
Enabling MPI Interoperability Through Flexible
Communication Endpoints

James Dinan,∗ Pavan Balaji,∗ David Goodell,∗ Douglas Miller,†
Marc Snir,∗ and Rajeev Thakur∗

∗Mathematics and Computer Science Division †International Business Machines Corp.
Argonne National Laboratory dougmill@us.ibm.com

{dinan,balaji,goodell,snir,thakur}@mcs.anl.gov

ABSTRACT
The current MPI model defines a one-to-one relationship between
MPI processes and MPI ranks. This model captures many use cases
effectively, such as one MPI process per core and one MPI process
per node. However, this semantic has limited interoperability be-
tween MPI and other programming models that use threads within a
node. In this paper, we describe an extension to MPI that introduces
communication endpoints as a means to relax the one-to-one rela-
tionship between processes and threads. Endpoints enable a greater
degree interoperability between MPI and other programming mod-
els, and we illustrate their potential for additional performance and
computation management benefits through the decoupling of ranks
from processes.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Concurrent programming struc-
tures

General Terms
Design, Performance

Keywords
MPI, Interoperability, Endpoints, Hybrid Parallel Programming

1. INTRODUCTION
Hybrid parallel programming in the “MPI+X” model has be-

come the norm in high-performance computing. This approach to
parallel programming mirrors the hierarchy of parallelism in cur-
rent high-performance systems, in which a high-speed interconnect
joins many highly parallel nodes. While MPI is effective at man-
aging internode parallelism, alternative data-parallel, fork-join, and
offload models are needed to utilize current and future highly par-
allel nodes effectively.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroMPI ’13, Sept. 15–18, 2013, Madrid, Spain.
Copyright 2013 ACM 000-0-0000-0000-0/00/00 ...$10.00.

Interoperability between MPI and other parallel programming
systems has long been a productivity and composability goal within
the parallel programming community. The widespread adoption of
“MPI+X” parallel programming has put additional pressure on the
community to produce a solution that enables full interoperability
between MPI and system-level programming models, such as X10,
Chapel, Charm++, UPC, and Coarray Fortran, as well as node-level
programming models such as OpenMP, threads, and TBB. A key
challenge to interoperability is the ability to generate additional
MPI ranks that can be assigned to threads used in the execution
of such models.

The MPI 3.0 standard resolved some issues affecting interoper-
ability of threads with MPI, but it did not provide any mechanism
that allows additional MPI ranks to be generated and assigned to
threads. In the current MPI interface, the programmer must use
either tags or communicators to distinguish communication opera-
tions between individual threads. However, both approaches have
significant limitations. When tags are used, it is not possible for
multiple threads sharing the rank of an MPI process to participate
in collectives. In addition, when multiple threads perform wild-
card receive operations, matching is nondeterministic. Using mul-
tiple communicators can sidestep some of these restrictions, but at
the expense of partitioning threads into individual communicators
where only one thread per parent process can be present in each
new communicator.

In this paper, we present an MPI extension, called MPI end-
points, that enables the programmer to generate additional ranks
at each process. We explore the design space of MPI endpoints and
how endpoints can impact the MPI implementation and application
performance. In addition, we demonstrate the utility of endpoints in
addressing the interoperability of MPI with system-level and node-
level parallel programming systems. Notably, endpoint ranks can
be distributed to threads in system-level programming models, such
as X10 or UPC, enabling these threads to act as MPI processes
and interoperate with MPI directly and with MPI libraries. End-
points can also be distributed among threads in node-level parallel
programming systems, enabling these threads to participate fully
in internode MPI operations, as well as to perform intranode MPI
operations. Finally, we demonstrate that breaking the one-to-one
relationship between ranks and processes opens the possibility for
a variety of computation-management strategies that balance the
workload through the reassignment of processes to different nodes.

2. BACKGROUND
Led by the authors, members of the MPI Forum first began dis-

cussion of an MPI endpoints interface as a part of the MPI 3.0 ef-
fort. Several interfaces were explored, resulting in the static in-

terface that we present in Section 3.1. We proposed the dynamic
interface, presented in Section 3.2, as a more flexible alternative to
the static interface, and it is under consideration for inclusion in a
future version of the standard.

MPI interoperability has been investigated extensively in the con-
text of a variety of parallel programming models. Interoperability
between MPI and Unified Parallel C was defined in terms of one-to-
one and many-to-one mappings of UPC threads to MPI ranks [3].
Support for the one-to-one mapping cannot be provided in MPI 3.0
when the UPC implementation utilizes operating system threads,
rather than processes, to implement UPC threads. However, this
mode of operation can be supported using endpoints.

Hybrid parallel programming with MPI and a node-level paral-
lel programming model has become commonplace. MPI is often
combined with multithreaded parallel programming models, such
as MPI+OpenMP [16]. MPI 2.0 [13] defined MPI’s interaction
with threads in terms of several levels of threading support that
can be provided by the MPI library. MPI 3.0 further refined the
definition of MPI’s interaction with threads, including new features
such as matched-probe operations to enable the use of MPI_Probe
when multiple threads share an MPI rank. In addition, MPI 3.0
added support for interprocess shared memory through the Remote
Memory Access (RMA) interface [7, 8].

Recently, researchers have endeavored to integrate MPI and ac-
celerator programming models. This effort has focused on sup-
porting the use of CUDA or OpenCL buffers directly in MPI oper-
ations [9, 19]. Other efforts have focused on enabling accelerator
cores to perform MPI calls directly [17].

Numerous efforts have been made to integrate node-level paral-
lelism with MPI. FG-MPI (Fine-Grain MPI) [10] implements MPI
processes as lightweight coroutines instead of operating-system pro-
cesses, enabling each coroutine to have its own MPI rank. Pro-
grams have been run with as many as 100 million MPI ranks using
FG-MPI [15]. Li et al. recently demonstrated significant perfor-
mance improvements in collective communication when the node
is not partitioned into individual MPI processes [12], i.e., endpoints
are used instead of one process per core. HMPI transmits owner-
ship for shared buffers to improve the performance of intranode
communication [5].

3. COMMUNICATION ENDPOINTS
We define an MPI endpoint as a set of resources that supports

the independent execution of MPI communications. These can be
physical resources (e.g., registers mapped into the address space
of the process) or logical resources. An endpoint corresponds to a
rank in an MPI communicator. One or more threads can be attached
to an endpoint, after which they can make MPI calls using the re-
sources of the endpoint. In this context, an MPI process consists
of an MPI endpoint and a set of threads that can perform MPI calls
using that endpoint.

The current MPI standard has a one-to-one mapping between
endpoints and threads. Communication endpoints breaks this re-
striction as shown in Figure 1. A variety of mechanisms could be
used to incorporate endpoints into MPI. We break down the de-
sign space into static versus dynamic approaches and further dis-
cuss how and when additional ranks are generated, how ranks are
associated with endpoints, and how threads are mapped to ranks.

3.1 Static Interface
A static endpoints interface allows the programmer to request

additional endpoints at each MPI process once during the execu-
tion of their program, typically during launching or initialization of
an MPI execution. In one approach to supporting static endpoints,

endpoints_comm

0 1 2 3 4 5

0 1 2

parent_comm

Figure 1: Flexible communication endpoints extend MPI with
a many-to-one mapping between ranks and processes

the programmer requests additional endpoints as an argument to
mpiexec, as in [3]. This approach requires MPI_Init to be called mul-
tiple times at each process and results in an MPI_COMM_WORLD
that incorporates all endpoints. As an alternative to this approach,
a new MPI initialization routine can be added that allows the pro-
grammer to indicate the desired number of endpoints.

int MPI_Init_endpoints(int *argc, char *argv[], int count,
int tl_requested, int *tl_provided)

where count indicates the desired number of endpoints at this pro-
cess, tl_requested is the level of thread support requested by the
user, and tl_provided is an output parameter indicating the level of
thread support provided by the MPI library.

This approach preserves an MPI_COMM_WORLD communica-
tor that contains only the number of processes that the user re-
quested when their program was launched. An additional com-
municator, MPI_COMM_ENDPOINTS contains all processes in
MPI_COMM_WORLD, as well as additional endpoints at each pro-
cess that were requested in the call to MPI_Init_endpoints.

In order to use an endpoint, a thread must first attach to a rank
in the endpoints communicator. Identifying the specific endpoint
can be accomplished in a variety of ways. One approach is to intro-
duce an explicit MPI_Endpoint object to represent each endpoint; an
array of such objects would be returned by MPI_Init_endpoints or
they could be returned individually by a query routine. We present
below a simpler approach where the endpoint index, between 0 and
count-1, is used.

int MPI_Comm_endpoint_attach(MPI_Comm comm, int index)

An advantage of the static endpoints scheme is that it can better
align MPI implementations with systems where endpoint resources
are reserved or created when MPI is initialized, for example, in the
case of implementations based on IBM’s PAMI low-level commu-
nication library [11]. However, statically specifying the number of
endpoints restricts the ability of MPI to interoperate fully with dy-
namic threading models and limits opportunities for libraries to use
endpoints. To better support such use cases, we describe an alter-
native approach that allows endpoints to be created dynamically.

3.2 Dynamic Interface
MPI communicators provide a unique communication context

that is used to perform matching between operations and to distin-
guish communication operations that arise from different compo-
nents in a program or library. In addition to providing encapsu-
lation, communicators contain a group that defines the processes
that are members of the communicator and the mapping of ranks
to these processes. When a communicator is created, the group
of the new communicator is derived from the group of an existing
parent communicator. In conventional communicator creation rou-
tines, the group of the new communicator is a subset of the group of

its parent. (We ignore here the dynamic processes interface, which
can be used to create new processes but not to generate additional
ranks for the purpose of interoperability with threaded program-
ming models.)

The dynamic endpoints interface uses the grouping property of
communicators to generate multiple ranks that are associated with
each process in the parent communicator. An example of this inter-
face is as follows.

int MPI_Comm_create_endpoints(MPI_Comm parent_comm, int
my_num_ep, MPI_Info info, MPI_Comm out_comm_hdls[])

In this collective call, a single output communicator is created, and
an array of my_num_ep handles to this new communicator are re-
turned, where the ith handle corresponds to the ith rank requested
by the caller of MPI_Comm_create_endpoints. Ranks in the output
communicator are ordered sequentially and in the same order as the
parent communicator.

After it has been created, the output communicator behaves as
a normal communicator, and MPI calls on each endpoint (i.e.,
communicator handle) behave as though they originated from a
separate MPI process. In particular, collective calls (including
MPI_Comm_free) must be made once per endpoint.

An additional parameter of the endpoints design is the associa-
tion of threads with endpoints. From the point of view of the end-
points interface, the parent MPI process is considered to be another
thread. A simple and flexible strategy is to allow any thread to com-
municate on any of its endpoints as soon as they have been created.
Alternatively, threads can be associated with specific endpoints by
attaching to them, as follows.

int MPI_Comm_attach(MPI_Comm ep_comm)

An advantage of this approach is that it allows the MPI implemen-
tation to associate threads with specific endpoints, potentially en-
abling the MPI implementation to manage resources more effec-
tively. Functionality to detach from an endpoint can also be added,
enabling a more dynamic programming interface but potentially
limiting optimizations.

Freeing an endpoints communicator requires a collective
call to MPI_Comm_free, where the free function is called
once per endpoint. As currently defined, this could require
MPI_Comm_free to be called concurrently on all endpoints, which
in turn requires that the MPI implementation be initialized with
MPI_THREAD_MULTIPLE support. To avoid this restriction, we
propose that MPI_Comm_free be defined in a way that enables a
single thread to call MPI_Comm_free separately for each endpoint.
Naive implementations of this semantic could lead to deadlock
when the thread level is not MPI_THREAD_MULTIPLE. A more
sophisticated implementation may be needed, where the MPI im-
plementation internally aggregates endpoint free requests to parent
MPI processes and performs any needed communication among
parent processes when the last endpoint rooted at that process calls
MPI_Comm_free.

3.3 Progress Semantics
The MPI standard specifies a minimal progress requirement:

Communication operations whose completion requirements are
met (e.g., matching send and receive calls have been made, test or
wait has been called) must eventually complete regardless of other
actions in the system. Endpoints add an additional dimension to
the progress semantic, as one could define a semantic where they
are treated as independent processes or as part of a single parent
process.

The single parent process model defines the simplest semantic,
and it would require that the MPI implementation ensure progress

is made on all endpoints of a process. This semantic is easy for
users to reason about and is compatible with an endpoints interface
that does not require threads to attach to endpoints. However, this
approach may limit concurrency in some MPI implementations by
requiring any thread entering the MPI progress engine to access the
state for all endpoints.

Treating endpoints as individual processes in the progress se-
mantic is a weaker guarantee that is more consistent with the MPI
standard and introduces additional opportunities for concurrency
within the MPI library. In this model, it can be helpful to the MPI
implementation if users explicitly associate threads with endpoints
through attach operations. This feature can be used to limit the
number of endpoints with which a thread is associated. When such
a restriction is not made, a thread can be associated with multiple
endpoints by issuing communication operations on each endpoint.

When the progress semantics treat endpoints as individual pro-
cesses, the MPI implementation can partition progress across
endpoints. For example, a thread that calls a blocking opera-
tion must make progress on its associated endpoints and on any
shared endpoints with which it is associated (e.g., its rank in
MPI_COMM_WORLD). This approach could enable the MPI li-
brary to allow multiple threads to drive communication on differ-
ent endpoints concurrently. As an additional optimization, if the
user knows that each endpoint will be used by only one thread, an
MPI_info hint could be provided that would enable the MPI imple-
mentation to avoid locking when accessing that endpoint’s state.

4. IMPACT ON MPI IMPLEMENTATIONS
In this section we discuss the impact of endpoints on existing

MPI implementations. We focus on the MPICH implementation of
MPI [14], but the discussion should be generally applicable to other
MPI implementations.

4.1 Internal Communicator Representation
In MPICH, communicators are internally represented as a struc-

ture at each process that contains several important components:
the process’s rank in the communicator, the size of the commu-
nicator, and mapping from rank to virtual connection (VC). This
mapping structure is currently a dense array indexed by communi-
cator rank, though other implementation choices are possible [6].
Each VC represents a logical connection to another MPI process,
even though the underlying network may not have a concept of con-
nections. VCs must be unique within a communicator, since each
process may hold only a single rank in any given communicator.
The addition of endpoints requires us to relax the uniqueness re-
striction, breaking an otherwise injective relationship. While rank-
to-VC translation is important, the reverse lookup is not performed;
thus the loss of uniqueness does not present any new challenges.

The communicator structure is referred to in MPI applications
by an integer handle value, which provides the semantics required
by the MPI standard and simplifies Fortran binding issues. Thus, a
handle value can most easily be thought of as an obfuscated pointer
to the corresponding underlying communicator structure. Calling
MPI_Comm_create_endpoints will create one communicator han-
dle for each endpoint on a given process, and the handles are re-
turned in the out_comm_hdls array. The handles may share one or
more underlying structures. For example, just as normal commu-
nicators that are duplicated by MPI_Comm_dup may easily share a
mapping data structure, endpoint communicators within a process
may also easily share the mapping structure within an MPI process
among all the endpoint communicators derived from the same call
to MPI_Comm_create_endpoints.

MPI communicators are logically composed of an MPI group

and a communication context. MPI groups are opaque data struc-
tures representing ordered sets of MPI processes that are local to
an MPI process. Groups are immutable once created and are de-
rived from existing communicators or other groups. In order to
extend MPI groups to endpoint communicators, groups must be
generalized to incorporate endpoints as well as conventional MPI
processes. This problem is traditionally viewed as a mapping prob-
lem [18] from the dense group space to a global process ID of some
type (though the same process need not be represented by the same
value on two different processes, leading to the LPID concept of
previous work [6]). Endpoints must be assigned unique IDs at their
creation time to serve as an element in the codomain of the group
rank mapping function. This ID must not be recycled/reused as
long as any communicator or group contains a reference to the end-
point associated with that ID. In this sense, endpoints can be treated
in a fashion similar to MPI-2 dynamic processes.

4.2 Associating Endpoints with Connections
Prior to the introduction of endpoints, communication from

multiple communicators could potentially multiplex over the
set of VCs in an MPI process. MPI message matching in
the receive queues (posted and unexpected) is performed using
〈ContextID,CommRank, Tag〉 triples and is already indepen-
dent of the VC structures. Therefore the introduction of endpoints
should not induce an additional multiplexing/demultiplexing step
at this layer.

The dynamic endpoints interface introduces complications for
interconnects that must create network endpoints when MPI_Init is
called. Such networks may be unable to create create additional
endpoints later, such as an implementation of MPI over PAMI [11].
In this case, the implementation may create all endpoints when
MPI_Init is called, possibly directed by runtime parameters or en-
vironment variables. The implementation would need to multiplex
MPI endpoints over network endpoints, and the user can improve
performance through hints indicating that the number of endpoints
created in calls to MPI_Comm_create_endpoints will not exceed the
number of network endpoints.

4.3 Interaction with Threading Models
An endpoints interface that returns separate communicator han-

dles for each endpoint has implementation advantages relative
to interfaces that share a communicator handle for all endpoints
within a single MPI process. Models that share communicator
handles maintain an implicit association between threads and end-
points, which has two major implications for the MPI implementa-
tion’s interaction with the application’s threading model.

Any explicit binding between threads and specific endpoints ne-
cessitates the usage of thread-local storage (TLS) in order to de-
termine the thread’s rank in the communicator as well as other
endpoint-specific information. Using TLS within the MPI library
obligates the MPI implementers to be aware of all possible thread-
ing models and middleware that a user might use. This coupling
could limit an MPI library’s interoperability with different thread-
ing models.

A larger problem than tightly coupling the threading model and
the MPI library is that such TLS lookups would be on the criti-
cal path for any communication operation. Though some thread-
ing models and architectures have support for fast TLS access [4],
many do not. A design utilizing separate communicator handles per
endpoint is advantageous because it keeps TLS off the communica-
tion critical path. The design trade-off to using separate handles in
the endpoints interface is that it slightly burdens the user, who must

distribute these handles among the application threads in order to
call MPI routines.

4.4 Optimizing Network Performance
Modern interconnection networks are often capable of greater

speeds than can be generated by transmitting a single message. In
order to saturate the network, multiple streams of communication
must be performed in parallel, and these communications must use
distinct resources in order to avoid being serialized.

Endpoints can be used to separate the communication resources
used by threads, enabling multiple threads to drive communication
concurrently and achieve higher network efficiency. For example,
endpoint ranks may be implemented through distinct network re-
sources, such as NICs, DMA FIFOs, or PAMI Contexts [11]. An
MPI implementation might have an optimal number of endpoints
based on the number of available hardware resources; users could
query this optimal number and use it to influence the number of
endpoints that are created.

In this regard, endpoints differ from the use of multiple com-
municators because additional communicators replicate the current
rank into a new context, typically using the same hardware re-
source. Thus, it is challenging to drive multiple communication
channels/resources using multiple threads within a single MPI pro-
cess. The endpoints creation operation generates new ranks that
can be associated with separate hardware resources and with the
specific intent of enabling parallel, multithreaded communications
within a single context.

5. IMPACT ON MPI APPLICATIONS
Endpoints introduce a new capability within the MPI standard

in that they allow the programmer a greater degree of freedom
in the mapping of ranks to processes. This capability can have
broad impact on interoperability as well as mapping of the com-
putation. In this section, we demonstrate these capabilities by us-
ing the dynamic endpoints interface. First, we use an OpenMP
example to highlight the impact of endpoints on interoperability
with node-level parallel programming models. Next, we demon-
strate the impact of endpoints on interoperability with system-level
parallel programming models through a UPC example. Although
we use OpenMP and UPC as examples, the techniques shown are
applicable to a variety of parallel programming models that may
use threads within a node, including Charm++, Co-array Fortran
(CAF), X10, and Chapel. Finally, we demonstrate that the relax-
ation of process-rank mapping enables new approaches to compu-
tation management through a dynamic load balancing example.

5.1 Node-Level Hybrid Programs
In Listing 1, we show an example hybrid MPI+OpenMP program

where endpoints have been used to enable all OpenMP threads to
participate in MPI calls. In particular, all threads at all nodes are
able to participate in a call to MPI_Allreduce. This example high-
lights one possible use of endpoints. Multiple use cases are pos-
sible, including an alternative scheme where MPI_COMM_SELF is
used as the basis for the endpoints communicator, allowing the pro-
grammer to construct a multilevel parallel structure where MPI can
be used within the node and between nodes.

In Listing 1, it is assumed that the maximum number of threads
allowed in the OpenMP implementation is compatible with the
number of endpoints allowed in the MPI implementation. This is
often the case, as the number of cores on a node typically drives
the number of threads allowed as well as the available network re-
sources. This example uses exactly one thread per endpoint. Each
thread joins an MPI_Allreduce with a different communicator as

int main(int argc, char **argv) {
int world_rank, tl;
int max_threads = omp_get_max_threads();
MPI_Comm ep_comm[max_threads];

MPI_Init_thread(&argc, &argv, MULTIPLE, &tl);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

#pragma omp parallel
{

int nt = omp_get_num_threads();
int tn = omp_get_thread_num();
int ep_rank;

#pragma omp master
{

MPI_Comm_create_endpoints(MPI_COMM_WORLD,
nt, MPI_INFO_NULL, ep_comm);

}
#pragma omp barrier

MPI_Comm_attach(ep_comm[tn]);
MPI_Comm_rank(ep_comm[tn], &ep_rank);
... // divide up work based on ’ep_rank’
MPI_Allreduce(..., ep_comm[tn]);

MPI_Comm_free(&ep_comm[tn]);
}
MPI_Finalize();

}

Listing 1: Example hybrid MPI+OpenMP program where end-
points are used to enable all OpenMP threads to participate in
a collective MPI allreduce.

if they were separate MPI ranks in separate processes. Since the
threads share a process and address space, the MPI implementation
can optimize the combining of data between those threads. In ad-
dition, the MPI implementation can utilize the threads and network
resources in the endpoints to maximize network throughput.

5.2 System-Wide Hybrid Programs
Endpoints can be used to enable interoperability with system-

level programming models that use threads for on-node execution,
e.g., UPC, CAF, Charm++, X10, and Chapel. In this setting, end-
points are used to enable flexible mappings between MPI ranks and
execution units in the other model.

To illustrate this capability, we show a hybrid MPI+UPC pro-
gram in Listing 2. This program uses a flat (one-to-one) mapping
between MPI ranks and UPC threads [3]. The UPC specification
allows UPC threads to be implemented using processes or threads;
however, implementations commonly use threads as the execution
unit for UPC threads. In order to support the flat execution model,
a mechanism is needed to acquire multiple ranks per unit of MPI
execution. In [3], the authors extended the MPI launcher with a
-ranks-per-proc argument that would allow each spawned
process to call MPI_Init multiple times, once per UPC thread. This
is one approach to enabling a static endpoints model. However, it
results in all endpoints being within MPI_COMM_WORLD, which
may not be desired.

In order to support the UPC code in Listing 2, the UPC com-
piler must intercept usages of MPI_COMM_WORLD and substitute
the upc_comm_world communicator. Alternatively, the MPI profil-
ing interface (PMPI) can be used to intercept MPI calls and pro-
vide communicator translation. This approach provides the best
compatibility with MPI libraries that are not compiled by the UPC
compiler.

In Listing 3, we show the code that a UPC compiler could gen-
erate to enable this hybrid execution model. In this example, MPI
is used to bootstrap the UPC execution, which is the approach used
by several popular UPC implementations [1]. Once the execution

shared [*] double data[100*THREADS];

int main(int argc, char **argv) {
int rank, i; double err;

do {
upc_forall(i = 0; i < 100*THREADS; i++; i) {

data[i] = ...; err += ...;
}
MPI_Allreduce(&err, ..., MPI_COMM_WORLD);

} while (err > TOL);
}

Listing 2: Example hybrid MPI+UPC user code

int main(int argc, char **argv) {
int world_rank, tl, i;
MPI_Comm upc_comm_world[NUM_THREADS];

MPI_Init_thread(&argc, &argv, MULTIPLE, &tl);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
MPI_Comm_create_endpoints(MPI_COMM_WORLD,

THREADS_PER_NODE, MPI_INFO_NULL, upc_comm_world);

/* Calls upc_thread_init(), which calls upc_main() */
for (i = 0; i < NUM_THREADS; i++)

UPCR_Spawn(upc_thread_init, upc_comm_world[i]);

MPI_Finalize();
}

upc_thread_init(int argc, char **argv,
MPI_Comm upc_comm_world) {

MPI_Comm_attach(upc_comm_world);
upc_main(argc, argv); /* User’s main function */
MPI_Comm_free(&upc_comm_world);

}

Listing 3: Example hybrid MPI+UPC bootstrapping code gen-
erated by the UPC compiler

has been bootstrapped, a “flat” endpoints communicator is created,
UPC threads are spawned, threads attach to their endpoints, reg-
ister the endpoints communicator with an interoperability library,
and finally run the user’s main function (shown in Listing 2).

5.3 Impact on Computation Management
Endpoints introduce powerful, new flexibility in the mapping of

ranks to processes. In the current MPI specification, ranks can be
shuffled, but the number of ranks assigned to each process must re-
main fixed. Dynamic endpoints allow ranks to be shuffled and also
the number of ranks assigned to each process to be adjusted. This
capability can be used to perform dynamic load balancing by treat-
ing endpoints as “virtual processes” and repartitioning endpoints
across nodes. This enables an application behavior that is simi-
lar to Adaptive MPI [2], where MPI processes are implemented as
Charm++ objects that can be migrated to perform load balancing.

A schematic example of this approach to load balancing is
shown in Figure 2. In this example, individual components of
the computation are associated with each endpoint rather than par-
ticular threads of execution. This enables a programming con-
vention where per-iteration data exchange can be performed with
respect to neighbor ranks in the endpoints communicator (e.g.,
halo exchange). Thus, when endpoints are migrated, the virtual
communication pattern between endpoints is preserved. Such a
communication-preserving approach to dynamic load balancing
can provide an effective solution for adaptive mesh computations.

While this model for load balancing is powerful and useful, it
requires the programmer to manually communicate computational
state from the previous thread or process responsible for an end-

206 3 5

0 1 2

5 0 2 3 4 61

Load Balancing

1

parent_comm

ep_comm1

ep_comm2

4

Figure 2: Dynamic load balancing via endpoints migration

point to the endpoint’s new owner. This introduces an interest-
ing opportunity for parallel programming researchers to develop
library solutions that can address this issue. For example, a library
could interface with existing load balancing or work partitioning
tools to generate the remapped communicator. A library interface
could then be used to migrate endpoints state from locations in the
old communicator to locations in the new communicator.

6. SUMMARY
Endpoints provide a natural evolution of MPI that relaxes the

one-to-one mapping of ranks to processes. This change can en-
able greater interoperability between MPI and parallel program-
ming models that use threads or other flexible execution strategies.
In addition, the decoupling of ranks from processes provides addi-
tional flexibility in mapping the computation to individual nodes in
the system that can be useful for dynamic load balancing.

We believe that the proposed dynamic endpoints extension
cleanly integrates with the MPI specification. Endpoints make con-
crete the existing implicit association of threads with processes by
treating a group of threads and an associated endpoint as an MPI
process. These refinements to the MPI standard establish a self-
consistent interaction between endpoints and the existing MPI in-
terface, and provide important flexibility that is needed to fully har-
ness the performance potential of future systems.

Acknowledgments
We thank the members of the MPI Forum, the MPI Forum hybrid
working group, and the MPI community for discussions related to
this work. This work was supported by the U.S. Department of
Energy under contract DE-AC02-06CH11307.

7. REFERENCES

[1] Berkeley UPC. Berkeley UPC user’s guide version 2.16.0.
Technical report, U.C. Berkeley and LBNL, 2013.

[2] Milind Bhandarkar, L. V. Kale, Eric de Sturler, and Jay
Hoeflinger. Object-Based Adaptive Load Balancing for MPI
Programs. In Proc. Intl. Conf. on Computational Science,
volume LNCS 2074, pages 108–117, May 2001.

[3] James Dinan, Pavan Balaji, Ewing Lusk, P. Sadayappan, and
Rajeev Thakur. Hybrid parallel programming with MPI and
unified parallel C. In Proc. 7th ACM international
conference on Computing frontiers, CF ’10, 2010.

[4] Ulrich Drepper. ELF handling for thread-local storage.
Technical report, Red Hat, Inc., December 2005.

[5] Andrew Friedley, Torsten Hoefler, Greg Bronevetsky,
Andrew Lumsdaine, and Ching-Chen Ma. Ownership

passing: Efficient distributed memory programming on
multi-core systems. In Proc. 18th ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming, 2013.

[6] David Goodell, William Gropp, Xin Zhao, and Rajeev
Thakur. Scalable memory use in MPI. In Proc. Recent Adv.
in MPI - 18th European MPI Users’ Group Meeting,
EuroMPI 2011, September 2011.

[7] Torsten Hoefler, James Dinan, Darius Buntinas, Pavan
Balaji, Brian Barrett, Ron Brightwell, William Gropp, Vivek
Kale, and Rajeev Thakur. Leveraging MPI’s one-sided
communication interface for shared-memory programming.
In Proc. Recent Adv. in MPI - 19th European MPI Users’
Group Meeting, EuroMPI ’12, September 2012.

[8] Torsten Hoefler, James Dinan, Darius Buntinas, Pavan
Balaji, Brian Barrett, Ron Brightwell, William Gropp, Vivek
Kale, and Rajeev Thakur. MPI+MPI: A new, hybrid
approach to parallel programming with MPI plus shared
memory. J. Computing (to appear), 2013.

[9] Feng Ji, Ashwin M. Aji, James Dinan, Darius Buntinas,
Pavan Balaji, Rajeev Thakur, Wu-Chun Feng, and Xiaosong
Ma. MPI-ACC: An integrated and extensible approach to
data movement in accelerator-based systems. In Proc. 14th
IEEE Intl. Conf. on High Performance Computing and
Communications, HPCC ’12, June 2012.

[10] Humaira Kamal and Alan Wagner. FG-MPI: Fine-grain MPI
for multicore and clusters. In 11th IEEE Intl. Workshop on
Parallel and Distributed Scientific and Engineering
Computing (PDSEC), pages 1–8, 2010.

[11] S. Kumar, A.R. Mamidala, D.A. Faraj, B. Smith,
M. Blocksome, B. Cernohous, D. Miller, J. Parker,
J. Ratterman, P. Heidelberger, Dong Chen, and
B. Steinmacher-Burrow. PAMI: A parallel active message
interface for the Blue Gene/Q supercomputer. In Proc. 26th
Intl. IEEE Parallel & Distributed Processing Symposium
(IPDPS), May 2012.

[12] S. Li, T. Hoefler, , and M. Snir. NUMA-Aware shared
memory collective communication for MPI. In Proc. 22nd
Intl. ACM Symp. on High-Performance Parallel and
Distributed Computing (HPDC), Jun. 2013.

[13] Message Passing Interface Forum. MPI-2: Extensions to the
Message-Passing Interface, July 1997.
http://www.mpi-forum.org/docs/docs.html.

[14] MPICH – A portable implementation of MPI.
http://www.mpich.org.

[15] Over 100 Million MPI Processes with MPICH, January
2013. http://www.mpich.org/2013/01/15/
over-100-million-processes-with-mpich/.

[16] Lorna Smith and Mark Bull. Development of mixed mode
MPI / OpenMP applications. Scientific Programming,
9(2,3):83–98, 2001.

[17] Jeff A. Stuart, Pavan Balaji, and John D. Owens. Extending
MPI to accelerators. In ASBD 2011: First Workshop on
Architectures and Systems for Big Data, October 2011.

[18] Jesper Larsson Träff. Compact and efficient implementation
of the MPI group operations. In Proc. Recent Adv. in MPI -
17th European MPI Users’ Group Meeting, EuroMPI 2010,
September 2010.

[19] Hao Wang, Sreeram Potluri, Miao Luo, Ashish Singh,
Sayantan Sur, and Dhabaleswar Panda. MVAPICH2-GPU:
Optimized GPU to GPU communication for InfiniBand
clusters. In Proc. Intl. Supercomputing Conf., ISC, 2011.

http://www.mpi-forum.org/docs/docs.html
http://www.mpich.org
http://www.mpich.org/2013/01/15/over-100-million-processes-with-mpich/
http://www.mpich.org/2013/01/15/over-100-million-processes-with-mpich/

	Introduction
	Background
	Communication Endpoints
	Static Interface
	Dynamic Interface
	Progress Semantics

	Impact on MPI Implementations
	Internal Communicator Representation
	Associating Endpoints with Connections
	Interaction with Threading Models
	Optimizing Network Performance

	Impact on MPI Applications
	Node-Level Hybrid Programs
	System-Wide Hybrid Programs
	Impact on Computation Management

	Summary
	References

