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Abstract—Many new large-scale applications have emerged
recently and become important in areas such as bioinformatics
and social networks. These applications are often data-intensive
and involve irregular communication patterns and complex oper-
ations on remote processes. Active messages have proven effective
for parallelizing such nontraditional applications. However, most
current active messages frameworks are low-level and system-
specific, do not efficiently support asynchronous progress, and are
not interoperable with two-sided and collective communications.
In this paper, we present the design and implementation of
an active messages framework inside MPI to provide porta-
bility and programmability, and we explore challenges when
asynchronously handling active messages and other messages
from the network as well as from shared memory. We test
our implementation with a set of comprehensive benchmarks.
Evaluation results show that our framework has the advantages
of overlapping and interoperability, while introducing only a
modest overhead.
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teroperable; Data-intensive applications

I. INTRODUCTION

In recent years, many new high-performance computing
(HPC) applications have become increasingly important in
areas such as bioinformatics and social networks. Unlike
traditional scientific applications, the computation in these new
applications is data-driven, and the topology is always un-
structured and dynamically changing throughout the execution.
Traditional approaches such as partitioning the work according
to the topology and bulk synchronous model no longer suit
such applications.

Active messages [1], proposed by Thorsten von Eicken et
al. for Split-C in 1992, are a parallel programming paradigm in
which the sender of a message specifies a message handler to
be executed at the receiver upon arrival of the message. When
the message is received, the receiver executes the message
handler to process the data contained in the message. Unlike
traditional two-sided message passing, the application on the
receiver side does not need to explicitly call a function in order
to receive the message.

Active messages are particularly suited for data-intensive
applications and algorithms with irregular communication
patterns, such as graph or bioinformatics algorithms. In such
algorithms the receiver may not know how many messages
to expect or even from which receivers to expect messages.

Because active messages do not require the receiver to post
a receive in order to receive a message, the receiver need
not know the communication pattern ahead of time. How-
ever, many other algorithms do have regular communication
patterns and are well suited to two-sided message passing.
Furthermore, an application may have different phases that are
better suited to two-sided communication, active messages, or
even one-sided communication. Such applications can benefit
from a communication library that supports active messages as
well as two-sided, one-sided, and collective communications.

Since the application at the receiver does not need to call
a function in order for the active message to be processed,
the communication library must be prepared to process the
message as soon as it arrives. The communication library can
be implemented to check for incoming messages only when
the application calls a communication function. In this case,
if the application does not call a communication function
for a period of time, for example if the application is in a
long computation loop, then incoming messages will not be
processed during that time. Hence, asynchronous processing
of messages is important for active messages. Asynchronous
message processing can be implemented by using a separate
progress thread that checks for incoming messages and pro-
cesses them. Because this thread is dedicated to receiving and
processing messages, the messages are processed immediately,
without regard to what the application is doing.

The additional thread can increase overhead, however, be-
cause of mutexes needed to synchronize threads when access-
ing shared data structures. This overhead can affect not only
active messages but also two-sided and one-sided messages.
The communication library therefore must be designed care-
fully to minimize the impact of the additional thread.

With modern multicore processors, shared memory can be
used to improve the communication performance between
processes running on the same node. Many communication
libraries make use of shared memory when possible and
use network communication for internode communication [2],
[3], [4], [5]. An implementation of active messages therefore
should use shared memory when possible, in order to improve
performance.

In this paper, we chose to add active messages capability
to an MPI implementation because MPI is a widely used



standard that supports two-sided, one-sided, and collective
communications. We modified the MPICH MPI implementa-
tion, which is widely portable across many architectures. Our
implementation provides asynchronous progress for one-sided
and active messages with negligible overhead for two-sided
and collective communications. We optimize for the intranode
case where the sender can directly access the target buffer of
the message.

While one can implement active messages on top of MPI
[6], it is difficult to efficiently provide asynchronous progress.
The implementation would require a separate thread that
would make calls into the MPI library to receive messages
and execute the handler. Thus, the MPI library would need to
run using the MPI_THREAD_MULTIPLE thread level. When
an MPI library is running in that level, the library must ensure
that every MPI function is thread safe, thus requiring the use of
mutexes and imposing an overhead on every communication
operation. By implementing active messages inside the library,
this overhead can be eliminated for two-sided and collective
communications.

II. OVERVIEW AND PREVIOUS WORK

We begin with an overview of Active Messages and MPI
RMA interface.

A. Active Messages

The active messages paradigm was first introduced in [1]
and has since been used internally to implement communica-
tions libraries and runtime systems, such as MPI implemen-
tations, Co-Array Fortran, and Unified Parallel C. Because
existing active messages interfaces were too low-level for
applications to directly use them, Willcock et al. designed
and implemented AM++ [6], which is a higher-level active
messages library intended for applications to use directly.

Low-level active messages interfaces such as GASNet [4],
Low-level Application Programming Interface (LAPI) [7], and
Parallel Active Message Interface (PAMI) [8] are not suitable
for use by applications. While GASNet has been implemented
to be portable to different interconnects and architectures,
LAPI and PAMI are available only for IBM supercomputers.
These interfaces also do not support two-sided or collective
communications.

Active messages libraries have been implemented on top
of MPI, such as AM++ [6] and AMMPI [9]. Hence, these
libraries are widely portable; and applications can use MPI
functionality, such as two-sided and collective communica-
tions. In order to support asynchronous message processing,
however, the active messages library needs an additional thread
that waits for incoming messages. Thus, the MPI library must
use the MPI_THREAD_MULTIPLE thread level, which runs in
an active polling fashion and always uses the CPU even though
no message is coming. Also, it imposes an overhead due to
thread synchronization and mutexes on every communication
operation.

We classify the MPI-based active messages into three cate-
gories:

• NO-ASYNC – Asynchronous message processing is not
supported.

• THREAD-ASYNC – Asynchronous message processing is
provided by using a thread above the MPI library.

• INTEGRATED-ASYNC – Asynchronous message process-
ing is provided internally by the MPI implementation.

AMMPI and AM++ belong to the NO-ASYNC class. How-
ever, if the application using AMMPI or AM++ creates a
thread to wait for incoming messages, that usage would fall
into the THREAD-ASYNC class. In this paper, we propose a
strategy that falls into the third class: INTEGRATED-ASYNC. It
can support asynchronous message processing by an internal
thread and handles active messages in a more efficient way.

B. MPI RMA Interface

The first MPI standard provided only two-sided and collec-
tive communications. The MPI-2 standard, which was released
in 1997, added functionality for one-sided communication
(also called remote memory access (RMA)). One-sided com-
munication allows one process, the origin process, to specify
all communication parameters, for both the origin and the
destination, or target, process. The active messages API in
our work is based on the MPI RMA interface.

MPI-2 defines three types of communication operations:
Put, Get, and Accumulate. Put and Get operations
transfer the data to and from a window on the target process.
The Accumulate operation combines the data from the
origin process with the data on the target process using a
predefined operation.

In order to make sure that all one-sided operations
are finished, explicit synchronization modes are defined
and used, including active target mode and passive target
mode. Active target mode has two synchronization mecha-
nisms: FENCE (Fig.1(a)) and POST-START-COMPLETE-WAIT
(PSCW) (Fig.1(b)). Passive target mode has one synchro-
nization mechanism: LOCK-UNLOCK (Fig.1(c)). For detailed
semantics of synchronizations in the MPI RMA interface,
please refer to [10].

III. DESIGN ISSUES

In this section, we describe how to extent MPI accumu-
late operation to support user-defined function and message
pipelining technique.

A. User-Defined Function and Operation Registration

The Accumulate operation as defined in the MPI standard
is similar to the concept of active messages except for the pre-
defined operations. Accumulate allows users to specify sim-
ple calculations to be performed in remote memory. However,
it supports only a limited set of built-in operations and does
not support user-defined operations. To allow more complex
operations on remote processes, we extend the functionality
of Accumulate to support user-defined functions.

In the MPI standard, user-defined functions are allowed
for Reduce operations. We use the same mechanism
to specify user-defined functions for Accumulate.



(a) FENCE (b) PSCW (c) LOCK-UNLOCK

Fig. 1: Synchronization types in MPI RMA interface

User-defined functions have the following prototype:
void MPI_User_Function (void∗ invec,
void∗ inoutvec, int∗ len, MPI_Datatype∗

datatype). The invec and inoutvec parameters
describe arrays that the function combines, while the len
and datatype parameters describe the layout of the arrays.
Each invocation of the function leads to the pairwise execution
of user-defined operation on array elements. The result of
the function is written to inoutvec. After the function
has been defined, the MPI_Op_create routine should be
called to bind the function to an operation handle that can be
subsequently passed to the Accumulate function.

We also propose two new routines for operation reg-
istration: MPIX_Op_register(MPI_Op op, int id,
MPI_Win win) and MPIX_Op_deregister(MPI_Op
op, int id, MPI_Win win). Each of them is a collec-
tive call among all processes that are in the same window.
When MPIX_Op_register is called, the operation handle
and a handler id are passed and internally stored in a hash
table on that window. Because operation handles are local,
the handler id is used to identify handler functions on re-
mote processes. In this way, the user-defined operation can
be “available everywhere.” Operations defined on different
processes with the same handler id must have equivalent
functionalities.

B. Message Pipelining

The MPI standard specifies that the implementation may
call a user-defined function multiple times in order to handle
a single large message. If the source and target buffers
are arrays, then the user-defined function may be called to
handle smaller portions of the array. This approach allows
the message reception to be pipelined with the execution of
the user-defined function. It also reduces the memory required
in order to buffer the incoming message. We implemented
pipelining by receiving a chunk of the incoming data, then
calling the user-defined function specifying the data received
and the corresponding data in the target buffer.

IV. ASYNCHRONOUS PROGRESS ENGINE

In most MPI implementations, the MPI library typically
calls the progress engine to handle incoming messages only
when an MPI routine is called. In order to improve perfor-
mance for handling intranode messages using shared memory,
most MPI implementations use active polling and do not block

while waiting for a message. Although this approach improves
intranode communication performance, it has the effect of
using the CPU even when no message is being handled.
Some MPI implementations do provide asynchronous progress
and non-busy-waiting [11], but these features come with a
performance penalty.

MPI implementations typically have a single progress en-
gine that handles both one-sided and two-sided messages. Hav-
ing a single progress engine has two disadvantages: (1) one-
sided and active messages cannot be processed immediately
upon arrival but have to wait until the target explicitly calls an
MPI routine; and (2) one-sided and active messages vs. two-
sided and collective messages cannot be handled in parallel
but have to be processed in serial through the single progress
engine.

Our implementation has two progress engines: one new
asynchronous progress engine handling active messages and
one-sided messages, and the regular progress engine handling
two-sided messages and collective messages. Active messages
and one-sided messages can be processed upon arrival by this
separate progress engine and can be processed concurrently
with other kinds of messages. The following subsections
describe important issues in designing and implementing the
asynchronous progress engine for both network and shared
memory.

A. Network Solution

We use a separate internal thread in the network module
to wait for active messages and one-sided messages from the
network. When an MPI process encounters the first window
creation routine (indicating that there will be active messages
or one-sided messages coming), it internally spawns a separate
thread used by the asynchronous progress engine. This thread
is terminated when MPI_Finalize is called. It does not wait
for messages from shared memory, and therefore it can block
while waiting for incoming messages with minimal impact
on performance. The original progress engine is still used by
the main thread to handle two-sided and collective messages.
Currently we have implemented the separate thread in the TCP
network module.

B. Shared-Memory Solution

Because the separate thread described above calls the asyn-
chronous progress engine in a blocking way, it is not applicable
for messages from shared-memory communication. We solve



Fig. 2: Working scenario of asynchronous progress engine

this by enabling “origin computation.” When the origin process
encounters an active message or one-sided message targeting
at a remote process on the same node, it directly fetches
the remote data, does the computation (AM or Accumulate)
locally, and pushes it back to the remote process. By enabling
“origin computation,” active messages and one-sided opera-
tions can be handled asynchronously without the help of a
separate thread.

To support the direct access to memory of a remote process
on the same mode, during window creation phase each MPI
process allocates a shared-memory region and exchanges
the shared-memory address information. The MPI standard
has two methods for creating an MPI RMA window. With
MPI_Alloc_mem + MPI_Win_create, the first routine is
used to allocate a memory region and returns the memory
address; the second routine is used to create an MPI RMA
window by using a memory address in the argument list. With
MPI_Win_allocate, a new routine in the MPI-3 standard,
memory allocation and window creation are performed to-
gether in one single function call. We implemented the shared-
memory solution in both methods.

The user can enable or disable the asynchronous progress
engine by passing an Info argument to window creation rou-
tines. If the asynchronous progress engine is enabled, the MPI
process internally allocates a shared-memory region for the
window; if there are processes on different nodes, it internally
spawns a separate thread. Figure 2 demonstrates an example of
how the asynchronous progress engine works. In the example,
process 0 and process 2 are going to issue active messages
to process 1. Process 0 is on the same node with process
1, whereas process 2 is on a different node. Process 1 has a
separate internal thread to handle active messages from process
2, while process 0 performs “origin computation” and directly
writes results to the shared-memory region of process 1. All
active messages operations are performed asynchronously.

Because lock and unlock requests are handled by the
original progress engine and hence are handled only when the
main thread calls an MPI function, when supporting origin
computation on shared memory, the origin process must be
able to acquire the passive lock on the target process without
explicitly sending out a lock request message. We solved
this problem by implementing a distributed lock [12] in the
shared-memory region used by shared memory and network

processes.

C. Thread Safety and Process Safety

For the network solution, key data structures that are
shared between two progress engines (including sockets and
file descriptor tables, sending queues, and pending receiving
packets) are either duplicated or protected by mutexes in order
to avoid data races. In active target mode, a counter is used
to determine whether all operations have arrived and whether
ending synchronization can return. It is atomically accessed
by two threads. In passive target mode, both the main thread
and the asynchronous thread on the target process may try to
acquire the passive lock. We added a mutex on the passive
lock to avoid data race.

For the shared-memory solution, because the origin process
performs origin computation and then writes results into the
memory of the target, both the origin and the target processes
may write to the same memory address concurrently. We added
interprocess mutexes in the shared-memory region of every
process to avoid this case. Those mutexes are disabled by
default, but the user can enable them by passing an assert
to synchronization calls indicating a possibility of conflicting
writes happening in the memory of the target process.

V. EXPERIMENTAL EVALUATION

In this section, we present the performance results of AM-
MPI on the Fusion cluster at Argonne National Laboratory. Fu-
sion has 320 nodes, each having two Intel Xeon X5550 quad-
core CPUs, and QDR InfiniBand HCAs. We implemented the
AM-MPI framework based on MPICH2-1.4.

We present latency, overlapping, two-sided/AM interop-
erability and stencil communication tests. We tested the
AM, Put, and Accumulate on three different IPC (in-
terprocess communication) structures: network-only, shared-
memory-only, and network-and-shared-memory. All tests are
compared under the following three execution models:

1) EXT-ASYNC:AM-MPI with external asynchronous
thread

2) INT-ASYNC:AM-MPI with internal asynchronous thread
3) NON-ASYNC:AM-MPI without asynchronous thread
EXT-ASYNC is enabled by passing an Info argument to

the window creation routine; INT-ASYNC is enabled by turning
on the environment variable MPICH_ASYNC_PROGRESS in
MPICH, which would spawn a separate thread to actively poll
the progress engine.

For Sec. V-A, V-B, V-D, all results are gathered with FENCE;
for Sec. V-C, all results are gathered with FENCE (active)
and exclusive LOCK-UNLOCK (passive). Similar results are
observed for other synchronizations, but we cannot show them
here because of space limitations. For figures in the following
subsections, IB refers to InfiniBand, and PTP refers to point-
to-point communication.

A. Overhead of Active Messages Handler

Fig. 3 shows the overhead of the AM handler by comparing
it with Put and Accumulate operations on network and
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Fig. 3: Overhead of AM handler
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Fig. 5: Latency of multiple AM operations

shared memory under the NON-ASYNC model. In this test, one
message is transmitted from the origin process to the target
process, and latency is measured with increasing message
sizes.

For Put operations, there is only data copy on the tar-
get process; therefore, it has the smallest overhead. For
Accumulate operations, a predefined function is called
upon data arrival, which has an optimized implementation in
MPICH. For AM operations, a user-defined function is called
when data is received; and it has the highest overhead. Here
we present only the overhead with FENCE. Similar results are
observed for PSCW and LOCK-UNLOCKs, but we cannot show
them here because of space limitations.

B. Communication Latency

Figure 4 shows the comparison of communication latency
for a single AM operation among the various IPC models for
varying message sizes. Figure 5 shows the latency for multiple
AM operations through various IPC models for a fixed (4-
byte) message size. While INT-ASYNC and NON-ASYNC are
mostly on par, EXT-ASYNC underperforms. Actually, when

MPICH_ASYNC_PROGRESS is enabled, MPICH operates at
the MPI_THREAD_MULTIPLE level, making the progress
engine a critical section that the main application thread and
the EXT-ASYNC thread must compete for. In comparison,
INT-ASYNC operates a separate progress engine that is not
shared with the main thread. The overhead of the EXT-ASYNC
thread entering and exiting the mutex-protected progress en-
gine becomes apparent when the number of operations grows
(Fig. 5). Additionally, for shared-memory communications,
INT-ASYNC performs better than NON-ASYNC when the num-
ber of operations increases (Fig. 5(a)), because it does directly
memory copy instead of copying the messages through the
Nemesis [2] send queues.

C. Overlapping Effects

To measure the overlapping effects of the asynchronous
progress engine, we crafted tests in which a certain amount
of computation is performed on the target process while the
origin process sends multiple active messages. The target
process issues no MPI call while it computes. In Fig. 6, we
show the overlapping effects for the passive target mode.
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Fig. 6: Overlapping effects

In Fig. 6(a), both EXT-ASYNC and INT-ASYNC have overlap-
ping effects, whereas NON-ASYNC has none. The reason is that
while the main thread is busy doing computation, EXT-ASYNC
and INT-ASYNC can separately handle communications with
the progress thread whereas NON-ASYNC cannot. Figure 6(b)
shows the overlapping effect of the shared memory imple-
mentation. In the EXT-ASYNC model, the asynchronous thread
on the target process deals with incoming active messages
while the main thread is doing computation; in the INT-ASYNC
model, after the origin process acquires the passive lock on
the target, it directly performs the computation and writes
the results into the memory of the target while the target is
doing computations. Here there is a performance gap between
EXT-ASYNC and INT-ASYNC on both network and shared
memory, due to the queuing operations needed for distributed
passive lock.

No overlapping effects are observed for the active target
mode. Because AM-MPI is implemented based on the RMA
implementation in MPICH, in which all messages are delayed
and lazily issued out during the ending synchronization phase,
message reception on the target must also happen within the
ending synchronization phase, which cannot be overlapped
with computation in the epoch. Future implementations of
MPICH are expected to have support for eager issuing of
messages; in that case overlapping effects can be expected
for active target mode.

D. Interoperability Performance

Figure 7 demonstrates the execution time when active
messages and two-sided communications happen together
(AM+PTP). In the test, the origin process sends multiple active
messages to the target process. At the same time, a third
process sends multiple two-sided messages to the same target
process. We increase the number of both AM and two-sided
operations, measure the execution time on the origin process
of AM communications, and compare the results with Fig. 5
(AM-Only).

Figure 7(a) shows the interoperability performance on IB
network. When the two-sided communication is added, the
time of both the EXT-ASYNC and NON-ASYNC models in-
creases, because under EXT-ASYNC and NON-ASYNC, active
messages and two-sided messages are processed by the same
thread (asynchronous thread under EXT-ASYNC and main
thread under NON-ASYNC). However, the time of INT-ASYNC
does not increase obviously. The reason is that under INT-
ASYNC, active messages and two-sided messages are pro-
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Fig. 7: Interoperability performance

cessed in separate threads: the asynchronous thread handles
active messages, and the main thread handles two-sided mes-
sages. Therefore, adding two-sided communications does not
affect the total execution time in INT-ASYNC.

Figure 7(b) shows the interoperability performance on
shared memory. When adding two-sided communications, the
execution times in all three models are increased, because now
active messages and two-sided messages are handled within
the same thread for all three models. However, since there is
no extra thread existing or awake in NON-ASYNC and INT-
ASYNC, the overhead is relatively small compared with that
of EXT-ASYNC.

E. Stencil Kernel Benchmark

To examine the scalability and the effectiveness of the
asynchronous progress engine on both network and shared
memory, we implemented a stencil kernel benchmark using
AM operations and FENCE synchronization. During runtime,
every node has 8 MPI processes. For the INT-ASYNC and EXT-
ASYNC models, each MPI process would spawn a separate
thread. Processes are formed as a square grid, and each one
sends and receives messages from neighbors within distance
1. The process number is scaled from 2×2, 4×4 ... to 20×20.

Fig. 8 demonstrates the execution time with small grid
size and large grid size. Both INT-ASYNC and EXT-ASYNC
performs worse than NON-ASYNC due to overhead of the
context switching. INT-ASYNC has less overhead than EXT-
ASYNC as expected, because asynchronous thread in INT-
ASYNC is waken up only when there are active messages on
network coming, whereas asynchrnous thread in EXT-ASYNC
is always working throughout the whole execution and context
switching is very frequent.



F. Graph 500 Benchmark

Graph 500 [13] is a relatively new supercomputing bench-
mark used to test data-intensive computing systems. It per-
forms a breadth-first search, and its performance metric is
traversed edges per second (TEPS). The MPI one-sided im-
plementation of Graph 500 performs a large number of 8-
byte MPI_Accumulates among all the peers during FENCE
epochs. A straightforward improvement upon that approach is
to coalesce a certain number of those MPI_Accumulates,
in order to reduce the large number of small communications
with each peer. Such an improvement can simply use MPI
derived datatypes (DDTs) to send coalesced data resulting
from the local accumulation of the data meant for each
peer in each fence epoch. However, the DDT approach must
satisfy the nonoverlapping constraint imposed by the MPI
specification for target datatypes in MPI_Accumulate. By
resorting to AM, which uses user-defined functions instead of a
regular MPI_Op in MPI_Accumulate, the aforementioned
constraint can be totally avoided. Before issuing operations
to each peer at the end of the epoch, the AM approach
compacts the locally accumulated data into sparse arrays.
This step, which occurs once for each peer in each epoch, is
less computation-intensive than the nonoverlapping constraint
checking that the DDT approach performs for each local
accumulation.

In Fig. 9, we present measurement of TEPS to compare
the default one-sided implementation (Default-g500) with a
DDT-based implementation (DDT-g500) and our AM-based
implementation (AM-g500). All results are gathered under
NON-ASYNC model. The tests are performed for 215 vertices
(scale-15) and 220 vertices (scale-20) respectively over 128,
256, and 512 processes.

For scale-15 (Fig. 9(a)), both DDT-g500 and AM-g500
perform better than Default-g500; and as expected, AM-g500
performs even better than DDT-g500. The same trend is
observed in scale-20 (Fig. 9(b)) over 128 and 256 processes.
However, AM-g500 performs poorly over 512 processes at
scale-20. The case where AM-g500 underperforms compared
with DTT-g500 and Default-g500 is a consequence of a few
more general behaviors of the one-sided implementation of
Graph 500. For DDT-g500 and AM-g500, job size variations
create a tradeoff between the size of communication with each
peer and the number of peers each process communicates with.
The larger the job, the larger the number of peers but the
smaller the message sizes. As a result, the coalescing effect
tends to be watered down when the job size increases at
a fixed scale. A point can be reached where the overhead
of each coalescing approach will not be offset enough by
the communication time saved by coalescing. The important
observation, however, is that at a fixed scale, Graph 500
remains scalable with respect to the number of processes until
a peak is reached, and then TEPS enter a phase of performance
drop. The numbers of processes shown in Fig. 9 happen to be
in the range of performance drop for scale-15 and scale-20.
We confirm in particular that 128 is the optimal job size for

scale-20 for our test environment when job sizes are changing
by a factor of 2. Consequently, no matter what implementation
chosen, the informed user is less likely to execute Graph 500
over job sizes where the AM implementation underperforms.

VI. DISCUSSION AND FUTURE WORK

The existing prototype of MPI user-defined function dis-
cussed in Sec. III has several restrictions:
(1) Only one kind of datatype layout and size is accepted by
the user function, which forces input and output data to have
the same data layouts.
(2) MPI_Accumulate allows updates only on the data
specified by the function call, which makes some operations
(inserting an element into a remote queue) hard to implement
by using AM operations.
(3) For noncontiguous datatypes data to be transferred between
two processes, it must be internally packed at the origin side,
and unpacked at the target side; therefore the target process
has to allocate a large temporary buffer to place the unpacked
data. This approach is inefficient when encountering sparse
data.

To solve these problems, we propose a design of gen-
eralized API for active messages in MPI. This API allows
for much more flexibility on usage and allows the user
to specify the type of receiving buffer by themselves. The
generalized API includes following new functions: MPIX_
Am_handler_register, MPIX_Am_free, MPIX_Am_
send, MPIX_Am_hhandler (header handler), and MPIX_
Am_comp_handler (completion handler). Only the header
handler needs to be registered. When MPIX_Am_send is
called, the runtime system issues small immediate data fol-
lowed by the main data. Immediate data is handled by the
header handler at the target. The header handler specifies
the receiving buffer and the completion handler for the main
data. When the main data arrives, all AM operations are
done in the completion handler. Because users can specify the
datatype of the receiving buffer, they can make it as a packed
datatype, in order to avoid memory efficiency issues. Also,
the argument of the completion handler is a pointer to a user-
defined C structure; therefore users can pack any arguments
they need and pass these arguments to the function, which
removes restrictions on input data. We plan to implement this
generalized API in our future work.

VII. CONCLUSION

We have presented the design and implementation of active
messages in MPI based on the MPI RMA interface. This
implementation is achieved by proposing operation registration
schemes, extending the functionality of the Accumulate
operation to support user-defined message handlers, and us-
ing multithreading and shared-memory allocation to support
asynchronous progress engine. The impact of this work is
as follows: active messages can work interoperably with
two-sided and collective communications while introducing a
modest overhead; a process that does shared-memory commu-
nication directly performs origin computation that allows the
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asynchronous thread to nonactively wait for messages from the
network; and asynchronous AM is implemented inside MPI,
not on top of MPI. Through the evaluation of communica-
tion latency, overlapping effect, interoperability, and stencil
tests, we demonstrated that the performance is competitive
with external asynchronous progress engine. Furthermore, we
investigated the performance of the Graph 500 benchmark by
comparing an AM with a derived datatype implementation,
demonstrating the advantage of active messages in implement-
ing data-intensive algorithms.
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