OSPRI: An Optimized One-Sided Communication
Runtime for Leadership-Class Machines

Jeff R. Hammond,* James Dinan,* Pavan Balaji,* Ivo Kabadshow,! Sreeram Potluri,¥ Vinod Tipparaju®

*Argonne National Laboratory. {jhammond, dinan, balaji} @anl.gov
TForschungszentrum Jilich. i.kabadshow @fz-juelich.de
{The Ohio State University. potluri@ cse.ohio-state.edu
§ Advanced Micro Devices. tipparajuv@amd.com

Abstract—Partitioned Global Address Space (PGAS) program-
ming models provide a convenient approach to implementing
complex scientific applications by providing access to a large,
globally accessible address space. This paper describes the design,
implementation and performance of a new one-sided communica-
tion library that attempts to meet the needs of PGAS models, par-
ticularly Global Arrays, but hopefully also PGAS languages like
UPC and CAF. In this work, we describe a new communication
runtime for PGAS models such as GA, termed OSPRI (One-Sided
PRImitives). OSPRI presents several changes in architecture
from conventional one-sided communication systems that make it
better suited for emerging leadersip class machines. We describe
the implementation of the the IBM Blue Gene/P target for OSPRI
and demonstrate significant improvements in latency, bandwidth,
and scalability over tuned ARMCI and GA implementations
on this system. The performance and scalablity of this library
validate the design choices and should provide useful insight for
implementers of related communication middleware.

Keywords-Parallel Computing; One-sided Communication;

PGAS; Global Arrays; ARMCI

I. INTRODUCTION

PGAS languages and libraries have different runtime sys-
tem requirements than traditional MPI-based libraries for a
number of reasons. The most obvious of these is that the
PGAS programming model places a heavy emphasis upon
one-sided communication, which was not part of MPI-1 and
what was introduced in MPI-2 has been deemed inadequate
for at least some PGAS models [5]. To meet the runtime
requirements of PGAS models, two portable and open-source
libraries have emerged: ARMCI and GASNet. ARMCI was
originally part of the Global Arrays library but was refactored
as a standalone library and subsequently used to implement
a variant of SHMEM [28] and Co-Array Fortran [11], [8].
GASNet was designed specifically for PGAS languages, in-
cluding Titanium and UPC, but later employed by Chapel
and OpenSHMEM. Vendors have their own interfaces for
PGAS, which are generally closed-source but occasionally
have open API specifications (e.g. Cray DMAPP). While
GASNet is generally accepted to be sufficient for PGAS
languages, it has some shortcomings when compiler support is
not present, as is the case for OpenSHMEM and Global Arrays
(specifically, lack of strong progress in active-messages, which
are the basis for remote atomics and remote accumulate,

respectively). In this paper, we describe a new interface for
one-sided communication that was designed from the ground
up to meet the runtime needs of Global Arrays on leadership
computing systems. In the process, many issues were explored
that are relevant to other PGAS runtimes, hence we present
them here so that others may learn from design strategy and
quantification of performance tradeoffs on the Blue Gene/P
architecture. In particular, we explored the role of message
ordering semantics, thread-safety and interoperability with
other runtimes (these are often related), and many aspects
of communicating noncontiguous buffers. Special attention is
paid to design features that affect performance at extreme
scale, which was not just an academic matter since our
runtime was used in scientific simulations with nearly 300,000
processes.

In this work, we describe a new one-sided communica-
tion runtime for PGAS models termed OSPRI (One-Sided
PRImitives). We demonstrate OSPRI’s functionality by using
it as the communication layer for GA on a leadership class
machine and compare its performance with the optimized
ARMCI implementation. The implementation OSPRI balances
the characteristics of leadership-class machines with the sim-
ple and easy-to-use interface provided by the PGAS models.
In this paper, we analyze several aspects within the design and
implementation of OSPRI on top of Blue Gene/P, including
issues related to lightweight operating systems on these ma-
chines and their interaction with the hardware and the runtime
system, scalability limitations of synchronization mechanisms
in PGAS models on large-scale systems, and hardware con-
tention issues that arise due to the shared hardware on these
systems. While the work uses GA and BG/P as case studies,
we believe that the lessons learned are applicable across PGAS
models, and future large-scale computing systems.

It is natural to wonder why we have developed OSPRI in
favor of existing models, such as GASNet, ARMCI, MPI,
or OpenSHMEM, given that these models are all highly
successful in one or more contexts. A summary of the features
supported by various runtimes is given in Table I. Further
motivation for OSPRI, especially relative to OSPRI, is given
in Section VI.

The rest of the paper is organized as follows: Section II
provides background information on the PGAS models, GA-

Feature Progress” Acc. NB NC Atomics
ARMCI Yes Yes Nol Yes Yes
GASNet No NoZ Yes No? No?
SHMEM Yes No Yes Partial Yes
OSPRI Yes Yes Yes Yes Yes
MPI-2 Yes3 Yes No Yes No

Acc. = Accumulate, NB = nonblocking, NC = non-contiguous (strided).
0 Progress without polling, that is.
1 This is network dependent and not present in the optimized
implementations, e.g. Infiniband.
2 All of these operations can be implemented as active-messages, but these
lack true passive-target progress in GASNet.
3 Not all implementations support this feature.

TABLE 1
FEATURES OF DIFFERENT ONE-SIDED RUNTIME SYSTEMS.

ARMCI in particular. It also presents an overview of the
Blue Gene/P system. In Section III, we put forth the limi-
tations of the existing communication run-time architectures
like ARMCI and explain the need for OSPRI. Section IV
explains how the design of OSPRI differs from that of ex-
isting run-times and how these design decisions help address
requirements on the leadership-class machines. We describe
the device level implementation of OSPRI for Blue Gene/P
in section V and evaluate its performance in section VI.
Section VIII presents the conclusion and future work.

II. BACKGROUND

Conventional two-sided communication techniques require
one party to perform a Send () operation and the other
to perform a matching Recv () operation. The successful
exchange of a two-sided message implies a synchronization
between the sender and receiver as the sender must reach the
send point in their execution and the receiver must reach the
receive point in their program. In addition, the sender and
receiver must be expecting to perform the communication
and agree on the destination and source for the message,
respectively.

For some applications, two-sided messaging can be restric-
tive due to irregular, data driven communication patterns;
data sharing; or computational imbalance between sender and
receiver that can lead to high latencies waiting for the message
to complete. In order to accommodate applications with these
needs, one-sided models have been developed. Models like
MPI-2 [18] provide mechanisms for asynchronous one-sided
messaging, as shown in Figure 1. One-sided messaging can
greatly help applications that exhibit irregular communication
and unbalanced computation.

Partitioned Global Address Space (PGAS) models further
build on one-sided communication by providing support for
a globally accessible shared data space that is spread across
all processors. This space grows proportional to the number
of processes, enabling applications to process large data sets
while providing convenient mechanisms for accessing shared
data. Data stored in the global address space is said to have
affinity to the node in whose memory the data resides and
information about affinity and data distribution is made avail-

MIC
MIC

Fig. 1. Example one-sided communication operation. A partitioned global
address space can be layered on top of one-sided communication by creating
shared regions.

able to the programmer to allow optimizing for local access.
Examples of PGAS programming models include UPC [4],
Titanium [31], CAF [26], and GA [24]. In addition, the new
HPCS languages, Chapel [6] and X10 [7], also provide a
PGAS.

A. Global Arrays

In this work, we target the Global Arrays (GA) paral-
lel programming model [24], [29], [21]. GA is a popular
PGAS model that provides support for distributed, shared
multidimensional arrays and includes a variety of parallel
matrix operations including multiplication, diagonalization,
and a variety of solvers. GA has been very successful in
the computational chemistry domain and is the PGAS model
used by the NWChem computational chemistry suite. While
quantum chemistry applications are the primary users of GA,
GA has been used in other application domains, including
groundwater flow modeling, molecular dynamics sampling,
among others. More importantly, GA stresses many features of
a one-sided runtime, including contiguous and noncontiguous
put and get, atomics, and active-messages (remote accumulate
for floating-point is usually impossible to do in hardware).

The Aggregate Remote Memory Copy Interface
(ARMCI) [20], [23] is the one-sided communication
subsystem on which GA is built. ARMCI supports one-sided
contiguous, strided, and general non-contiguous get, put, and
accumulate operations in addition to a variety of atomic and
collective operations. ARMCI is intended to be implemented
directly on top of low level networking primitives to take
advantage of features like RDMA, however it is also designed
to interoperate with MPI and in most situations uses MPI
for process management, two-sided messaging, and some
collective operations. In addition to GA, ARMCI also serves
as the communication layer for Co-Array Fortran [10] and
GPSHMEM [27].

IBM systems provide LAPI (Power systems) and DCMF
[16] (Blue Gene/P) which possess primitives closely aligned to
the needs of GA/ARMCI. ARMCI was implemented for both
Blue Gene/L [3] and Blue Gene/P [15] using remote-memory-

access (RMA) operations (put/get) and active-messages (accu-
mulate, atomics) provided by these lower-level interfaces.

B. Blue Gene/P

BG/P is the second generation in the IBM BG family.
BG/P systems comprise individual racks that can be connected
together; each rack contains 1024 four-core nodes, for a total
of 4096 cores per rack. Blue Gene systems have a hierarchical
structure. Nodes are grouped into midplanes, which contain
512 nodes in an 8 x 8 x 8 structure. Each rack contains two
such midplanes. Large Blue Gene systems are constructed in
multiple rows of racks. Many details of the BG/P network are
given in Ref. [16] so we will not repeat them here.

The compute cores in the nodes do not handle packets
on the torus network; the DMA engine offloads most of
the network packet injecting and receiving work, enabling
better overlap of computation and communication. OSPRI
is designed to exploit DMA offload to the maximum extent
except when performance is improved substantially by CPU
activity. However, the user can disable almost all CPU remote
agency for RDMA operations (Put and Get) if this is deemed
useful.

The DMA engine on the BG/P maintains a buffer region,
known as the DMA FIFO, where it stores data that has been
handed over to it by the upper layers but has not yet been
reliably transmitted on the network. A process can queue data
to be sent on the network by adding it to the DMA FIFO buffer.
If this FIFO buffer is full, the process can request the hardware
for an interrupt when the DMA engine has transmitted some
data, creating more space in the FIFO. On receiving such an
interrupt, the process can refill the FIFO with more data. It is
up to the user to enable interrupts with an environment variable
when asynchronous progress is important and when remote
agency is required for progress. Interrupts are not required to
make progress on RDMA Put and Get packets.

III. MOTIVATION: THE NEED FOR OSPRI

The hardware and software environments of leadership-class
systems' are undergoing significant changes. Because of this,
we must rethink the design of runtime systems that have
focused on commodity clusters and retarget this work toward
modern, energy efficient and integrated exascale systems. In
this section, we describe various characteristics of leadership
class machines which make them fundamentally different
compared to regular cluster-based systems. For such platforms,
communication runtime architectures such as ARMCI present
several mismatches.

Massive Parallelism: Systems with a few thousand cores are
very common today. Hundreds of thousands of cores are also
available on today’s largest systems and the next generation
of systems are expected to have on the order of several
million cores (e.g., the Sequoia system is expected to have 1.6
million cores [1]). At present, the greatest source of increased

! Leadership-class are systems among the largest in size anywhere at a
given time; currently, this includes systems with more than 10,000 nodes or
100,000 cores.

performance is expected to come from increased levels of
parallelism. Thus, forward-looking software must be designed
to scale well beyond million-fold parallelism.

Architecturally, a runtime system designed for such plat-

forms cannot have data structures or other bookkeeping that
would scale linearly or faster with the number of processes
in the system. Thus, hierarchical or multi-level parallelism is
fundamental for applications and runtime systems to scale to
these systems. While GA provides a scalable communication
model for applications using groups and memory subsetting,
ARMCI does not fully expose these capabilities to GA. For
example, while a process can PUT or GET data from multiple
global arrays, ARMCI cannot distinguish the application re-
quiring a completion synchronization (ARMCI_ALLFENCE)
on one array vs. all the arrays. Similarly, ARMCI requires
GA to provide it with a process rank and address for any
communication. This notion requires GA to keep track of
the shared address region on each node (which scales as
O(N) with the number of nodes in the system). Leadership
class machines provide capabilities such as symmetric memory
allocations where all nodes can allocate a buffer with the same
virtual address handle allowing significantly better scalability
on these systems (O(1) as compared to O(NV)), but ARMCI’s
architecture does not map well to such capabilities.
Scalable Networks: Leadership class systems such as the
IBM Blue Gene and Cray XT/XE utilize flat (i.e. scalable)
networks which differ from switched fabrics in that they use
a 3D torus or similar topology. Although flat networks have
cost benefits compared to switched fabrics, they come at the
cost of increased network sharing between processing nodes.
For example, in a 3D torus, each node has six neighbors that
it directly connects to. To reach other nodes, it has to make
multiple hops.

Such networks have multiple implications on communi-

cation runtime systems. First, these networks provide lim-
ited bisection bandwidth. Thus, communication that is not
coordinated with other processes in the system would very
easily result in network congestion and consequently loss
of performance, which makes any communication that can
be done in a collectively coordinated manner significantly
better than uncoordinated point-to-point communication. Sec-
ond, because of the high network sharing (and contention)
on these architectures, achieving high performance requires
communication to take multiple paths simultaneously. This
out-of-order communication, however, implies that it gets
more cumbersome for the origin process to find out when the
data transfer has completed on the remote end.
Tightly Integrated Software Stacks: Instead of general pur-
pose operating system Kkernels, leadership class systems tend to
utilize customized lightweight kernels that avoid unnecessary
noise and tend to complement the hardware provided by
the system [17]. Specialized operating systems have both
advantages and disadvantages relative to Linux, the de facto
commodity OS for parallel computing.

ARMCI’s communication relies on a data server model,
where each physical node utilizes a data server process that

exposes the shared memory on a node and allows other
processes to read or write data from it. For lightweight kernels
such as the IBM compute node kernel on Blue Gene (BG),
or the compute node Linux kernel on the Cray XT series,
this essentially means that one core in the system has to be
dedicated to the data server as these kernels do not allow for
automatic multitasking and task scheduling.

These fundamentally different characteristics of leadership
class machines as compared to standard cluster machines,
warrant a fundamentally different architecture for the com-
munication runtime system, motivating the need for OSPRI.

IV. DESIGN OVERVIEW OF OSPRI

The design of OSPRI was meant to enable Global Ar-
rays (GA) and the scientific applications built on top of
it, especially NWChem, but also applications with different
communication needs (e.g. only put/get) and PGAS compilers.
The most obvious way to design a runtime for GA is to re-
implement ARMCI, since it is the canonical runtime for GA
and is an essential component of the GA tools. However, the
design of OSPRI varies from ARMCI in a several keys ways:
(1) the device specific implementation design allows greater
adaptivity to exotic architectures, (2) instead of merely opti-
mizing for IPC (inter-process communication), thread safety is
emphasized to effectively support applications usage of hybrid
programming models (such as process+threads), (3) relaxed
ordering semantics are supported to enable better performance
when the application usage permits this, (4) performance
oriented settings within the runtime are exposed to enable
the applications to adaptively tune the runtime. Note that
the application of OSPRI is the library using it (e.g. GA).
Additional design differences oriented towards heterogeneous
nodes and next generation interconnects will not be discussed
in this paper.

The design of using
a device specific
implementation for each SSE AR
. . (NWChem)
architecture is modeled

Data-structure Specific Abstractions
(Global Arrays)

OSPRI

after MPICH2 [19], which
has a hierarchical design

that allows for maximum Core/Generic

code reuse but at the Functionality
same time permits highly
optimized architecture

specific functionality when
it is justified. In the case
of Blue Gene/P, the source
branching within MPICH2
is relatively high level due to the close mapping of DCMF
to MPI calls and the performance benefit from utilizing this
close mapping. The OSPRI design, hence, is hierarchical with
the core layer/functionality separated from the device specific
layer/functionality. Of the several design considerations in
defining a one-sided communication library, the three most
crucial ones are: (1) the data server (or the communication

Fig. 2. Structure of OSPRI and its
Placement in the Software Stack

helper thread), (2) message ordering semantics, and, (3)
thread safety and hybrid programming support.

A. Aptness of the Data Server

The ARMCI Data Server (DS) serves many functions in-
cluding [30]: (1) implementing the accumulate operation, (2)
pack/unpack non-contiguous messages, and (3) read-modify-
write (RMW) and lock/unlock. The OSPRI design deliberately
excludes DS from the core functionality of the library. There
are several reasons for this, these reasons are explained in the
context of each of the DS functions listed above.
Accumulate Operation: Element-wise atomic operations are
supported by most networks today. However, no architecture
supports general purpose floating point accumulate in hard-
ware, hence it is always necessary for either the sender or
receiver to perform this computation in the CPU. Because
sender-computes requires a round trip transfer, it achieves
less than half the bandwidth of a receiver-computes imple-
mentation, hence we consider only the latter to be viable for
Global Arrays. The sender-computes approach was considered
in Ref. [22]. There are two common approaches for invoking
remote computation: interrupts and polling. Which of these
is better depends on the cost of interrupts versus a dedicated
polling thread. Within Linux, interrupts are expensive but over-
subscription is well supported. On the other hand, lightweight
kernels can provide very efficient interrupts, but, as on Blue
Gene’s CNK, oversubscription may be impossible and may
require a dedicated core.

Pack/Unpack Support: Another important role of the DS
is to pack and unpack non-contiguous buffers. This role is
less important for networks which allow for high injection
rate and support non-contiguous transfer in the low level
APIL. For example, the DMAPP API [2] provided on the
Cray XE6 system supports contiguous, strided and indexed
Put and Get operations. We expect that substantial hardware
support for these operations will render pack/unpack optimiza-
tions unnecessary. While Blue Gene/P does not provide any
low level hardware or software support for non-contiguous
transfer, it is still unnecessary to use a DS because remote
unpacking can be implemented within the remote callback in
the same manner as floating point remote accumulate. Given
the increasing prevalence of both low level support for non-
contiguous messages as well as active messages in modern
systems, a persistent thread or process such as the DS as a
core functionality to handle these features is unnecessary.
RMW, Lock/Unlock Operations: Finally, the DS is used for
remote atomic operations such as read-modify-write (ARMCI
implements only fetch-and-add and swap) and lock/unlock.
Once again, increased support for these operations in hard-
ware (e.g. Cray XE6 and IBM PERCS) or through efficient
active messages (e.g. Blue Gene/P) makes it unnecessary to
implement a generic version through the DS.

Since there are still many scenarios in which one or more
communication helper threads (CHTs) improves performance,
within OSPRI, the existence and role of CHT(s) is device
specific. No core functionality/operations within OSPRI can

assume the existence of a CHT and it is desired that device
level functionality be CHT agnostic.

B. Message Ordering Semantics

With respect to ordering semantics within OSPRI, three
levels of support can be provided that are interesting from a
GA perspective. ARMCI provides location-ordered semantics,
meaning that not only will sequential overlapping Puts to the
same target behave as if they were remote stores, but Accumu-
late to remote memory followed by a Get from the same mem-
ory will provide the desired result. We consider this ordering
to be strict in the pairwise sense. Although full implementation
of ARMCI on top of OSPRI will utilize strict ordering (SO)
for all its blocking operation, the GA implementation on top
of OSPRI will not. This is because SO is unnecessary for a
broad class of usage patterns of GA. In fact, if we go one more
level up in the software stack (see Figure 2), NWChem code
does almost all of its GA Put, Get and Accumulate calls within
well defined epochs bounded by calls to an all encompassing
barrier known as GA_Sync, which combines the effect of
MPI_Barrier with remote completion of all outstanding
communication operations. Within any given epoch, it can be
observed throughout NWChem that only one type of one-
sided call is used for a given global array and that most
of these calls are blocking. In a blocking Get call, remote
completion and local completion are one in the same, hence
there is no question of ordering with other Get calls (at least
on the same thread). Puts must be ordered within themselves
for consistency, whereas Accumulate, which is commutative-
associative for all operations defined in the GA API — at least
to numerical precision in the case of floating-point — and do
not need to be ordered if the algorithm is indifferent to the
order of numerical accumulation.

Finally, we consider the unordered (UO) model, within
which there is no guarantee of ordering for any operations
except via the use of an explicit fence/flush operation. This is
the easiest model to provide. Although this may be beneficial
on some networks, we find that it is not particularly useful
on Blue Gene/P since the only means for enforcing remote
completion of Put calls is to send a subsequent zero byte
Get (in practice DCMF does this internally) down the same
path of the network. Alternatively, one can use dynamic
routing with an active message Put (i.e. using DCMF_Send)
but this then requires remote agency to issue the completion
callback, which precludes this mode of operation if both a
communication helper thread (CHT) and interrupts are to be
considered optional.

We can think of PO as ordering only in the case of WAW
(write-after-write) data hazards, while ignoring RAW (read-
after-write) and WAR (write-after-read) hazards. However, we
must further distinguish between writes that are Puts and
writes that are Accumulates. Unlike local stores, remote writes
can occur via RDMA or via active-messages wherein the CPU
writes to memory. Ordering these two types of operations
reduces performance since one must wait for all pending
Accumulates to finish before initiating an RDMA Put. It

is often cheaper to order RDMA reads and writes than to
order the two different types of remote writes. In this respect,
ordering semantics for one-sided communication are more
complicated than data hazards in shared memory.

C. Thread Safety and Hybrid Programming

Because of the growing popularity of hybrid programming
models and improved compiler support for OpenMP, we
considered it more pertinent to support a thread safe (in the
sense of MPI_THREAD_MULTIPLE) API than any specific
shared memory optimizations. It is our contention that intra-
node performance benefits are better realized within a hybrid
programming model in conjunction with thread safe OSPRI
than through a process model and associated shared memory
optimizations. As the number of cores per node increases,
it will be increasingly challenging to run in a model that
requires one process per core. For a runtime to keep up with
all intranode communication is going to become a significant
bottleneck due to the memory bandwidth limitations and deep
memory hierarchies. Hence the OSPRI design choice of being
inherently thread safe is not only more suited for modern
programming models but is also carries the ability to scale to
dozens of cores per node. Although specific shared memory
optimizations are still useful on some architectures today, on
Blue Gene/P, it was determined early in the development of
OSPRI that the DMA was faster than memcpy for intranode
transfers larger than 32 KB, so we did not develop any
optimizations for interprocess, intranode transfers (e.g. POSIX
shared memory).

V. DEVICE LAYER DESIGN FOR BLUE GENE/P

The design of OSPRI gives device implementers the free-
dom to exploit features provided by the underlying system
and address any system specific limitations, effectively. In this
section we discuss some of the major issues on implementing
a one-sided library on the Blue Gene/P system and how these
are addressed in OSPRI.

A. True Passive Progress

One-sided communication runtimes are aimed at address-
ing the requirements of applications/libraries with highly ir-
regular communication patterns. The performance of such
applications/libraries largely depends on the runtimes’ abil-
ity to achieve true passive progress. Blue Gene/P provides
a powerful Direct Memory Access (DMA) engine and the
Deep Computing Messaging Framework (DCMF) exploits
this through truly one-sided communication calls (DCMF_Put
and DCMF_Get). However, operations like accumulate, read-
modify-write and remote locks are neither supported in the
DMA nor provided in the DCMF. These operations have to
be executed in callbacks on the remote process. The callbacks
are executed either when the remote process calls progress
(DCMF_Messager_advance) explicitly or through interrupts.
The operating system (CNK) on the Blue Gene/P stores
floating point registers as part of the context when an interrupts
happens. This leads to flushing a large portion of the L1 Cache

and will significantly impact the performance of applications
with high data locality. On the other hand, remote process
driven progress does not provide the true passive nature desired
in a one-sided library.

Blue Gene/P, which has four cores per node, operates in
three modes: SMP mode, where only one process runs per
node but can launch threads to use other cores, DUAL mode,
where two process are launched per node and node-level
resources are equally split between them and finally, the VN
mode where a process is launched on each core and has a
fourth of the node resources. Due to limited memory available
on these nodes, many of our target applications, NWChem for
example, does not run well in VN mode and its scalability is
more limited due to the growth of the local memory footprint
with job size. At the same time, these applications are, for
the most part, single threaded and are limited in their overall
performance when run in SMP or DUAL mode. However, it
has be determined through exhaustive performance analysis
that NWChem is so communication-intensive at scale that
devoting one or more cores to communication (i.e. to run
a CHT) reduces the time-to-solution [13], which is the only
performance metric relevant that scientists care about. Taking
this into consideration, we use a CHT in our design for BG/P.
The CHT is a lightweight entity which polls for incoming
DCMF active messages by calling DCMF_Messager_advance,
making progress on incoming messages.

Thread safety is one of the key design goals of OSPRI and
the use of a CHT entails the need for locking inside the library
even when the application is single threaded. Though DCMF
provides Critical Section functions that can be used to achieve
this, we explore the use of BGP Atomics to minimize the
locking overhead.

B. Efficient Implementation of Non-Contiguous Transfers

DCMF provides a relatively user friendly API for con-
tiguous transfers that exploit the capabilities of the DMA
engine and for general purpose active messages. However,
it stops short of implementing non-contiguous functions or
read-modify-write like the closely related LAPI API for IBM
Power systems. The onus falls on the communication runtime
to efficiently implement these operations over the contiguous
operations. On the other hand, Global Arrays operates on
arrays of two or more dimensions and transfer of sub-matrices
(strided) is the most common kind of communication. Hence,
effectiveness of non-contiguous transfers is the key to the per-
formance and scaling of GA and its applications. GA depends
on the underlying runtime for efficient implementation of these
transfers.

A direct way of implementing non-contiguous transfers is to
use multiple Put/Get calls, thus achieving true passive progress
through use of the DMA. Apart from the overhead of posting
multiple messages to the network, such a scheme incurs
as significant penalty on systems like Blue Gene/P, where
network resources are limited. In our implementation, we
reduce the number of messages posted by using packing. The
presence of CHT ensures passive unpacking and processing of

these messages on the remote side. We maintain buffer pools
to avoid the overhead of allocating buffers for each message
and these provide us a source side flow control mechanism
which is important, especially on a memory limited system
like Blue Gene/P. When the buffer pool limit is reached,
we stall, and hit on progress until an earlier operation has
completed and a buffer has been freed. Such flow control
is hard to achieve on the receiver side as we cannot make
calls to DCMF advance from inside callbacks, since this
would create the possibility of deadlock. The raw network
bandwidth on Blue Gene/P is limited when compared to
other commodity networks like InfiniBand. Buffering helps
show better bandwidth performance to the application as the
blocking communication operations can return as soon as the
data has been copied over to a buffer.

VI. EXPERIMENTAL EVALUATION

The performance of OSPRI has been evaluated on the Blue
Gene/P architecture in three ways: (1) OSPRI versus DCMEF, to
measure software overhead, (2) OSPRI versus ARMCI, for an
apples-to-apples evaluation of important one-sided primitives
(Put, Get, Acc, Flush) (3) GA benchmarks run using both
ARMCI and the OSPRI, which is a drop-in replacement for
ARMCI through an identical implementation of all ARMCI
functions called by GA. All performance tests were run in
SMP mode since there is no additional information to be
gleaned from execution in other modes since neither ARMCI
nor OSPRI optimizes for this case and we cannot compare
thread-safe performance since ARMCI is not thread-safe.
Comparison to Berkeley’s GASNet communication system
was not performed because it was previously demonstrated
that it achieves the same low overhead as OSPRI for Put and
Get operations on Blue Gene/P [25], while the semantics of
GASNet active-messages make them inappropriate to imple-
ment ARMCI-style accumulate.

A. Library Overhead in OSPRI

In this section we compare contiguous Put latency in OSPRI
with that in DCMF and other one-sided libraries. The amount
of overhead each library incurs varies with its various progress
and locking modes. We present three modes of operation of
OSPRI: (1) helper thread disabled (OSPRI-NoCHT) (2) helper
thread enabled and BGP Atomics used for locking to ensure
thread-safety (OSPRI-Atomics) and (3) helper thread enabled
and DCMF Ceritical-Section used for thread-safety (OSPRI-
CS). Figure 3(L) compares the local completion latency for
OSPRI Put with DCMF Put. We see that OSPRI has a 0.4
pusec software overhead relative to DCMF. When the CHT
is enabled, lock contention between the main thread and the
helper thread incurs some overhead. We see that use of atomics
for locking causes lower overhead when compared to using
the DCMF Critical Section. However, this only works when
OSPRI is the exclusive user of DCMF since only OSPRI
can see the Atomic locks used therein, whereas the other
clients of DCMF — e.g. MPI or GASNet — will observe
DCMF Critical Sections and not make unsafe calls to DCMF

simultaneous with OSPRI, provided they are operating in a
thread-safe mode. Alternatively, one could explicitly serialize
all calls to MPI from within GA using the Atomic locks used
by OSPRI, or replace all calls to MPI with calls to DCMF,
but this still does not permit GA to be used alongside MPI,
which is too important a functional requirement to justify the
decreased latency in OSPRI from the use of Atomic locks. All
GA results reported herein use DCMF Critical Section rather
than Atomic locks to ensure thread-safety.

Figure 3(R) compares the Put latencies in OSPRI with
that in ARMCI and MPI. The local and remote completion
semantics in OSPRI match that in ARMCI. MPI-2 does not
separate local from remote completions. So, we measure
the remote completion latency in the passive synchronization
mode. We see that OSPRI performs notably better than the
both of the other libraries.

B. Global Arrays performance over ARMCI and OSPRI

Remote (inter-process/inter-node) Operations:

In this section, we compare the performance of GA built
with OSPRI and ARMCI. For the purpose of obtaining a
drop-in replacement for ARMCI which requires only relinking
for use, we have created a lightweight ARMCI wrapper so
that no modification of GA source was necessary to run tests
thereof. In the future, GA will be modified to use OSPRI
directly and exploit its unique API features, which we chose
not to document in detail here. The performance of remote
GA operations is evaluated with one process operating on
an array that is distributed across multiple other processes.
We have used the standard GA performance benchmarks on
four processes where each process operates on a matrix of
1024x1024 doubles. Using more processes for this benchmark
is not productive since it is only testing point-to-point com-
munication.

We see that OSPRI reduces the small chunk latency by
more than 50% in the case of Put and Accumulate. The Get
latency is reduced by 41%. Most of the improvement observed
comes from packing, which reduces the number of operations
posted to the network. The rest is reduced software overhead
because our design is more streamlined by virtue of the device-
implementation design. Although OSPRI implements a buffer-
pool which allows blocking transfers to return after data is
copied into a buffer rather than after local completion, this
feature is disabled during benchmarks to show the network
performance rather than the speed of local copies. When the
buffer-pool is utilized, the CHT handles the communication
operations and frees buffers as they are transferred to the
network. This is known as handoff mode and it is a runtime
configurable setting, as is the size of buffer pools for Get,
Put and Accumulate, which are determined separately. The
improved performance of OSPRI versus ARMCI for the GA
performance benchmark is shown in Figures 4 and 5.

Local (intra-process) Operations:

Global Arrays generates a significant amount of intra-
process transfer operations [13] since it is assumed that the
underlying one-sided runtime optimizes these appropriately

for the system. As noted previously NIC-bypass is not always
optimal and on Blue Gene/P, we find that the using DCMF
for intra-process is faster than copy for large buffers since
it can exploit the DMA and data need not pass through the
L1 cache. However, this behavior changes when the DMA
is busy with network operations. In that case, memory copy
will preform better than the DMA By default, OSPRI uses
memory copies (or direct-access in the case of Accumulate) for
all intra-process communication. However we have a runtime-
configurable option to use DMA operations if it is known to
the user that large intra-process transfers will be generated by
GA in the absence of significant inter-node communication.
The numbers presented in 6(L) compares the performance
of local GA operations on a 2D array using ARMCI and
OSPRI. We see that for small and medium Put/Get messages
the OSPRI memory copy design performs better than ARMCI.
As expected, the DMA copies perform better.for very large
messages, which is why ARMCI, which does uses DCMF for
all local operations, is superior in this regime. Figure 6(R)
shows the performance of Local GA Accumulate operations.
For Accumulate, there is no advantage of the DMA since
the overhead of doing numerical operations within an active-
message callback is prohibitive. OSPRI performs significantly
better throughout across the message range using direct access.

C. Performance effects of OSPRI ordering semantics

The final evaluation of OSPRI is to measure the perfor-
mance benefit which can be realized with relaxed ordering
semantics relative to the strict ordering required for location
consistency. As we have not observed a single use case of
Global Arrays which requires strict ordering in the one-sided
runtime, the contention here is that the improved perfor-
mance of the partial ordering model realized in the following
test is immediately transferable to GA applications such as
NWChem.

Figure 7 shows that, for messages as large as 4 KiB, the
latency is noticeably greater for Get when using SO versus
PO. The overhead comes from the need to flush outstanding
Put or Accumulate to the same target, even if the operations
are acting on non-overlapping buffers. Of course, one could
keep track not only of targets to which Put or Acc messages
are outstanding, but also the regions of memory upon which
they acted, which, in a communication-intensive application
such as NWChem, is either significant memory overhead if
stored in a dense fashion or significant processing overhead if
stored sparsely.

D. Application Scaling

While it is not the intent of this paper to present the
details of our fast multipole method (FMM) implementation
using one-sided communication, we briefly summarize the
performance results of FMM using OSPRI to demonstrate the
viability of this library for real scientific applications, not just
microbenchmarks. The full details of our implementation will
be describe elsewhere. Figure 8 shows the near-perfect strong
scaling of FMM across a 64-fold increase in the number of

Put Latency

Put Latency

DCMF-LocalCompletion —es— OSPRI-LocalCompletion ——
OSPRI-NoCHT-LocalCompletion —— 64 I OSPRI-RemoteCompletion —a—
8 OSPRI-Atomics-LocalCompletion —=— 1 ARMCI-LocalCompletion ——
OSPRI-CS-LocalCompletion —=— 32 | ARMCI-RemoteCompletion —=—]
. . MPI2-RMA-Passive
3 o]
Eapy i g]
> > ¥
2 g2 8, 1
[} [}
ks ©
— 5| | - 4 B
2 . 4
1 L L 1 L L L L
8 64 512 4096 8 64 512 4096 32768
Message Size (bytes) Message Size (bytes)
Fig. 3. Put Latency - (L) Comparing DCMF and OSPRI; (R) Comparing OSPRI, ARMCI and MPI
600
ARMCI-over-OSPRI Get Latency ideal Sealing
— T T T T Unsorted Data
1024 Strict-Ordering (SO) —<— 3 —e
512 £ Part:aI-Order;ng gPog —e—] Presorted Data
256 | E
g 128}] = 100
3 64 3 £
& 82F] S
o E 4 3
g 16 -
8 E|
4 F]
ol] 10
1 ‘ ‘ ‘ ‘ ‘
8 64 512 4096 32768 262144 128 256 512 1024 2048 4096 8192 16384 32768
Message Size (bytes) Number of Cores
Fig. 7. Latency of ARMCI Get implemented over OSPRI with strict and Fig. 8. Strong-scaling of the fast multipole method on Jugene.

partial ordering.

processes, to the point at which the performance is saturated.
Furthermore, we have performed the largest ever N-body
simulations [14], up to 3 trillion particles, using the FMM
algorithm on top of OSPRI. These simulations used as many
as 294912 cores of Blue Gene/P, which at the time was the
largest machine in the world. The timings for ~1T, ~2T, and
~3T particles on 32768 nodes (1 ppn), 73728 nodes (4 ppn)
and 73728 nodes (4 ppn) were 2203, 530 and 715 seconds (s),
respectively, which is not comparable to any other algorithm
or implementation since such simulations are not possible with
another method besides FMM nor was it possible to scale the
FMM implementation beyond 1024 nodes using MPI-2 RMA
or ARMCI. The latter was a strong motivating factor in the
development of OSPRI.

While our implementation of OSPRI on Cray Gemini is
preliminary, we find that a ~1B particle FMM solve takes
8.32 s with OSPRI and 22.57 s with ARMCI-MPI, which is
demonstrably superior to the native implementation of ARMCI
developed by Cray [9].

VII. RELATED WORK

Several one-sided communication substrates have been
developed in the context of different higher-level projects.

ARMCI [20] and GASNet [4] both support PGAS mod-
els; ARMCI supports both GA [24] and Co-Array For-
tran [10] while GASNet supports UPC [4], Titanium [31]
and Chapel [6]. GASNet is also used as the communication
layer for the new Chapel high productivity programming
language [6]. The features and shortcomings of these models
was discussed previously.

The MPI-2 standard [18] has extended MPI’s popular two-
sided messaging with one-sided messaging, however restric-
tions on data access make it unsuitable for supporting a PGAS
model. MPI-3 [12] seeks to remedy these limitations with new
one-sided primitives.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed OSPRI, a new one-sided
communication runtime for Global Arrays. The nature and
demands of modern leadership class systems was discussed
and it was explained how the designs of current runtimes like
ARMCI fall short in addressing them. OSPRI has been tar-
geted to overcome these limitations in a modular and scalable
fashion. Our work also presents the device-level implementa-
tion of OSPRI on Blue Gene/P and shows how the designs
provide near-network performance and outperforms ARMCI

Latency (usec)

Bandwidth (MB/s)

Latency (usec)

8192
4096
2048
1024
512
256
128

512
256
128

0.25

2D Put/Get (remote) 2D Accumulate (remote)
T T T T T T T 8192 T T T T T T T

4096
2048
1024
512
256
128

Latency (usec)

GAGet-ARMCI —— 2
GAGet-OSPRI ——]
GAPut-ARMCI —=— GAAccumulate-ARMCIl ——

I GAPUt-OSPRI —=—] 057 . GAAccumulate-OSPRI —=—]

L | | | | 025 L |

1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512

Dimension of 2D patch Dimension of 2D patch

Fig. 4. Latency of GA Remote Operations on a patch of 2D (1024x1024) matrix of doubles: Put, Get and Accumulate.

2D Put/Get (remote) 2D Accumulate (remote)
T T T T T T T 512 T T T T T T T
E 256 E
] 128 3
3 @ 64 E
3 s} 3
= 32
3 E 16 E
3 o] 3
s 8
3 g 4 E
GAGet-ARMC| —=—] M 2 3
GAGet-OSPRI ——
GAPUt-ARMCI —=— 1 1 GAAccumulate-ARMCI —— 1
¢ GAPut-OSPRI —=— | 05 GAAccumulate-OSPRI —— |
! 1 1 1 1 1 LINK ””: 77777 025 ! 1 1 1 1 1 1 LINK ””: 77777
1 2 4 8 16 32 64 128 256 512 T 2 4 8 16 32 64 128 256 512
Dimension of 2D patch Dimension of 2D patch

Fig. 5. Bandwidth of GA Remote (Inter-node) Operations on a patch of 2D (1024x1024) matrix of doubles : Put, Get and Accumulate.

2048
1024

128

0.5
0.25

Fig. 6.

2D Put/Get (local) 2D Accumulate (local)
3 T T T T T T T 16384 T T T T T T T
3 3 o
[0
E E (2]
2
E E >
[&]
3 E c
]
E ©
E 3 -
3 GAGet-ARMCI| —=— 1 4
i GAGet-OSPR| ——] 2]
i GAPUt-ARMC| —=— | 1TF GAAccumulate-ARMC| —— 7
. GAPut-OSPRI —s— 002-2 . GAAccumulate-OSPRI —— 1
1 2 4 8 16 32 64 128 256 512 T 2 4 8 16 32 64 128 256 512
Dimension of 2D patch Dimension of 2D patch

Latency of GA Local (Same-process) Operations on a patch of 2D (1024x1024) matrix of doubles : (L) Put and Get; (R) Accumulate

as the one-sided runtime system for Global Arrays. This is due
to (1) optimizations for noncontiguous operations, (2) better

use

of CPU and network resources by better optimizing for

the architecture, and (3) reduced software overhead due to the
device-specific implementation, which shortens the call path
relative to a more generic implementation.

IX. ACKNOWLEDGMENTS

JRH and PB thank Kazutomo Yoshii for helpful discus-
sions. This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which is
supported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-06CH11357.

[1]
[2]

[3]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

REFERENCES

IBM Sequoia. http://en.wikipedia.org/wiki/IBM_Sequoia, July 2010.
Using the GNI and DMAPP APIs. Technical Report S-2446-31, Cray,
2010.

M. Blocksome, C. Archer, T. Inglett, P. McCarthy, M. Mundy, J. Rat-
terman, A. Sidelnik, B. Smith, G. Almasi, J. Castafios, D. Lieber,
J. Moreira, S. Krishnamoorthy, V. Tipparaju, and J. Nieplocha. Design
and implementation of a one-sided communication interface for the IBM
eServer Blue Gene®supercomputer. In SC '06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 120, New York, NY,
USA, 2006. ACM.

Dan Bonachea. GASNet specification, vI.1.
UCB/CSD-02-1207, U.C. Berkeley, 2002.

Dan Bonachea and Jason Duell. Problems with using mpi 1.1 and 2.0 as
compilation targets for parallel language implementations. In SHPSEC,
pages 91-99, 2003.

B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programma-
bility and the chapel language. Int. J. High Performance Computing
Applications (IJHPCA), 21(3):291-312, 2007.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek
Sarkar. X10: an object-oriented approach to non-uniform cluster com-
puting. In Proc. Conf. on Object Oriented Prog. Systems, Languages,
and Applications (OOPSLA ’05), pages 519-538, 2005.

Cristian Coarfa, Yuri Dotsenko, Jason Eckhardt, and John Mellor-
Crummey. Co-array fortran performance and potential: An NPB ex-
perimental study. In Lawrence Rauchwerger, editor, Languages and
Compilers for Parallel Computing, volume 2958 of Lecture Notes in
Computer Science, pages 177-193. Springer Berlin / Heidelberg, 2004.
James Dinan, Pavan Balaji, Jeff R. Hammond, Sriram Krishnamoorthy,
and Vinod Tipparaju. Supporting the Global Arrays PGAS model using
MPI one-sided communication. may 2012.

Yuri Dotsenko, Cristian Coarfa, and John Mellor-Crummey. A multi-
platform co-array fortran compiler. In Proc. 13th Intl. Conf. on Parallel
Architectures and Compilation Techniques (PACT), September 2004.
Yuri Dotsenko, Cristian Coarfa, John Mellor-Crummey, and Daniel
Chavarria-Miranda. Experiences with co-array fortran on hardware
shared memory platforms. In Languages and Compilers for High
Performance Computing, pages 332-347. IEEE Computer Society, 2005.
http://www.springerlink.com/content/67YTT1A3NGQC410L.

MPI-3 Working Group. http://svn.mpi-forum.org/trac/mpi-forum-web/
wiki/RmaWikiPage, 2010.

Jeff R. Hammond, Sriram Krishnamoorthy, Sameer Shende, Nichols A.
Romero, and Allen D. Malony. Performance characterization of global
address space applications: a case study with NWChem. Concurrency
and Computation: Practice and Experience, 24(2):135-154, 2012.

Ivo Kabadshow, Holger Dachsel, and Jeff Hammond. Poster: Passing
the three trillion particle limit with an error-controlled fast multipole
method. In Proceedings of the 2011 companion on High Performance
Computing Networking, Storage and Analysis Companion, SC 11
Companion, pages 73-74, New York, NY, USA, 2011. ACM.
Manojkumar Krishnan, Jarek Nieplocha, Michael Blocksome, and Brian
Smith. Evaluation of remote memory access communication on the IBM
Blue Gene/P supercomputer. In ICPPW ’08: Proceedings of the 2008
International Conference on Parallel Processing - Workshops, pages
109-115, Washington, DC, USA, 2008. IEEE Computer Society.

Technical Report

[16]

[17]

(18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

Sameer Kumar, Gabor Dozsa, Gheorghe Almasi, Philip Heidelberger,
Dong Chen, Mark E. Giampapa, Michael Blocksome, Ahmad Faraj, Jeff
Parker, Joseph Ratterman, Brian Smith, and Charles J. Archer. The deep
computing messaging framework: generalized scalable message passing
on the Blue Gene/P supercomputer. In ICS '08: Proceedings of the 22nd
annual international conference on Supercomputing, pages 94—103, New
York, NY, USA, 2008. ACM.

José Moreira, Michael Brutman, José Castafios, Thomas Engelsiepen,
Mark Giampapa, Tom Gooding, Roger Haskin, Todd Inglett, Derek
Lieber, Pat McCarthy, Mike Mundy, Jeff Parker, and Brian Wallenfelt.
Designing a highly-scalable operating system: the blue gene/l story. In
SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercom-
puting, page 118, New York, NY, USA, 2006. ACM.

MPI Forum. MPI: A message-passing interface standard. Version 2.2.,
September 2009.

MPICH2. http://www.mcs.anl.gov/research/projects/mpich2/, October
2010.

Jarek Nieplocha and Bryan Carpenter. ARMCI: A portable remote
memory copy library for distributed array libraries and compiler run-
time systems. In Parallel and Distributed Processing, pages 533—
546, London, UK, 1999. Springer-Verlag. http://www.springerlink.com/
content/P581340602373484.

Jarek Nieplocha, Bruce Palmer, Manojkumar Krishnan, Harold Trease,
and Edoardo Aprd. Advances, applications and performance of the
global arrays shared memory programming toolkit. Intern. J. High Perf.
Comp. Applications, 20, 2005.

Jarek Nieplocha, Vinod Tipparaju, and Edoardo Aprd. An evaluation of
two implementation strategies for optimizing one-sided atomic reduc-
tion. page 7, apr. 2005.

Jarek Nieplocha, Vinod Tipparaju, Manojkumar Krishnan, and Dhabale-
war Panda. High performance remote memory access comunications:
The ARMCI approach. International Journal of High Performance
Computing and Applications, 20(2), 2006.

Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield.
Global arrays: a portable “shared-memory” programming model for
distributed memory computers. In Supercomputing '94: Proceedings
of the 1994 ACM/IEEE conference on Supercomputing, pages 340-349,
New York, NY, USA, 1994. ACM.

Rajesh Nishtala, Paul H. Hargrove, Dan O. Bonachea, and Katherine A.
Yelick. Scaling communication-intensive applications on Blue Gene/P
using one-sided communication and overlap. Parallel and Distributed
Processing Symposium, International, 0:1-12, 2009.

Robert W. Numrich and John Reid. Co-array fortran for parallel
programming. SIGPLAN Fortran Forum, 17(2):1-31, 1998.

K. Parzyszek, J. Nieplocha, and R.A. Kendall. A generalized portable
SHMEM library for high performance computing. In Proc. Intl. Conf.
on Parallel and Distributed Computing and Systems (PDCS). IASTED,
November 2000.

Krzysztof Parzyszek. Generalized portable shmem library for high
performance computing. PhD thesis, Ames, IA, USA, 2003. Kendall,
Ricky A. and Lutz, Robyn R.

Gautam Shah, Jarek Nieplocha, Jamshed Mirza, Chulho Kim, Robert
Harrison, Rama K. Govindaraju, Kevin Gildea, Paul Dinicola, and
Carl Bender. Performance and experience with LAPI - a new high-
performance. In Communication Library for the IBM RS/6000 SP. In
Proceedings of the International Parallel Processing Symposium, pages
260-266, 1998.

Vinod Tipparaju, Edoardo Aprd, Weikuan Yu, and Jeffrey S. Vetter.
Enabling a highly-scalable global address space model for petascale
computing. In CF ’10: Proceedings of the 7th ACM international
conference on Computing frontiers, pages 207-216, New York, NY,
USA, 2010. ACM.

Katherine A. Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto,
Ben Liblit, Arvind Krishnamurthy, Paul N. Hilfinger, Susan L. Graham,
David Gay, Phillip Colella, and Alexander Aiken. Titanium: A high-
performance java dialect. Concurrency: Practice and Experience, 10(11-
13):825-836, 1998.

“This manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne).
Argonne, a U.S. Department of Energy Ofce of Science laboratory, is operated under Contract No. DEAC02-06CH11357.
The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.”

http://en.wikipedia.org/wiki/IBM_Sequoia
http://www.springerlink.com/content/67YTT1A3NGQC410L
http://svn.mpi-forum.org/trac/mpi-forum-web/wiki/RmaWikiPage
http://svn.mpi-forum.org/trac/mpi-forum-web/wiki/RmaWikiPage
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.springerlink.com/content/P581340602373484
http://www.springerlink.com/content/P581340602373484

	Introduction
	Background
	Global Arrays
	Blue Gene/P

	Motivation: The Need for OSPRI
	Design Overview of OSPRI
	Aptness of the Data Server
	Message Ordering Semantics
	Thread Safety and Hybrid Programming

	Device Layer Design for Blue Gene/P
	True Passive Progress
	Efficient Implementation of Non-Contiguous Transfers

	Experimental Evaluation
	Library Overhead in OSPRI
	Global Arrays performance over ARMCI and OSPRI
	Performance effects of OSPRI ordering semantics
	Application Scaling

	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

