
Computing (2013) 95:1121–1136
DOI 10.1007/s00607-013-0324-2

MPI + MPI: a new hybrid approach to parallel
programming with MPI plus shared memory

Torsten Hoefler · James Dinan · Darius Buntinas ·
Pavan Balaji · Brian Barrett · Ron Brightwell ·
William Gropp · Vivek Kale · Rajeev Thakur

Received: 22 December 2012 / Accepted: 25 April 2013 / Published online: 19 May 2013
© Springer-Verlag Wien 2013

Abstract Hybrid parallel programming with the message passing interface (MPI) for
internode communication in conjunction with a shared-memory programming model
to manage intranode parallelism has become a dominant approach to scalable par-
allel programming. While this model provides a great deal of flexibility and perfor-
mance potential, it saddles programmers with the complexity of utilizing two parallel

T. Hoefler (B)
ETH Zurich, Zurich, Switzerland
e-mail: htor@inf.ethz.ch

J. Dinan · D. Buntinas · P. Balaji · R. Thakur
Argonne National Laboratory, Argonne, IL, USA
e-mail: dinan@mcs.anl.gov

D. Buntinas
e-mail: buntinas@mcs.anl.gov

P. Balaji
e-mail: balaji@mcs.anl.gov

R. Thakur
e-mail: thakur@mcs.anl.gov

B. Barrett · R. Brightwell
Sandia National Laboratories, Sandia, NM, USA
e-mail: bwbarre@sandia.gov

R. Brightwell
e-mail: rbbrigh@sandia.gov

W. Gropp · V. Kale
University of Illinois at Urbana-Champaign, Urbana, IL, USA
e-mail: wgropp@illinois.edu

V. Kale
e-mail: vivek@illinois.edu

123



1122 T. Hoefler et al.

programming systems in the same application. We introduce an MPI-integrated shared-
memory programming model that is incorporated into MPI through a small extension
to the one-sided communication interface. We discuss the integration of this interface
with the MPI 3.0 one-sided semantics and describe solutions for providing portable
and efficient data sharing, atomic operations, and memory consistency. We describe an
implementation of the new interface in the MPICH2 and Open MPI implementations
and demonstrate an average performance improvement of 40 % to the communication
component of a five-point stencil solver.

Keywords MPI-3.0 · Shared memory · Hybrid parallel programming

Mathematics Subject Classification 68N19 other progamming techniques
(objects-oriented, sequential, concurrent, automatic, etc.)

1 Introduction

The message passing interface (MPI [1]) has been the dominant parallel programming
model since the mid-1990s. One important reason for this dominance has been its abil-
ity to deliver portable performance on large, distributed-memory massively parallel
processing (MPP) platforms, large symmetric multiprocessing (SMP) machines with
shared memory, and hybrid systems with tightly coupled SMP nodes. For the majority
of these systems, applications written with MPI were able to achieve acceptable per-
formance and scalability. However, recent trends in commodity processors, memory,
and networks have created the need for alternative approaches. The number of cores
per chip in commodity processors is rapidly increasing, and memory capacity and net-
work performance are not able to keep up the same pace. Because memory capacity
per core is decreasing, mapping a single operating system process to an MPI rank and
assigning a rank per core severely limit the problem size per rank. In addition, MPI’s
single-copy model for both message passing and one-sided communication exacer-
bate the memory bandwidth problem by using intranode memory-to-memory copies
to share data between ranks. Moreover, network interfaces are struggling to support
the ability for all cores on a node to use the network effectively. As a result, appli-
cations are moving toward a hybrid model mixing MPI with shared-memory models
that attempt to overcome these limitations [2,3].

A relatively straightforward and incremental approach to extending MPI to support
shared memory has recently been approved by the MPI Forum. Several functions
were added that enable MPI ranks within a shared-memory domain to allocate shared
memory for direct load/store access. The ability to directly access a region of memory
shared between ranks is more efficient than copying and reduces stress on the memory
subsystem. Sharing a region of memory between ranks also overcomes the per core
memory capacity issue and provides more flexibility in how the problem domain
is decomposed. This approach reduces the amount of memory consumed for some
data structures such as read-only databases that replicate state across all ranks. From a
programming standpoint, providing shared memory supports structured programming,
where data is private until it is explicitly shared. The alternative, where data is shared

123



MPI + MPI: a new hybrid approach to parallel programming 1123

and must be explicitly made private, introduces more complexity into an existing MPI
application and the associated MPI implementation. Shared memory is also nearly
ubiquitous, given the prevalence of multicore processors.

This paper describes these recent extensions to the MPI standard to support shared
memory, discusses implementation options, and demonstrates the performance advan-
tages of shared memory for a stencil benchmark.

1.1 Motivation and related work

Support for shared memory in MPI has been considered before, but a number of fac-
tors have made such support increasingly compelling. In particular, although POSIX
shared memory can be used independently from MPI, the POSIX shared-memory
model has several limitations that can be overcome by exposing it through MPI. First,
POSIX shared-memory allocation is not a collective operation. One process creates a
region of memory and allows other processes to attach to it. Making shared-memory
creation collective offers an opportunity to optimize the layout of the memory based
on the layout of the ranks. Since the MPI implementation has knowledge of the layout
of the shared-memory region, it may be able to make message-passing operations
using this region more efficient. For example, MPI may be able to stripe messages
over multiple network interfaces, choosing the interface that is closest to the memory
being sent. Integration between the MPI runtime system and shared memory simpli-
fies shared-memory allocation and cleanup. Relying on an application using POSIX
shared memory directly to clean up after abnormal termination has been problem-
atic. Having the MPI implementation be responsible for allocating and freeing shared
memory is a better solution. Knowledge of shared memory inside the MPI implemen-
tation also provides better support and integration with MPI tools, such as correctness
and performance debuggers. Furthermore, nearly all MPI implementations already
have the infrastructure for allocating and managing shared memory since it is used for
intranode data movement, so the burden on existing implementations is light.

Previous work on efficiently supporting MPI on shared-memory systems has con-
centrated mostly on mapping an MPI rank to a system-level or user-level thread [4–8].
This approach allows MPI ranks to share memory inside an operating system process,
but it requires program transformation or knowledge on the part of the programmer to
handle global and static variables appropriately. Systems specifically aimed at mix-
ing MPI and shared memory have been developed, effectively augmenting MPI with
shared-memory capabilities as the new extensions do. LIBSM [9] and the Unified
Parallel System [10] are two such systems developed to support the ability for appli-
cations to use both MPI and shared memory efficiently. However, neither of these
systems actually made internal changes to the MPI implementation; rather, they pro-
vided an application-level interface that abstracted the capabilities of message passing
and shared memory.

The need for shared memory in MPI was brought up at the Forum by R. Brightwell,
who proposed a malloc/free interface that did not define synchronization semantics. T.
Hoefler later proposed to merge this functionality into the newly revamped one-sided
communication interface. Hoefler and J. Dinan brought forward a concrete proposal,
which was further developed by the MPI Forum remote memory access (RMA) work-

123



1124 T. Hoefler et al.

ing group. The Forum eventually voted for inclusion in MPI-3. The interface described
in this paper is the interface in MPI-3.

This paper is a more detailed version of [11].
Using shared memory between processes is not new, of course. Unix System V

defined a way for processes to share memory, and this has been used by applications
(including MPI implementations). One example where the sharing memory between
processes was the key part of the programming interface was MLP (multi-level paral-
lelism) [12], developed at NASA and used for production computational fluid dynam-
ics codes. This work showed that direct access to shared memory by the application
processes provides a significant performance benefit. However, this model and ones
like it never achieved the ubiquity of MPI and hence are rarely used directly by com-
putational science applications.

2 Extending MPI with integrated shared memory

MPI’s remote memory access interface defines one-sided communication operations,
data consistency, and synchronization models for accessing memory regions that are
exposed through MPI windows. The MPI-2 standard defined conservative but highly
portable semantics that would still guarantee correct execution on systems without a
coherent memory subsystem. In this model, the programmer reasons about the data
consistency and visibility in terms of separate private (load/store access) and public
(RMA access) copies of data exposed in the window.

The MPI-3 RMA interface extends MPI-2’s separate memory model with a new
unified model, which provides relaxed semantics that can reduce synchronization over-
heads and allow greater concurrency in interacting with data exposed in the window.
The unified model was added in MPI-3 RMA to enable more efficient one-sided data
access in systems with coherent memory subsystems. In this model, the public and
private copies of the window are coherent, and updates to either “copy” automatically
propagate. Explicit synchronization operations can be used to ensure completion of
individual or groups of operations.

The unified memory model defines an efficient and portable mechanism for one-
sided data access, including the needed synchronization and consistency operations.
We observe that this infrastructure already provides several important pieces of func-
tionality needed to define a portable, interprocess shared-memory interface. We now
discuss the additional functionality, illustrated in Fig. 1, that is needed to extend the
RMA model to support load/store accesses originating from multiple origin processes
to data exposed in a window. In addition, we discuss new functionality that is needed
to allow the user to query system topology in order to identify groups of processes
that communicate through shared memory.

2.1 Using the RMA interface for shared memory

In the MPI-2 one-sided communication interface, the user first allocates memory and
then exposes it in a window. This model of window creation is not compatible with
the interprocess shared-memory support provided by most operating systems, which

123



MPI + MPI: a new hybrid approach to parallel programming 1125

Fig. 1 Interprocess shared-memory extension using MPI RMA; an execution with two nodes is shown,
and a shared memory window is allocated within each node. The circles represent MPI ranks running on
two dual-core dual-socket nodes

require the use of special routines to allocate and map shared memory into a process’s
address space. Therefore, MPI-3 defines a new routine, MPI_Win_allocate_shared,
that collectively allocates and maps shared memory across all processes in the given
communicator.

CPU load and store instructions are similar to one-sided get and put operations.
In contrast with get/put, however, load/store operations do not pass through the MPI
library; and, as a result, MPI is unaware of which locations were accessed and whether
data was updated. Therefore, the separate memory model conservatively defines store
operations as updating to full window, in order to prevent data corruption on sys-
tems whose memory subsystem is not coherent. However, an overwhelming majority
of parallel computing systems do provide coherent memory, and on these systems
this semantic is unnecessarily restrictive. Therefore, MPI-3 defines a unified memory
model where store operations do not conflict with accesses to other locations in the
window. This model closely matches the shared-memory programming model used
on most systems, and windows allocated by using MPI_Win_allocate_shared are
defined to use the unified memory model.

2.2 Mapping of interprocess shared memory

Each rank in the shared-memory window provides an allocation size, and a shared
memory segment of at least the sum of all sizes is created. Specifying a per rank size
rather than a single, global size allows implementations to optimize data locality in
nonuniform memory architectures. By default, the allocated shared-memory region
is required to be contiguous. That is, the memory region associated with rank N in a
given window must be located directly before the memory region associated with rank
N + 1. The info key alloc_shared_noncontig allows the user to relax this allocation
constraint. When this key is given, MPI can map the segments belonging to each
process into noncontiguous locations. This approach can enable better performance
by allowing MPI to map each segment on a page boundary, potentially eliminating
negative cache and NUMA effects.

Many operating systems make it difficult to ensure that shared memory is allocated
at the same virtual address across multiple processes. The MPI one-sided interface,

123



1126 T. Hoefler et al.

Fig. 2 MPI_Comm_split_type can be used to create communicators suitable for use by MPI_Win_
allocate_shared from any intracommunicator

which encourages the dynamic creation of shared-memory regions throughout an
application’s life, exacerbates this problem. MPI_Win_allocate_shared does not
guarantee the same virtual address across ranks, and it returns only the address of the
shared-memory region for the local rank. MPI_Win_shared_query provides a query
mechanism for determining the base address in the current process and size of another
process’s region in the shared-memory segment. The address of the absolute beginning
of the window can be queried by providing MPI_PROC_NULL as the rank argument to
this function, regardless of whether rank zero specified a size greater than zero.

2.3 Querying machine topology

The MPI_Win_allocate_shared function expects the user to pass a communicator on
which a shared-memory region can be created. Passing a communicator where this is
not possible is erroneous. In order to facilitate the creation of such a “shared memory
capable” communicator, MPI-3 provides a new routine, MPI_Comm_split_type. This
function is an extension of the MPI_Comm_split functionality, with the primary differ-
ence being that the user passes a type for splitting the communicator instead of a color.
Specifically, the MPI-3 standard defines the type MPI_COMM_TYPE_SHARED,
which splits a communicator into subcommunicators on which it is possible to create
a shared-memory region, as shown in Fig. 2.

The MPI_Comm_split_type functionality also provides an info argument that
allows the user to request architecture-specific information that can be used to restrict
the communicator to span only a NUMA socket or a shared cache level, for example.
While the MPI-3 standard does not define specific info keys, most implementations
are expected to provide NUMA and cache management capabilities through these info
keys.

3 Implementation of shared-memory RMA

The shared-memory RMA interface has been implemented in both MPICH and Open
MPI by using similar techniques. In this section we describe the steps required for the
MPI library to allocate a shared window; we also provide implementation details.

123



MPI + MPI: a new hybrid approach to parallel programming 1127

(a) (b) (c)

Fig. 3 Shared-memory window allocation strategies. Dotted lines in a and c represent page boundaries.
In b each window segment is allocated in a separate shared-memory region and is page aligned a contiguous
b noncontig separate c noncontig padded

The root (typically the process with rank 0 in the associated communicator) allo-
cates a shared-memory region that is large enough to contain all the window segments
of all processes sharing the window. Once the shared-memory region has been cre-
ated, information identifying the shared-memory region is broadcast to the member
processes, which then attach to it. At any process, the base pointer of a window seg-
ment can be computed by knowing the size and base pointer of the previous window
segment: the base pointer of the first window segment, segment 0, is the address of
where the shared-memory segment was attached; and the base pointer of segment i is
base_ptri = base_ptri−1 + seg_si zei−1.

Scalability needs to be addressed for two implementation issues: (1) computing
the sum of the shared window segments in order to determine the size of the shared-
memory segment and (2) computing the base pointer of a window segment. For win-
dows with a relatively small number of processes, an array of the segment size of each
process can be stored locally at each process by using an all-gather operation. From
this array, the root process can compute the size of the shared-memory segment, and
each process can compute the base pointer of any other segment. For windows with
a large number of processes, however, the offsets may be stored in a shared-memory
segment, with scalable collectives (reduce, broadcast, exscan) used to compute sizes
and offsets.

When the alloc_shared_noncontig info key is set to “true,” the implementation is
not constrained to allocate the window segments contiguously; instead, it can allocate
each window segment so that its base pointer is aligned to optimize memory access.
Individual shared-memory regions may be exposed by each rank, an approach that
can be used to provide optimal alignment and addressing but requires more state.
An alternative implementation is to allocate the window as though it was allocated
contiguously, except that the size of each window segment is rounded up to a page
boundary. In this way each window segment is aligned on a page boundary, and shared
state can be used to minimize resource utilization. Both MPICH and Open MPI use
the latter approach.

Figure 3 shows the three shared-memory allocation strategies discussed above.
In Fig. 3a we see the contiguous memory allocation method. The figure shows four
processes each of which has the entire memory region attached. The shared-memory
region contains four window segments of different sizes. Figure 3b and c show non-
contiguous allocations. In Fig. 3b each window segment is allocated in a separate

123



1128 T. Hoefler et al.

shared-memory region. Each process attaches all the memory regions. In Fig. 3c a
single shared-memory region is attached by each process. Each window segment is
padded out to a window boundary. The first and third segments do not end on a page
boundary; thus, we see that those segments are padded so that the next window segment
starts on a page boundary.

Synchronization operations must provide processor memory barriers to ensure con-
sistency semantics but otherwise are straightforward to implement. Because of the
direct memory access available for all target operations, communication calls may
be implemented as memory copies performed during the communication call itself.
While an implementation could choose to implement the accumulate operations by
using processor atomics, locks and memory copies can also provide the required
semantics. Both MPICH and Open MPI use a spinlock per target memory region to
implement accumulate operations, because of the simplicity of implementation and
greater portability.

4 Issues with a library interface to shared memory

Several issues can arise when implementing shared-memory semantics as a library [13,
14]. Like Pthreads, MPI does not specify memory semantics for load/store accesses to
the shared-memory window within an epoch. The user must be aware of this feature
and must guarantee the required consistency using techniques outside the scope of MPI
(e.g., language features or inline assembly). Note that, like on traditional MPI windows,
MPI RMA synchronization operations (e.g., fence, lock, or sync) have clearly specified
memory semantics and can be used to synchronize memory accesses.

The main issue arises from the fact that the compiler is not aware that programs are
executed in a multithreaded context and that serial optimizations may break anticipated
parallel semantics. For example, Boehm et al. [14] assume the following code to
synchronize the access of two processes to a shared-memory window:

// assuming two processes in shmcomm, each allocating one int, contiguously

MPI_Win_allocate_shared(sizeof(int), info, shmcomm, &mem, &win);

// query address of process 0 in my local memory

MPI_Win_shared_query(win, 0, &sz, &ptr);

int *x = &ptr[0]; // assign variables

int *done = &ptr[1];

if(r == 0) { // process 0

*x = ... // initialize x

*done = 1; // set flag

}

if(r == 1) { // process 1

while(!(*done)) {} // wait for flag

... = *x; // read x

}

Similar to the example in [14], a good compiler could use a simple points-to-
analysis [15], determine that *done is not changed in the loop body, and optimize

123



MPI + MPI: a new hybrid approach to parallel programming 1129

process 1’s loop to tmp=*done; while(!tmp) { } to avoid the memory references.
More examples, such as register promotion and performance issues, can be found
in [13,14].

A possible solution would be to make the compiler aware of the fact that the thread
is executed in a parallel environment or to prohibit certain optimizations. For example,
a compiler would not be allowed to add additional reads or writes to and from a shared
memory segment, and it would also not be allowed to perform any optimization affect-
ing memory in a shared-memory segment across any MPI (or generally any) function
call. Those two simple rules would prevent most of the erroneous transformations
known today. However, to define the sets of correct and incorrect compiler transfor-
mations, one would need to define a memory model for accessing MPI shared-memory
windows.

In this model, MPI synchronization calls act as optimization barriers that synchro-
nize memory, and MPI_Win_sync can be used similar to a memory fence because of
its semantics that close and open an epoch. The reason rests with the opaque nature of
MPI calls (they are often simply linked in as object files) for today’s existing C/C++
compilers, which have to assume that MPI functions have arbitrary effects on the
global state of the program. However, standard Fortran compilers, and C/C++ compil-
ers using whole program analysis and interprocedural optimizations (IPO), may still
cause problems when applying heavy optimizations assuming a serial execution of the
code (we suggest that compiler and library writers cooperate to avoid such problems).

The MPI Forum decided to omit this specification because of missing practical expe-
rience (the Java [16] and C++ [17] memory models are rather new) and the resulting
doubts about the impact on performance of such a specification. Another limitation of
MPI, as a library, is that a fully specified memory model may require many additional,
often expensive, library calls to emulate strong models such as sequential consistency
(cf. volatile in the Java memory model [16] or atomic in the C++ memory model [17]).

5 Use cases and evaluation

Shared-memory windows in MPI programs have multiple effects on future parallel
programming techniques. Current scientific applications often use OpenMP to enable
sharing of large data structures (e.g., hash tables or lookup tables or databases) among
cores inside a compute node. This approach requires using two different models of
parallelization: MPI and a carefully crafted OpenMP layer that enables scalability to
the large core counts (32–64) in today’s architectures. Doing so often requires an “MPI-
style” domain decomposition of the OpenMP parts, effectively leading to a complex
two-stage parallelization of the program. Shared-memory windows allow a structured
approach to this issue in that OpenMP can be used where it is most efficient (e.g., at
the loop level) and shared memory can be shared across different MPI processes with
a single level of domain decomposition.

A second use-case is to use shared-memory windows for fast intranode commu-
nications. Here, the user employs a two-level parallelization in order to achieve the
highest possible performance using true zero-copy mechanisms (as opposed to MPI’s
mandated single-copy from send buffer to receive buffer). This has the advantage over
a purely threaded approach that memory is explicitly shared and heap corruption due

123



1130 T. Hoefler et al.

to program bugs is less likely (cf. [18]). An example of this benefit explored with
an early prototype of the shared-memory extensions can be found in [19]. This work
demonstrates the incremental approach of incorporating shared memory into an MPI
application in order to reduce the iteration count of the linear solver portion of an
application. The rest of the application, which performs and scales well, can remain
unchanged and largely unaware of the use of shared memory.

Shared-memory regions can also help better support the use of accelerators within
an MPI application. For example, if an application is running with one MPI rank per
core and all ranks wish to transfer data to a GPU, it can be challenging to coordinate
the transfer of data between the host memory of each rank and GPU memory. Using
shared memory, one rank can be responsible for transferring data between the host
and the device, reducing the amount of coordination among ranks.

5.1 Finite-volume mini-application

Preconditioned iterative methods for solving linear systems can benefit from a
hybrid MPI plus shared-memory approach. Solver implementations based on an
MPI-everywhere model often suffer from poor scalability for large numbers of MPI
processes, because the number of iterations per linear solve step increases signifi-
cantly as the number of MPI ranks, and thus the number of subdomains, increases.
Extra solver iterations typically consume an increasingly large percentage of overall
application runtime as the number of MPI ranks grows. An approach to addressing
this issue is to use shared memory to reduce the number of subdomains in the solver.
Although the rest of the application would continue to operate using a single subdo-
main per core, the solver library could organize the data into fewer subdomains so
that multiple cores work together on a single larger subdomain. Mathematically, this
approach improves the convergence rate and robustness of the solver.

To illustrate this approach, we use a mini-application from the Mantevo project [20]
called HPCPCG (HPC preconditioned conjugate gradient). This miniapp is designed to
encapsulate some of the performance characteristics of an unstructured finite-volume
application. It partitions a three-dimensional domain in the z-dimension and stores
data in an unstructured fashion. It implements a conjugate-gradient iterative method
preconditioned by a symmetric Gauss-Seidel sweep, implemented as one lower trian-
gular solve and one upper triangular solve [21] using a previously developed level-set
triangular solver implementation [22,23]. A level set is calculated after expressing the
data dependencies as a directed acyclic graph (DAG). The level sets of this DAG rep-
resent sets of row operations in the triangular solve that can be done independently by
using threads with synchronization barriers occurring after each level. This approach
is most beneficial for solving triangular systems resulting from incomplete factoriza-
tions, where the resulting matrix factors are sparse enough to yield sufficiently large
levels and mitigate the synchronization costs.

The original implementation of HPCPCG was MPI-only. Like most codes that use
domain decomposition, the sweep is restricted to each subdomain assigned to each MPI
rank. The sweep is done independently in each rank without any communication, which
leads to iteration inflation. Using the shared memory extensions, the preconditioner

123



MPI + MPI: a new hybrid approach to parallel programming 1131

Fig. 4 Comparison of iteration
count for the HPCPCG
mini-application using MPI-only
and MPI plus shared memory

can operate on fewer, larger domains. HPCPCG was modified so that one rank per
node is responsible for the preconditioning using a larger domain corresponding to the
combined domains of all the ranks on a node. During the preconditioning step, all ranks
can operate on a single domain directly, leading to a reduction in the iteration count
over each rank operating on the domain independently. A multithreaded approach
would lead to the same reduction in iteration count, but using the shared memory
extensions allows for an incremental approach to improving the performance of the
solver without impacting the rest of the application. Applications that use the solver
can continue to use an MPI-everywhere approach, while only the solver needs minor
changes to exploit the shared memory capability.

Figure 4 shows the iteration count for HPCPCG running on a 2 GHz Intel Xeon
Nehalem X7550 with 4 sockets and 8 cores per socket, 512 GB of memory, running
RHEL 6 with a 256x256x1024 grid size using strong scaling. HPCPCG reports the
number of iterations needed for convergence to a specified tolerance for the MPI-
only versus MPI plus shared-memory version. As expected, the MPI-only version
requires more iterations to converge than does the shared-memory variant that uses
larger subdomains in the preconditioning phase.

5.2 Quantum Monte Carlo code example

The quantum Monte Carlo method (QMC) is a highly scalable method for solving the
many-body Schrödinger equation numerically, with a limited set of approximations
relative to density-functional or diagrammatic many-body methods. QMC provides a
general approach, which can be applied to problems relevant to chemistry, biology,
materials science, and physics, particularly for systems with strong electron correla-
tion. Starting from a reference wavefunction, QMC iteratively refines the wavefunc-

123



1132 T. Hoefler et al.

tion using a random walk in the high-dimensional space defined by the many-electron
wavefunction, which is represented in a basis of one-electron functions.

In the popular QMCPack [24] and QWalk [25] quantum Monte Carlo applications,
the reference wavefunction is captured by using the Einspline library [26], which uses
the cubic B-spline basis. The resulting data, referred to as the ensemble data, is stored
as a four-dimensional table of coefficients, where the first three dimensions are spatial,
and the fourth dimension corresponds to the number of single particle orbitals in the
system under simulation. Thus, the size of this table is proportional to the number of
electrons in the physical system under analysis and the number of grid points in each
spatial dimension.

Initially, it was possible to store one copy of the ensemble data per process on a node.
But as memory per hardware execution thread is no longer increasing and scientific
objectives have targeted larger systems, this is no longer possible [27]. Thus, develop-
ers of several QMC applications—notably QMCPack—have invested significant time
and effort into hybridizing existing MPI code with shared-memory libraries, such as
OpenMP, in order to share the coefficients table [28]. While the hybrid MPI+OpenMP
model provides many useful capabilities to enable node-level parallelism, QMC appli-
cations implemented with only MPI are already relatively scalable and load balanced;
thus, the shared-memory capability of this model is the primary feature needed by
such applications.

Algorithm 5a shows pseudocode for the computational kernel at the core of the
diffusion Monte Carlo algorithm and includes markup indicating what must be added
to the existing MPI implementation in order to extend it to the hybrid MPI+OpenMP
model. From this code, we see that significant effort must be invested to convert the
computation to a two-level parallel structure that incorporates two parallel program-
ming systems. A key challenge in the Hybrid MPI+OpenMP or MPI+threads models is
the transition from the MPI process private-by-default model to the threaded shared-
by-default model for global, heap, common block, and library data. This transition
has resulted in the addition of two critical sections to regulate updates to data that is
shared across walkers. Developers report that significant effort was required to dupli-
cate unintentionally shared data in thread-private storage and to ensure safe access to
shared data [28].

For comparison, we show the MPI with shared-memory windows pseudocode in
Algorithm 5b. Because this code preserves MPI’s private-by-default data model, we
see that the DMC algorithm requires no changes. Instead, changes are localized to
the allocation and creation of the ensemble data structure. A node communicator
is created, followed by a shared-memory window, and finally one process per node
populates the ensemble data table.

5.3 Five-point stencil kernel evaluation

We now evaluate the performance improvements that can be achieved with shared-
memory windows using an application kernel benchmark. We prefer not to show the
usual ping-pong benchmarks because they would simply show the MPI overhead ver-
sus the performance of the memory subsystem while hiding important effects caused

123



MPI + MPI: a new hybrid approach to parallel programming 1133

(a) (b)

Fig. 5 Diffusion Monte Carlo kernel pseudocode, courtesy of [29], in the hybrid MPI+OpenMP and MPI
with shared-memory window models a Hybrid MPI+OpenMP b MPI+MPI

by the memory allocation strategy. Instead, we use a simple, two-dimensional Poisson
solver, which computes a heat propagation problem using a five-point stencil. The
N × N input grid is decomposed in both dimensions by using MPI_Dims_create
and MPI_Cart_create. The code adds one-element-deep halo zones for the com-
munication. The benchmark utilizes nonblocking communication of 8 · N Bytes in
each direction to update the halo zones and MPI_Waitall to complete the commu-
nication. It then updates all local grid points before it proceeds to the next iteration.

The shared-memory implementation utilizes MPI_Comm_split_type to create
a shared-memory communicator and allocates the entire work array in shared memory.
Optionally, it provides the alloc_shared_noncontig info argument to allow
the allocation of localized memory. The communication part of the original code is
simply changed to MPI_Win_fence in order to ensure memory consistency and
direct memory copies from remote to local halo zones. To simplify the example code,
we assume that all communications are in shared memory only. The following listing
shows the relevant parts of the code (variable declarations and array swapping are
omitted for brevity).

MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &shmcomm);

MPI_Win_allocate_shared(size*sizeof(double), info, shmcomm, &mem, &win);

MPI_Win_shared_query(win, north, &sz, &northptr);

MPI_Win_shared_query(win, south, &sz, &southptr);

MPI_Win_shared_query(win, east, &sz, &eastptr);

MPI_Win_shared_query(win, west, &sz, &westptr);

123



1134 T. Hoefler et al.

(a) (b)

Fig. 6 Communication and computation performance for the five-point stencil kernel

for(iter=0; iter<niters; ++iter) {

MPI_Win_fence(0, win); // start new access and exposure epoch

if(north != MPI_PROC_NULL) // the north "communication"

for(int i=0; i<bx; ++i) a2[ind(i+1,0)] = northptr[ind(i+1,by)];

if(south != MPI_PROC_NULL) // the south "communication"

for(int i=0; i<bx; ++i) a2[ind(i+1,by+1)] = southptr[ind(i+1,1)];

if(east != MPI_PROC_NULL) // the east "communication"

for(int i=0; i<by; ++i) a2[ind(bx+1,i+1)] = eastptr[ind(1,i+1)];

if(west != MPI_PROC_NULL) // the west "communication"

for(int i=0; i<by; ++i) a2[ind(0,i+1)] = westptr[ind(bx,i+1)];

update_grid(&a1, &a2); // apply operator and swap arrays

}

We ran the benchmark on a six-core 2.2 GHz AMD Opteron CPU with two MPI
processes and recorded communication and computation times. The domain was
decomposed in the x (contiguous) direction, and both MPI processes ran in the same
NUMA domain without internode communication. Open MPI and MPICH perform
similarly because of the similar implementations; we focus on experimentation with
the MPICH implementation.

Figure 6a shows the communication times of the send/recv version (red line with
dots) and the shared-memory window versions (green line with triangles), as well as
the communication time improvement of the shared-memory window version (blue
crosses). In general, we show that the communication overhead for the shared-memory
window version is 30–60 % lower than for the traditional message-passing approach.
This is due to the direct memory access and avoided matching queue and function call
costs.

Figure 6b shows the computation time of the shared-memory window version,
that is, the time to update the inner grid cells relative to the computation time of the
send/recv version. We observe a significant slowdown (up to 8 %) of the computation
without the alloc_shared_noncontig argument. This is partially due to false sharing
and the fact that the memory is local to rank 0. Indeed, the slowdown of the computation
eliminated any benefit of the faster communication and made the parallel code slower.

123



MPI + MPI: a new hybrid approach to parallel programming 1135

Specifying alloc_shared_noncontig eliminates the overhead down to the noise (<
1.7 %) and leads to an improvement of the overall runtime.

6 Conclusions and outlook

In this work, we described an MPI standard extension to integrate shared-memory func-
tionality into MPI-3.0 through the remote memory access interface. We motivated this
new interface through several use-cases where shared-memory windows can result in
improved performance, scaling, and capabilities. We discussed the design space for
this new functionality and provided implementations in two major MPI implementa-
tions, which will both be available shortly in the official releases.

To evaluate the application-level impact of shared memory windows, we conducted
a performance study using a heat-propagation 5-point stencil benchmark. The bench-
mark illustrated two important aspects: (1) an average 40 % reduction in data move-
ment time compared with a traditional send/recv formulation and (2) the potentially
detrimental slowdown of computation if false sharing and NUMA effects are ignored.
By allowing the MPI implementation to automatically adjust the shared-memory map-
ping, we showed that these negative performance effects can be eliminated.

We plan to further investigate NUMA-aware allocation strategies, direct mapping
of shared memory (e.g., XPMEM), and the effective use of the info argument to
MPI_Comm_split_type to expand this routines topology querying capabilities.
We also plan to apply the shared-memory extensions to incomplete factorization codes,
as well as to a human heartbeat simulation code.

Acknowledgments We thank the members of the MPI Forum and the MPI community for their efforts
in creating the MPI 3.0 specification. In addition, we thank Jeff RḢammond for reviewing a draft of this
article. This work was supported by the U.S. Department of Energy, Office of Science, Advanced Scientific
Computing Research, under Contract DE-AC02-06CH11357, under award number DE-FC02-10ER26011
with program manager Sonia Sachs, under award number DE-FG02-08ER25835, and as part of the Extreme-
scale Algorithms and Software Institute (EASI) by the Department of Energy, Office of Science, U.S. DOE
award DE-SC0004131. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energys National Nuclear Security Administration,
under contract DE-AC-94AL85000.

References

1. MPI Forum (2012) MPI: a message-passing interface standard. version 3.0
2. Smith L, Bull M (2001) Development of mixed mode MPI/OpenMP applications. Sci Program

9(2,3):83–98
3. Rabenseifner R, Hager G, Jost G (2009) Hybrid MPI/OpenMP parallel programming on clusters of

multi-core SMP nodes. In: Proceedings of the 17th Euromicro international conference on parallel,
distributed and network-based processing

4. Demaine E (1997) A threads-only MPI implementation for the development of parallel programs. In:
Proceedings of the 11th international symposium on HPC systems. pp 153–163

5. Bhargava P (1997) MPI-LITE: multithreading support for MPI. http://pcl.cs.ucla.edu/projects/sesame/
mpi_lite/mpi_lite.html

6. Shen K, Tang H, Yang T (1999) Adaptive two-level thread management for fast MPI execution on
shared memory machines. In: Proceedings of the ACM/IEEE conference on supercomputing

123

http://pcl.cs.ucla.edu/projects/sesame/mpi_lite/mpi_lite.html
http://pcl.cs.ucla.edu/projects/sesame/mpi_lite/mpi_lite.html


1136 T. Hoefler et al.

7. Tang H, Shen K, Yang T (2000) Program transformation and runtime support for threaded MPI exe-
cution on shared memory machines. ACM Trans Program Lang Syst 22:673–700

8. Pérachec M, Carribault P, Jourdren H (2009) MPC-MPI: an MPI implementation reducing the overall
memory consumption. In: Proceedings of EuroPVM/MPI 2009, Springer, pp 94–103

9. Shirley D (2000) Enhancing MPI applications through selective use of shared memory on SMPs. In:
Proceedings of the 1st SIAM conference on CSE

10. Los Alamos National Laboratory (2001) Unified parallel software users’ guide and reference manual.
http://public.lanl.gov/ups/Doc_Directory/UserGuide/UserGuide.pdf

11. Hoefler T, Dinan J, Buntinas D, Balaji P, Barrett B, Brightwell R, Gropp W, Kale V, Thakur R (2012)
Leveraging MPIs one-sided communication interface for shared-memory programming. In: Träff J,
Benkner S, Dongarra J (eds) Recent advances in the message passing interface. vol 7490, pp 132–141

12. Taft JR (2001) Achieving 60 GFLOP/s on the production CFD code OVERFLOW-MLP. Parallel
Comput 27(4):521–536

13. Boehm HJ (2005) Threads cannot be implemented as a library. In: Proceedings of the 2005 ACM
SIGPLAN conference on programming language design and implementation. PLDI ’05, New York,
NY, USA, ACM pp 261–268

14. Boehm HJ, Adve SV (2012) You do not know jack about shared variables or memory models. Commun.
ACM 55(2):48–54

15. Aho AV, Sethi R, Ullman JD (1986) Compilers: principles, techniques, and tools. Addison-Wesley
Longman Publishing Co. Inc., Boston

16. Manson J, Pugh W, Adve SV (2005) The Java memory model. In: Proceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on principles of programming languages. POPL ’05, New York,
ACM pp 378–391

17. Boehm HJ, Adve SV (2008) Foundations of the C++ concurrency memory model. SIGPLAN Not
43(6):68–78

18. Lee EA (2006) The problem with threads. Computer 39(5):33–42
19. Heroux MA, Brightwell R, Wolf MM (2011) Bi-modal MPI and MPI+threads computing on scalable

multicore systems. IJHPCA (Submitted)
20. Sandia National Laboratories (2012) Mantevo project. http://www.mantevo.org
21. Saad Y (2003) Iterative methods for sparse linear systems. Society for Industrial and Applied Mathe-

matics
22. Saltz JH (1990) Aggregation methods for solving sparse triangular systems on multiprocessors. SIAM

J Sci Stat Comput 11(1):123–144
23. Wolf MM, Heroux MA, Boman EG (2010) Factors impacting performance of multithreaded sparse

triangular solve. Technical report SAND2010-0331 presented at VECPAR’10
24. Esler KP, Kim J, Ceperley DM, Purwanto W, Walter EJ, Krakauer H, Zhang S, Kent PRC, Hennig RG,

Umrigar C, Bajdich M, Koloren J, Mitas L, Srinivasan A (2008) Quantum monte carlo algorithms for
electronic structure at the petascale; the endstation project. J Phys 125(1):012057

25. Wagner LK, Bajdich M, Mitas L (2009) Qwalk: a quantum monte carlo program for electronic structure.
J Comput Phys 228(9):3390–3404

26. Esler KP Einspline libaray. Online: http://einspline.svn.sourceforge.net/
27. Niu Q, Dinan J, Tirukkovalur S, Mitas L, Wagner L, Sadayappan P (2012) A global address space

approach to automated data management for parallel quantum Monte Carlo applications. In: Proceed-
ings 19th international conference on high performance computing. HiPC’12

28. Smith L, Kent P (2000) Development and performance of a mixed OpenMP/MPI quantum Monte
Carlo code. Concurr Pract Exp 12(12):1121–1129

29. Esler KP, Kim J, Ceperley DM, Shulenburger L (2012) Accelerating quantum Monte Carlo simulations
of real materials on GPU clusters. Comput Sci Eng 14(1):40–51

123

http://public.lanl.gov/ups/Doc_Directory/UserGuide/UserGuide.pdf
http://www.mantevo.org
http://einspline.svn.sourceforge.net/

	MPI + MPI: a new hybrid approach to parallel programming with MPI plus shared memory
	Abstract
	1 Introduction
	1.1 Motivation and related work

	2 Extending MPI with integrated shared memory
	2.1 Using the RMA interface for shared memory
	2.2 Mapping of interprocess shared memory
	2.3 Querying machine topology

	3 Implementation of shared-memory RMA
	4 Issues with a library interface to shared memory
	5 Use cases and evaluation
	5.1 Finite-volume mini-application
	5.2 Quantum Monte Carlo code example
	5.3 Five-point stencil kernel evaluation

	6 Conclusions and outlook
	Acknowledgments
	References


