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Abstract
Charm++ may employ any of a myriad network-specific APIs for handling communication, which

are usually promoted as being faster than its catch-all MPI module. Such a performance difference not
only causes development effort to be spent on tuning vendor-specific APIs but also discourages hybrid
Charm++/MPI applications. We investigate this disparity across several machines and applications, rang-
ing from small InfiniBand clusters to Blue Gene/Q supercomputers and from synthetic benchmarks to
large-scale biochemistry codes. We demonstrate the use of one feature from the recent MPI-3 standard to
bridge this gap where applicable, and we discuss what can be done today.

1 Introduction

Our work identifies inefficiencies in both design and implementation that impair the usage of MPI [4] as a
Charm++ [2] networking substrate. Incongruences between the two programming models imply a likely loss of
performance, irrespective of platform-specific details. We also propose concrete interoperability opportunities
that substantiate the optimizations presented.

A number of potential technical culprits were investigated, from unexpected message queue lengths to the
frequency of calls to the MPI progress engine. We investigated the effects of the alternating computation versus
communication phases of single-threaded Charm++. We also examined the trade-offs of utilizing eager versus
rendezvous protocols in MPI. The most notable performance improvement came from supporting communicator-
specific rendezvous thresholds, a feature made possible by the recent MPI-3 standard.

Regardless of specific implementation details, we believe there is a fundamental difference between the
expected-message nature of MPI and the unexpected-message behavior of Charm++. This difference makes
the former less suited to performing the communication responsibilities of the latter.

We motivate our changes with benchmarks (both artificial and scientific) that make novel use of the hitherto
inefficient Charm++/MPI interoperability interface.

The MPI network module

Many chares map to the same MPI rank, a fact that will be important later.
The following is the default algorithm for message transfers.

Sending: Messages are sent asynchronously by using MPI Isend with a fixed tag, and the request is enqueued.
From time to time, the RTS uses MPI Test to determine (and delete) those messages that have completed.

Receiving: Whenever control is relinquished to its scheduler, Charm++ goes into a polling loop comprising
an MPI Iprobe followed (if it succeeds) by an MPI Recv matching MPI ANY SRC and MPI ANY TAG. All
messages share the same tag and hence are not prioritized in any way within the module.

Optional changes (disabled by default) include using a rendezvous-like control message scheme, changing the
MPI Recv into an MPI Irecv call, and having a set of preposted MPI Irecv to avoid unexpected messages.
There is also an SMP build where a user-configurable set of threads, parked in the algorithm described above,
is dedicated to handling communication.
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Figure 1: Comparison of NAMD over MPI vs the native Charm++ module

2 Analysis of the default MPI module

Several mismatches between the Charm++ programming model and the way MPI is designed to work were
investigated in order to explain the performance differences seen above, including the following.

Expected vs unexpected messages: Because of the asynchronous model, messages in Charm++ are always
unexpected. As a result, typically an extra memcpy is done between the temporary buffer, where the MPI
implementation stores the message, and the final user buffer (managed by Charm++). In practice,
enabling the preposted MPI Irecv above does not improve performance; we suspect that the costs
involved in asynchronous MPI calls counterbalance any benefit gained by avoiding the memcpy.

A related concern in pure MPI applications is the length of the unexpected message queue, where matching
a given sender/tag pair might involve numerous passes through this queue. In our context, however, the
use of MPI ANY TAG and MPI ANY SRC will match the first enqueued unexpected message, and hence no
traversal is necessary.

Prioritization: Unlike native APIs, MPI has no support for prioritized messages.

Oversubscription: Charm++ encourages oversubscription of processing elements, which helps ease work
starvation as well as load imbalance. Hence, in non-SMP mode, all chares mapped to an MPI rank will
momentarily block while handling communication. This situation is especially aggravating in the case of
longer messages, which use the MPI rendezvous protocol.

Sender/receiver synchronization: Message transfer is initialized only when both endpoints are in the MPI
progress engine. Therefore, it is beneficial to use a messaging protocol with as little synchronization as
possible, hence the eager threshold change in the next section.

3 The eager/rendezvous threshold

We found that changing the default MPI eager threshold leads to a faster initialization phase in NAMD, as
well as an improvement in timestep duration, as seen in Figure 1a. By removing two extra synchronization
steps, the eager protocol more closely resembles the asynchrony of the Charm++ model.

Per-communicator thresholds

Resetting the eager threshold via an environment variable has the downside of affecting subsequent MPI pro-
grams, whose ideal value might vary. Although sometimes this can be mitigated by adjusting the thresholds as
we switch from Charm++ to MPI codes, we decided to take the more generic route of making communicators
use different values. This feature, made possible by MPI-3 [4] and added in MPICH [5], is especially useful in
hybrid Charm++/MPI applications, where there might be concurrent communication from both runtimes.
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4 Related work

While we have investigated the implementation of Charm++ over MPI, Huang et al. explored the converse
in the context of AMPI [1]. This model virtualizes MPI processes over Charm++ processing elements.

More recently, Sun et al. [6] examined Charm++ implementation issues on current Cray Gemini-based
systems while Kumar et al. [3] studied IBM Blue Gene/Q systems. These works look at optimizations to
the native (non-MPI) networking layer built into Charm++. The techniques may serve as the basis for future
Charm++-over-MPI optimizations to help mitigate the programming model impedance mismatch.

5 Conclusion

MPI and Charm++ cater to different programming paradigms: the former favors BSP-styled codes, whereas
the latter supports a more asynchronous design. Therefore, while the former may be used as the networking
engine for the latter, this comes at a small but perceptible cost. After investigating many MPI technicalities
as possible causes of this gap in practice, we noticed that tweaking its eager threshold leads to better perfor-
mance for NAMD on Cray machines. We then implemented in MPICH a way of setting these thresholds at
the communicator granularity, so as to provide applications with finer tuning mechanisms, such as in hybrid
Charm++/MPI codes.
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