcpy data
transfers that were used to copy the results from the GPU to the
CPU after each set of velocity and stress computations; and (2)
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Figure 7: Communication-computation pattern in the FDM-Seismology application.

the application benefits from the multiple threads performing the
data packing and unpacking operations in parallel, and on the faster
GDDR5 device memory.

Other than the benefits resulting from GPU-driven data marshal-
ing, a GPU-integrated MPI library benefits the FDM-Seismology
application in the following ways: (1) it significantly enhances the
productivity of the programmer, who is no longer constrained by
the fixed CPU-only MPI communication and can easily choose the
appropriate device as the communication target end-point; (2) the
pipelined data transfers within MPI-ACC further improve the com-
munication performance over the network; and (3) regardless of
the GPU communication technology that may become available in
the future, our MPI-ACC–driven FDM-Seismology code will not
change and will automatically enjoy the performance upgrades that
are made available by the subsequent GPU-integrated MPI imple-
mentations (e.g., support for GPU-Direct RDMA).

4.4 Evaluation and Discussion
In this section, we analyze the performance of the different phases

of the FDM-Seismology application and evaluate the effect of MPI-
ACC optimizations on the application. The platform for evalua-
tion is the HokieSpeed cluster, whose details were specified in Sec-
tion 3.3. We use strong scaling to understand the variation in the
application’s performance when the number of nodes increases and
the internode data transfer size decreases. We vary the nodes from
2 to 128 with 1 GPU per node and use two different sized datasets,
Dataset-1 and Dataset-2, as input. Our scalability experiments be-
gin from the smallest number of nodes required to fit the given data
in the GPU memory. For the larger input data (i.e., Dataset-2), the
size of the MPI transfers increases by 2× while the size of data
to be marshaled increases by 4× when compared with the smaller
Dataset-1.

4.4.1 MPI-ACC–enabled optimizations vs. basic and
advanced MPI+GPU

Figure 8 shows the performance of the FDM-Seismology appli-
cation, with nodes varying from 16 to 128, when used with and
without the MPI-ACC–enabled designs. In the figure, we report
the average computation time across all the nodes, because the
computation-communication costs vary largely, depending on the
location of the node in the structured grid problem representation
of FDM-Seismology. In the MPI+GPU case, we perform both data-
marshaling operations and MPI communication on the CPU. In the
MPI+GPU Adv case, we perform the data-marshaling operations
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Figure 8: Analysis of the FDM-Seismology application when strongly
scaled. The larger dataset, Dataset-2, is used for these results. Note: MPI
Communication represents CPU-CPU data transfer time for the MPI+GPU
and MPI+GPU Adv cases and GPU-GPU (pipelined) data transfer time for
the MPI-ACC case.

on the GPU, while the MPI communication still takes place explic-
itly from the CPU.

One can see that although the velocity and stress computations
take most of the application’s computation time (>60%), the MPI-
GPU Adv and MPI-ACC–driven design of the application see large
performance improvements over the MPI+GPU case, primarily be-
cause of the reduction in expensive explicit bulk data transfer op-
erations between the CPU and GPU (Figure 7c). In the MPI+GPU
case, the application needs to move large wavefield data between
the CPU and the GPU for the data-marshaling computation and
MPI communication. On the other hand, when used with MPI-
ACC, the application performs all the data-marshaling computation
and MPI communication directly from the GPU, and it needs to
transfer smaller-sized wavefield data from GPU to CPU only once
at the end of the iteration for writing the result to the output file.

In the MPI+GPU Adv case, since the marshaling steps are per-
formed on the GPU and much smaller-sized data arrays are moved
between the CPU and GPU for MPI communication, we still bene-
fit from avoiding the bulk data transfer steps. However, these small
wavefield data movements have to be invoked many times and re-
sult in reduced programmer productivity. With MPI-ACC, the pro-
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Figure 9: Scalability analysis of FDM-Seismology application with two
datasets of different sizes. The baseline for speedup is the naïve MPI+GPU
programming model with CPU data marshaling.

grammer enjoys productivity gain as well as the performance im-
provements as a result of pipelined data transfers via the CPU.

We also analyzed the FDM-Seismology application with HPC-
TOOKIT and observed CUDA stream activity similar to that in Fig-
ure 6c, where multiple internal CUDA streams asynchronously trans-
fer the data over MPI while the application’s stream is busy doing
marshaling computations. This approach helps the application per-
formance by increasing the resource utilization.

4.4.2 Scalability analysis
Figure 9 shows the performance improvement due to the MPI-

ACC–enabled GPU data marshaling strategy over the basic hybrid
MPI+GPU implementation with CPU data marshaling. We see that
the performance benefits due to the GPU data marshaling design
decrease with increasing number of nodes. The reason for this be-
havior is twofold:

• For a given dataset, the per-node data size decreases with
increasing number of nodes. This reduces the costly CPU-
to-GPU and GPU-to-CPU bulk data transfers (Figure 8) and
thus minimizes the overall benefits of performing data mar-
shaling on the GPU itself.

• As the number of nodes increase, the application’s MPI com-
munication cost becomes significant when compared with
the computation and data marshaling costs. In such a sce-
nario, the CPU-to-CPU communication of the traditional hy-
brid MPI+GPU implementations will have less overhead than
will the pipelined GPU-to-GPU communication of the MPI-
ACC–enabled design.

While the pipelined data transfer optimization within MPI-ACC
improves the communication performance to a certain degree, it has
negligible impact on the performance gains of the application. If
newer technologies such as GPUDirect-RDMA are integrated into
MPI, we can expect the GPU-to-GPU communication overhead to
be reduced, but the overall benefits of GPU data marshaling itself
will still be limited because of the reduced per-process working
set.

5. RELATED WORK
GPUs have been used to accelerate many HPC applications across

a range of fields in recent years. For large-scale applications that
go beyond the capability of one node, manually mixing GPU data
movement with MPI communication routines is still the status quo,
and its optimization usually requires expertise [10, 16]. In this
work, our experience with MPI-ACC [6], our GPU-integrated MPI
implementation, shows that the manual hybrid programming model
can be replaced with extended MPI support, with additional opti-
mizations automatically made available to developers.

Several research groups have worked on designing and optimiz-
ing GPU-integrated data communication libraries. The cudaMPI
library studies providing wrapper API functions by mixing CUDA
and MPI data movement [21]. Similarly to MPI-ACC, Wang et al.
propose to add CUDA [2] support to MVAPICH2 [22] and opti-
mize the internode communication for InfiniBand networks [28].
All-to-all communication [27] and noncontiguous datatype com-
munication [17, 29] have also been studied in the context of GPU-
aware MPI. With a focus on intranode communication, our pre-
vious work [18, 19] extends transparent GPU buffers support for
MPICH [1] and optimizes the cross-PCIe data movement by us-
ing shared memory data structures and interprocess communication
(IPC) mechanisms. In contrast to those efforts, here we study the
synergistic effect between GPU-accelerated MPI applications and
a GPU-integrated MPI implementation.

6. CONCLUSION
In this paper, we studied the interactions of GPU-integrated MPI

on the complex execution patterns of scientific applications from
the domains of epidemiology (GPU-EpiSimdemics) and seismol-
ogy (FDM-Seismology) on hybrid CPU-GPU clusters, and we pre-
sented the lessons learned. By using MPI-ACC as an example
implementation, we created new optimization techniques, such as
overlapped internode GPU communication with concurrent com-
putations on the CPUs and GPUs and discussed their benefits and
tradeoffs. We found that while MPI-ACC’s internal pipeline op-
timization helped improve the end-to-end communication perfor-
mance to a certain degree, its benefit was less in the context of
the entire application. We also showed how MPI-ACC helped in
naturally expressing the communication targets that were chosen
based on the execution profiles of the tasks at hand. MPI-ACC de-
coupled the application logic from the low-level GPU communica-
tion optimizations, thereby significantly improving scalability and
application portability across multiple GPU platforms and genera-
tions. Thus, GPU-integrated MPI helps move the GPUs toward be-
ing “first-class citizens” in the hybrid clusters. Our results on Hok-
ieSpeed, a state-of-the-art CPU-GPU cluster, showed that MPI-
ACC can help improve the performance of GPU-EpiSimdemics
and FDM-Seismology over the default MPI+GPU implementations
by enhancing the CPU-GPU and network utilization. Using the
HPCToolkit performance tools, we were able to measure, visual-
ize, and quantify the benefits of MPI-ACC–driven optimizations in
our application case studies.
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