
On the Reproducibility of MPI Reduction Operations

Pavan Balaji and Dries Kimpe
Mathematics and Computer Science Division, Argonne National Laboratory

{balaji, dkimpe}@mcs.anl.gov

Abstract—Many scientific applications go through a thorough
validation and verification (“V&V”) process to demonstrate that
the computer simulation does, in fact, mirror what can be
analyzed through physical experimentation. Given the complexity
of and the time required for the V&V process, applications that
have been validated and verified are typically conservative with
respect to changes that might impact the reproducibility of their
results. In the extreme case, some applications require bitwise
reproducibility for their simulations. Thus, any change made to
the application, the hardware, or the software on the system
needs to preserve the bitwise reproducibility of the application.
Such a constraint, however, can drastically affect the performance
efficiency of the system in many ways. In this paper, we analyze
the impact of such bitwise reproducibility on the performance
efficiency of MPI reduction operations.

Index Terms—MPI; Reduction Operations; Reproducibility;
Performance; Multicore; Topology

I. INTRODUCTION

The Message Passing Interface (MPI) is considered to be
the de facto standard for parallel programming today. A
vast number of scientific applications use MPI and rely on
its functionality and performance in order to scale to the
largest systems in the world. One specific genre of func-
tionalities in MPI is the reduction class of operations, which
includes MPI REDUCE, MPI ALLREDUCE, MPI SCAN, and
MPI EXSCAN. Such functionality is heavily used in scientific
applications today, often in the performance-critical path, mak-
ing their performance and correctness an important expectation
on MPI implementations.

Many scientific applications go through a thorough valida-
tion and verification process to demonstrate that they closely
simulate physical phenomenon. Such applications are typically
conservative with respect to changes that might impact the
reproducibility of their results. In the extreme case, some
applications require bitwise reproducibility for their simula-
tions. Thus, any change made to the application, the hardware,
or the software on the system needs to preserve the bitwise
reproducibility of the application.

Why is bitwise reproducibility complicated? Many parallel
scientific applications are not bitwise reproducible for two
primary reasons. The first is floating-point arithmetic, which
suffers from rounding errors and other inadequacies in the bit
representation with a limited number of bits. Consequently,
floating-point operations (such as SUM or PRODUCT) are
commutative but not associative. Thus, the order in which
they are applied makes a difference to the final outcome.
The second reason is nondeterministic computational flow. In
parallel applications where the progress of each process is not
fully deterministic (e.g., if the computational order depends

on the order in which messages are received), different runs
of the same application can lead to different outcomes.

While cumbersome to achieve, bitwise reproducibility is
still considered to be critical for some applications, sometimes
just for contractual reasons (e.g., drug design or nuclear reactor
design). Such reproducibility often is also useful for debugging
purposes or for ensuring the reliability of output [15]. Such
a constraint on bitwise reproducibility, however, can have
a tremendous impact on the performance efficiency of the
system in many ways. For example, fully avoiding such
errors requires computations to use sequential executions and
a fixed order of computations, since the hardware floating-
point precision cannot be arbitrarily increased to accommo-
date application needs. These requirements are too expensive
even on current systems and will be impractical on the next
generation of systems. For example, MPI reduction operations
that are meant for scalable computation on input data from a
large number of processes have to guarantee a deterministic
behavior if they are to be used by such applications.

In this paper, we analyze the impact of such bitwise
reproducibility on the performance efficiency of MPI reduc-
tion operations. While the MPI standard does not guarantee
that MPI reduction operations are bitwise reproducible, such
behavior is strongly recommended by the standard for MPI
implementations. Specifically, the MPI-3.0 standard states the
following (page 175, lines 9–13):

It is strongly recommended that MPI REDUCE be imple-
mented so that the same result be obtained whenever the
function is applied on the same arguments, appearing in the
same order. Note that this may prevent optimizations that take
advantage of the physical location of ranks.

Consequently, several MPI implementations provide the
capability for such reproducibility, either by default or through
an environment or configuration setting. In order to achieve
this, however, the MPI implementation needs to be highly
conservative with respect to the optimizations it can perform.
Such a conservative approach can have a substantial impact on
performance, especially with respect to the MPI implementa-
tion’s ability to take advantage of the hardware topology in
order to minimize data movement.

In this paper, we first analyze the algorithmic impact of
hardware topology-based optimizations that MPI implemen-
tations can utilize, focusing on the reproducibility of results
and the performance of MPI reduction operations. In addition
to this detailed algorithmic analysis, we present performance
numbers demonstrating the improvement in performance that
such architectural topology-aware optimizations can bring.

MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)

IN sendbuf address of send buffer (choice)

OUT recvbuf address of receive buffer (choice, significant only at root)

IN count number of elements in send buffer (non-negative integer)

IN datatype data type of elements of send buffer (handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

int MPI_Reduce(const void* sendbuf, void* recvbuf, int count, MPI_Datatype datatype, MPI_Op op,

int root, MPI_Comm comm)

Fig. 1: Prototype of MPI REDUCE

We note that reproducibility does not necessarily mean
accuracy. If multiple runs of an application give the exact same
result, it is still considered reproducible even if the result is not
as accurate as what an infinite-precision system can achieve.

The rest of the paper is organized as follows. We provide
a brief overview of various MPI reduction operations in Sec-
tion II and the workings of topology-aware reduction mecha-
nisms in Section III. In Section IV-B, we analyze the impact
of the reproducibility constraints on MPI reduction operations
with respect to performance. We present experimental results
demonstrating such a performance impact, and we analyze
their behavior in Section VI. Other literature related to this
paper is presented in Section VII. We summarize our findings
and present concluding remarks in Section VIII.

II. OVERVIEW OF MPI REDUCTION OPERATIONS

MPI reduction operations form an important class of com-
putational operations first introduced in MPI-1. Several new
functions were added in this class in MPI-2 and MPI-3. MPI
reduction operations fall into three categories:

1) Global Reduction Operations: MPI REDUCE,
MPI IREDUCE, MPI ALLREDUCE and
MPI IALLREDUCE.

2) Combined Reduction and Scatter Operations:
MPI REDUCE SCATTER, MPI IREDUCE SCATTER,
MPI REDUCE SCATTER BLOCK and
MPI IREDUCE SCATTER BLOCK.

3) Scan Operations: MPI SCAN, MPI ISCAN,
MPI EXSCAN, and MPI IEXSCAN.

The primary idea of these operations is to collectively
compute on a set of input data elements in order to generate
a combined output. For instance, consider the prototype of
MPI REDUCE, as illustrated in Figure 1. MPI REDUCE is a
collective function where each process provides some input
data (e.g., an array of double-precision floating-point num-
bers). This input data is combined through an MPI operation,
as specified by the “op” parameter. Most applications use
MPI predefined operations such as summations or maximum
value identification, although some applications also utilize
reductions based on user-defined function handlers.

The MPI operator “op” is always assumed to be associative.
All predefined operations are also assumed to be commutative.
Applications, however, may define their own operations that
are associative but not commutative.

The “canonical” evaluation order of a reduction is deter-
mined by the ranks of the processes in the group. However,
an MPI implementation can take advantage of associativity,
or associativity and commutativity of the operations, in order
to change the order of evaluation. Doing so may change the
result of the reduction for operations that are not strictly
associative and commutative, such as floating-point addition.
With that caveat, however, the MPI standard strongly encour-
ages implementations to implement reduction operations in a
deterministic manner, which can reduce the extent to which
they can take advantage of the associativity and commutativity
of the operations and thus, in effect, fall back to the canonical
rank-ordered evaluation of the reduction.

The primary reason for the loss of precision, and hence
the nondeterminism in the result, comes from the order in
which the data elements are reduced. For example, in the case
of summation of input data values that cover a wide range,
operations that combine very large values with very small
values can lose data because of restrictions in the number of
bits used in the representation. On the other hand, combining
small values first allows us to do so without losing precision.
Such contributions of small values from a large number of
processes can have a large impact on the aggregate value
contributed and thus on the overall result.

Since no such ordering of operation is described in MPI
reduction operations, the loss of precision depends on the
specific order in which the operations are performed. Con-
sequently, if the order of operations changes, the loss of
precision changes as well, making the result nondeterministic.
Moreover, in the past few years, systems with millions of
cores have been installed [11], [13]. As MPI applications scale
to such large systems, the number of possible orderings that
the MPI implementation can utilize increases as well, thus
impacting the amount of nondeterminism possible. Further,
since each process contributes one input data element for the
reduction operation,1 as the number of processes increases, the
percentage impact that small values can have on the overall
result would increase as well.

1Each process can contribute an array of elements for reduction. However,
each element is reduced individually. Thus, with respect to loss of precision,
only the number of processes contributing input data matters, and not the
number of elements contributed by each process.

III. TOPOLOGY-AWARE REDUCTION

Most MPI implementations take advantage of hardware
topology information in order to optimize data communication.
This information includes point-to-point communication as
well as collective communication operations, including reduc-
tion operations. In this section, we describe the algorithms
used in the MPICH implementation of MPI for MPI REDUCE
and MPI ALLREDUCE. The algorithms used for other reduc-
tion operations are similar and hence are not discussed in this
paper.

A. MPI REDUCE

When topology-awareness is not enabled, MPICH uses
rank-order-based deterministic algorithms for the reduction
operation. Specifically, if the message size is small (by default,
less than 2 Kbytes) or if the number of processes in the
communicator is not a power of two, MPICH uses a binomial
tree algorithm based on the ranks. That is, the processes are
considered to be in a binomial tree virtual topology, with the
root of the reduction being the root of the tree. When the
message size is large and the communicator size is a power
of two, MPICH uses a reduce-scatter followed by a gather to
the root.

When topology-awareness is enabled, MPICH first detects
which processes reside on the same node. Using this informa-
tion, it does a non-topology-aware reduction within the node
for all nodes except the root node. Next, the temporary results
of the first reduction on each node are further reduced onto
the root node (again as a non-topology-aware reduction). Then,
the root node reduces the internode result with the inputs from
other processes on its node.

B. MPI ALLREDUCE

When topology-awareness is not enabled and the number of
processes is a power of two, MPICH uses a recursive-doubling
algorithm for small message sizes or if the number of data
elements is not a power of two or if the operation is user-
defined. Otherwise, it uses a reduce-scatter followed by an
allgather. If the number of processes is not a power of two, a
few of the processes first do pairwise reductions to reduce the
number of processes to a power of two. Then, they use the
power-of-two algorithm described above.

When topology-awareness is enabled, MPICH first detects
which processes reside on the same node. Then it does
a non-topology-aware reduction within each node, followed
by a reduction based on these results across nodes. It then
broadcasts the final result to all processes.

C. Discussion of Topology-Aware Algorithms

Clearly, the algorithms used in the topology-aware reduc-
tion operations (both MPI REDUCE and MPI ALLREDUCE)
are different from those in the non-topology-aware reduction
operations. More important, the ordering of operations varies
dramatically for different topologies. For example, the order of
operations on a system with four nodes each with four cores is
quite different from the order of operations on a system with

eight nodes each with two cores. This makes the final result
be heavily dependent on the hardware topology being used.

We note, however, that the topology-aware algorithms do
not, by themselves, lose arithmetic precision any more than a
non-topology-aware algorithm would. They only alter the or-
der in which the reduction operations are done compared with
that of a non-topology-aware algorithm or even a topology-
aware algorithm on a different hardware topology. Thus,
without information about the actual input data, we cannot
claim that the topology-aware algorithms improve or degrade
precision. We point out only that the hardware topology affects
the reproducibility of the result.

IV. CONSEQUENCES OF NONDETERMINISM

Enabling nondeterministic behavior for reduction operations
(for example, by making the algorithm depend on external
factors such as the hardware topology) potentially has a
number of consequences on the application and user. In this
section, we analyze and discuss some of these consequences.

A. Accuracy

For mathematical operations, the order in which the reduc-
tion is performed can have a profound effect on the correctness
and accuracy of the returned result. This is especially true
when the encoding of the numerical value is not exact, as is
often the case for floating-point numbers. However, even for
integer encodings, typically assumed to be “exact” within a
given range, changing the order of addition or subtraction can
introduce overflow or underflow. An excellent discussion of
these issues, including the accuracy and stability of reduction
operations and how the order in which they are performed
affects them, can be found in [9].

While the MPI standard encourages implementors to im-
plement the reduction functionality in such a way that the
result is the same given the same arguments to the function
(including the same order), it does not specify that this order
needs to be in rank order. In fact, the standard explicitly states
that an implementation is free to make use of associativity
when possible. While in the strict mathematical sense, addition
and subtraction are associative, when introducing rounding
errors due to the floating-point storage format, this is no
longer true. In practice, this means that programs that require
the exact knowledge of the order in which the reductions
are performed—typically for reasons of numerical stability or
accuracy—cannot use the MPI reduction operations, whether
the reduction algorithm is topology aware or not.

B. Reproducibility

The motivation behind the recommendation to implementors
in the MPI standard is not to ensure accuracy but to ensure
reproducibility. Reproducibility is important for many reasons.
For example, it helps debugging. If the user can trust that MPI
functions behave in a reproducible manner, and the rest of
the program does not contain any nonreproducible behavior,
changing output for the same input is a clear indication of

program error. In addition, a reproducible program is deter-
ministic. For the same set of inputs, the same output will be
generated. Deterministic algorithms are easier to reason about,
and automated software tools (such as correctness checkers)
often require programs to be free of nondeterministic effects.

While topology-aware reduction operations should not af-
fect accuracy (any more than the existing, reproducible al-
gorithms), a topology-aware algorithm can have an effect on
the reproducibility of the program, since the exact outcome of
the reduction depends not only on the parameters passed to
the reduce function on each rank but also on the underlying
topology and the way each rank is mapped to that topology.
We note, however, that if the user ensures that the mapping
and topology do not change, the topology-aware algorithms
are as reproducible as the topology-unaware algorithms.

Specifically, as described in [9], for recursive pairwise
summation, the absolute error is provided by

abs(E) = g(log2(N)) × SUM(abs(Xi)) (1)

(and)

g(N) = (N × u) / (1 - (N × u)) (2)

where Xi are the numbers being reduced and u is the unit
roundoff (relative error) for double precision (about 1e-16 for
double precision).

V. OTHER SOURCES OF NONDETERMINISTIC BEHAVIOR

When considering the consequences of the less deterministic
behavior of topology-aware reduction algorithms, a discussion
of other sources of nondeterminism is in order. After all,
existing nondeterministic behavior in other components in
the typical application workflow would limit complications
caused by introducing a nondeterministic reduction operation.
As discussed in Section IV-B, depending on the assumptions
made by the user, nondeterministic behavior can potentially
affect reproducibility as well. In this section, we discuss
sources of nondeterminism originating outside the scope of
the topology-aware algorithms and how these affect accuracy,
reproducibility, or both.

In practice, few programmers write direct assembler code.
Hence, the translation from a higher-level programming lan-
guage to machine code might introduce nondeterministic re-
sults. The freedom given to the compiler depends on the
programming language. For ANSI Fortran, the compiler is
allowed to reorder expressions at will, as long as explicit
parentheses added by the programmer are respected. In con-
trast, ANSI C and C++ are relatively strict, disallowing reas-
sociation and forcing evaluation from left to right even in the
absence of parentheses [1]. In addition, the same program can
be compiled for different architectures, where differences in
instruction set could affect the result, even when everything

else (compiler, etc.) remains the same. For example, if an ar-
chitecture supports fused-multiply-add (FMA) instructions (as
is the case for most Intel, AMD, and ARM processors released
in 2012 or later), which support computing a + (b × c) in
one instruction, the default mode for the compiler is typically
to enable the use of FMA unless explicitly disabled. While
FMA typically improves accuracy by rounding the result
only once (compared with two rounding operations without
FMA), there is a chance that FMA could introduce exceptions
or errors in certain situations [10], causing nondeterministic
results. Clearly, if one wants absolute control over accuracy,
the only way to be sure is to directly issue machine language
instructions. In addition, in order to get reproducible execution,
the same binary (including any dynamically loadable libraries)
needs to be used.

The OpenMP parallelization directives [2] also support a
reduction operation. As is the case for MPI, a tradeoff can be
made between determinism, reproducibility, performance, and
accuracy. For at least one compiler (Intel), the default is to use
nondeterministic reductions. In order to get deterministic, re-
producible results, the user has to explicitly force deterministic
reductions. Additionally, static thread scheduling and explicitly
determining the number of helper threads are required in order
to get reproducible results [1].

While the MPI standard encourages library implementors
to provide reproducible reduction functionality when the ar-
guments and their order remain constant, one can implement
multiple reduce algorithms and choose between them based
on specific properties of the input arguments, such as the
number of ranks in the communicator or the size of the
base type. Doing so does not violate the recommendation of
the standard; and given the performance advantage (certain
algorithms show better performance for a specific range of pa-
rameters), many implementations have chosen to do so. Many
of these implementations expose the parameters that determine
when a certain algorithm is used. For example, the Open
MPI [6] implementation of MPI enables per-installation tuning
of these parameters [3]. In the STAR-MPI library, collective
routines automatically self-tune during application execution,
effectively introducing nondeterministic reduce behavior even
when keeping arguments to the reduce function constant [4].

Certain parallel machines, such as the IBM Blue Gene/L [7]
and later generations, offer hardware acceleration of reduce
operations. However, the hardware typically has more restric-
tions than does a software algorithm, causing these hard-
ware collectives to be activated only when a strict set of
circumstances is fulfilled, falling back to one of the software
algorithms otherwise. For example, when using a subset of the
machine, there are many ways to embed a lower-dimensional
subset into a higher-dimensional network topology. Only a
few of these mappings will support hardware collective ac-
celeration. In practice, this means that unless a user runs on
exactly the same set of nodes, an MPI reduction will not be
reproducible, even if all other factors (such as the compiler
and the application binary) remain the same.

Considering these examples, and given the amount of soft-

ware and hardware involved in running a modern application,
ensuring strict reproducibility and absolute control over accu-
racy is a very hard goal to obtain.

VI. ANALYTICAL AND EXPERIMENTAL RESULTS

In this section, we present the results of our evaluation of
the impact of topology on the performance of MPI reduction
operations. Two sets of evaluations are presented. The first set
represents an analytical analysis of the loss of precision in
reduction operations. These are based on analytical analysis
discussed in Section IV-B and are presented in Section VI-A.
The second set of evaluations represents an experimental anal-
ysis of the performance impact of topology-aware reductions;
the results are presented in Section VI-B.

A. Analytical Analysis

In this section, we present an analytical analysis of the
error bounds of topology-aware reduction operations. While
topology-aware algorithms do not, by themselves, lose arith-
metic precision any more than a non-topology-aware algorithm
would, they alter the order in which the reduction operations
are done, causing nondeterminism in the result. In this sec-
tion, we analytically showcase the extent of nondeterminism
possible with varying topologies.

As described in Section IV-B, the maximum error (and
hence the maximum amount of nondeterminism) depends on
the number of input values and thus, in the case of the
reduction operation, the number of processes in the system.
In our experiment, we varied the number of processes in the
system. For double-precision arithmetic (unit roundoff around
1e-16), the denominator in Equation IV-B tends to 1 for most
realistic system sizes today. This makes the Equation IV-B
proportional to the unit roundoff and, for a given input data
set, increasing logarithmically with the number of processes
in the system.2

For small system sizes, the relative error compared with the
input data elements is not too high, at around 1e-16. However,
the error increases with increasing system size and reaches
2e-15 for a million processes. Given that several systems have
already crossed the million-process mark, such errors are not
unreasonable on real systems today.

B. Experimental Analysis

For the experimental analysis, we used a 320-node system,
with each node consisting of two Intel Xeon X5550 quad-
core CPUs (total of 2,560 cores). The nodes are connected
with Mellanox QDR InfiniBand HCAs. Our implementation
is based on the mpich git master as of July 8, 2013.

Both MPI REDUCE and MPI ALLREDUCE were evalu-
ated, operating on a varying-size vector of MPI DOUBLE,
using the MPI SUM operation. For the experiments, a number
of topologies, ranging from one core per node to eight cores

2The increase in error is only described but not plotted as a graph because
of the triviality of the graph. It is proportional to the unit tradeoff increasing
logarithmically with the system size.

per node, are evaluated, with the latter matching the real hard-
ware topology of the machine. The default (topology-unaware)
algorithm is equivalent to the topology-aware algorithm as-
suming a topology of a single core per node. The topology-
aware reduction is evaluated on communicators ranging from
8 ranks up to 2,048 ranks. For each communicator size, the
base type of the underlying reduction is varied from 1 up to
1,048,576 double-precision floating-point numbers (with each
double-precision number requiring 8 bytes of storage). The
base type size in the graphs indicates number of floating-point
values, not the number of bytes.

The experiments involved running the collective operation
in a loop for 10,000 iterations. Each experiment was repeated
10 times for statistical confidence in the results.

1) Impact of Topology on MPI REDUCE: Figure 2 shows
the performance of MPI REDUCE for different datatype
counts on the x-axis. Each datatype is an MPI DOUBLE, so
the actual message size would be a factor of 8 higher (in
bytes) than the unit on the x-axis. The legends used (x2, x4,
and x8) indicate the relative difference in performance for
different topologies. For example, “x2” refers to the factor of
difference in performance when a topology of two cores per
node is considered, compared with the topology-independent
reduction performance. Note that neither the actual hardware
topology nor the number of processes used changes in the
experiment. Only the hardware topology exposed to the MPI
reduction algorithm is artificially tweaked to appear as if there
are multiple nodes with two cores each (for “x2”) or multiple
nodes with four cores each (for “x4”) or eight cores each
(for “x8”). The graphs indicate the performance relative to the
topology-unaware algorithm. Thus, values less than 1 signify
that the topology-aware algorithm performs better.

As shown in the figure, the difference in performance is
minimal for 8 ranks (Figure 2(a)). This is expected because
each physical node has 8 cores and all MPI ranks physically
reside on the same node. Thus, the impact of topology in the
reduction algorithm itself would not have much impact. As
the system size increases, however, the impact of topology on
the reduction performance continues to increase.

On our test system, for two nodes or more (i.e., when there
is nonheterogeneous topology), starting at a base type size of
512 double-precision floating-point numbers (or 4 Kbytes), the
topology-aware reduction outperforms the non-topology-aware
reduction. For base types of 32,768 floating-point numbers,
the topology-aware algorithm typically executes 2.5 to 5 times
faster than the default algorithm. With some exceptions, the
topology-aware algorithm typically increases its lead on the
topology-unaware algorithms as the number of ranks increases.
This situation is clearly visible for base type sizes of 512k
elements and above. In this case, the runtime of the topology-
aware algorithm decreases from approximately 65% of the
time of the default algorithm at 16 ranks to approximately
35% at 1,024 ranks. In fact, for 2,048 cores (Figure 2(d)),
topology-aware reductions can have as much as a fourfold
improvement in performance.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

1Ki 32Ki 1Mi 1 32

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

Reduction size (number of doubles)

x2
x4
x8

(a) 8 ranks

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1Ki 32Ki 1Mi 1 32

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

Reduction size (number of doubles)

x2
x4
x8

(b) 64 ranks

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1Ki 32Ki 1Mi 1 32

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

Reduction size (number of doubles)

x2
x4
x8

(c) 512 ranks

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1Ki 32Ki 1Mi 1 32

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

Reduction size (number of doubles)

x2
x4
x8

(d) 2048 ranks

Fig. 2: MPI Reduce: Impact of Topology on Performance

2) Impact of Topology on MPI ALLREDUCE: Figure 3
shows the performance of MPI ALLREDUCE for different
datatype counts on the x-axis. Again, each datatype is an
MPI DOUBLE. For MPI ALLREDUCE, the results look sim-
ilar, albeit amplified because of the larger volume of com-
munication. The data shows the effect of matching the as-
sumed topology to the actual hardware topology, with a clear
performance improvement when going from “x2” to “x8.”
The performance improvement for MPI ALLREDUCE is less
dependent on the base type size and typically hovers around
50%.

When considering scalability, unlike the topology-aware
reduce algorithm, the allreduce algorithm is less sensitive to
the base type size. Specifically, it shows that for a constant
base type size, the performance typically stabilizes quickly
at twice the throughput of the topology-unaware algorithm,
independent of the number of ranks used. In all cases,
matching the underlying hardware topology results in the best
MPI ALLREDUCE performance.

3) Impact of System Size: Figure 4 shows the impact of sys-
tem size (on the x-axis) on the performance of MPI REDUCE
for different message sizes. We notice that for small message
sizes (e.g., 4 Kbytes in Figure 4(a)), the impact of topology
is minimal. This result is expected because topology mostly
impacts data movement and for small message sizes this cost is

small. Furthermore, as the system size increases, we notice that
the improvement in performance generally increases, because
the amount of data traffic crossing node boundaries is higher
when topology is not considered.

For large data (e.g., 8 Mbytes in Figure 4(d)), the perfor-
mance impact is more profound, with topology-aware reduc-
tions outperforming non-topology-aware reduction by fourfold
in some cases.

VII. RELATED WORK

A large body of literature has investigated the performance
of various collective communication operations in MPI. For
example, in [14], the authors study different collective com-
munication algorithms and their relative tradeoffs for per-
formance. In [16], the authors investigate the performance
improvements achievable by taking the hardware topology into
account, specifically by splitting collective operations within
the node and across nodes. The authors of [8] further improve
such capabilities by utilizing shared-memory communication
within the collective operations themselves. In [12], the au-
thors utilize NUMA awareness to design new algorithms that
can improve performance for such architectures. In [5] the
authors describe an approach where the collective commu-
nication algorithms can be automatically tuned based on the
system architecture.

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

1Ki 32Ki 1Mi 1 32

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

Reduction size (number of doubles)

x2
x4
x8

(a) 8 ranks

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1Ki 32Ki 1Mi 1 32

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

Reduction size (number of doubles)

x2
x4
x8

(b) 64 ranks

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1Ki 32Ki 1Mi 1 32

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

Reduction size (number of doubles)

x2
x4
x8

(c) 512 ranks

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1Ki 32Ki 1Mi 1 32

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

Reduction size (number of doubles)

x2
x4
x8

(d) 2048 ranks

Fig. 3: MPI Allreduce: Impact of Topology on Performance

While all these papers study the performance of collective
operations in various environments, none of these measures
the impact of collective operations as topology varies. For
MPI reduction operations, the variation of topology can have
a profound effect on the reproducibility of the results. Thus,
understanding how these operations perform for different
topologies is critical for applications to make the appropriate
tradeoffs in reproducibility vs. performance.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the tradeoff between re-
producibility and performance in collective MPI algorithms,
specifically focusing on MPI reduction operations. As an
example, we presented the performance of topology-aware
MPI REDUCE and MPI ALLREDUCE operations. A discus-
sion of existing sources of nondeterministic behavior (outside
of MPI) created a proper framework for balancing the possible
performance advantages against the increase in complexity
triggered by change in reproducibility. We compared the
topology-aware reduction algorithms with versions that do not
take advantage of the topology information, using up to 2,048
cores with varying base type sizes. We found that, in many
cases, by allowing the MPI library to optimize the reduction
by considering the underlying hardware topology, we were
able to achieve a significant performance improvement (up to

fourfold).
We plan to extend our study to include further sources of

nondeterministic behavior, such as jitter in collective opera-
tions. In addition, we will extend our research beyond MPI and
investigate the performance-reproducibility tradeoffs in other
programming models, such as OpenMP.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research,
under Contract DE-AC02-06CH11357.

REFERENCES

[1] Martyn J Corden and David Kreitzer. Consistency of floating-point re-
sults using the Intel compiler or why doesnt my application always give
the same answer. Technical report, Technical report, Intel Corporation,
Software Solutions Group, 2009.

[2] Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard
API for shared-memory programming. Computational Science & Engi-
neering, IEEE, 5(1):46–55, 1998.

[3] Graham E Fagg, Jelena Pjesivac-Grbovic, George Bosilca, Thara
Angskun, J Dongarra, and Emmanuel Jeannot. Flexible collective
communication tuning architecture applied to Open MPI. In Euro
PVM/MPI, 2006.

[4] Ahmad Faraj, Xin Yuan, and David Lowenthal. STAR-MPI: self tuned
adaptive routines for MPI collective operations. In Proceedings of the
20th annual international conference on Supercomputing, pages 199–
208. ACM, 2006.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 8 16 32 64 128 256 512 1024 2048

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

Number of MPI Processes

x2
x4
x8

(a) 4 Kbytes

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 8 16 32 64 128 256 512 1024 2048

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

Number of MPI Processes

x2
x4
x8

(b) 32 Kbytes

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 8 16 32 64 128 256 512 1024 2048

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

Number of MPI Processes

x2
x4
x8

(c) 1 Mbyte

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 8 16 32 64 128 256 512 1024 2048

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

Number of MPI Processes

x2
x4
x8

(d) 8 Mbytes

Fig. 4: MPI Reduce: Impact of System Size

[5] Ahmad Faraj, Xin Yuan, and David Lowenthal. STAR-MPI: Self Tuned
Adaptive Routines for MPI collective operations. In Proceedings of
the 20th annual International Conference on Supercomputing, ICS ’06,
pages 199–208, New York, NY, USA, 2006. ACM.

[6] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J
Dongarra, Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur,
Brian Barrett, Andrew Lumsdaine, et al. Open MPI: Goals, concept, and
design of a next generation MPI implementation. In Recent Advances in
Parallel Virtual Machine and Message Passing Interface, pages 97–104.
Springer, 2004.

[7] Alan Gara, Matthias A Blumrich, Dong Chen, GL-T Chiu, Paul Coteus,
Mark E Giampapa, Ruud A Haring, Philip Heidelberger, Dirk Hoenicke,
Gerard V Kopcsay, et al. Overview of the Blue Gene/L system
architecture. IBM Journal of Research and Development, 49(2.3):195–
212, 2005.

[8] Richard L. Graham and Galen Shipman. MPI support for multi-core
architectures: optimized shared memory collectives. In Proceedings of
the European PVM/MPI Users Group Meeting (Euro PVM/MPI), Sept.
2008.

[9] Nicholas J Higham. Accuracy and Stability of Numerical Algorithms.
Number 48. SIAM, 1996.

[10] William Kahan. IEEE standard 754 for binary floating-point arithmetic.
Lecture Notes on the Status of IEEE, 754:94720–1776, 1996.

[11] Lawrence Livermore National Laboratory. Sequoia: IBM Blue Gene/Q
supercomputer. http://en.wikipedia.org/wiki/IBM Sequoia.

[12] S. Li, T. Hoefler, and M. Snir. NUMA-aware shared memory collective
communication for MPI. In Proceedings of the ACM International
Conference on High Performance Distributed Computing (HPDC), June
2013.

[13] National University of Defense Technology. Tianhe-2 supercomputer.
http://en.wikipedia.org/wiki/Tianhe-2.

[14] Rajeev Thakur and William Gropp. Improving the performance of

collective pperations in MPICH. In Proceedings of the 10th European
PVM/MPI Users Group Meeting (Euro PVM/MPI), Sept. 2003.

[15] Oreste Villa, Daniel Chavarra-mir, Vidhya Gurumoorthi, Andrs Mrquez,
and Sriram Krishnamoorthy. Effects of floating-point non-associativity
on numerical computations on massively multithreaded systems.

[16] Hao Zhu, David J. Goodell, William Gropp, and Rajeev Thakur. Hi-
erarchical collectives in MPICH2. In Proceedings of the European
PVM/MPI Users Group Meeting (Euro PVM/MPI), Sept. 2009.

GOVERNMENT LICENSE

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government.

