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1 Motivation
Faults and errors are an unavoidable aspect of high per-
formance computing systems. Emerging exascale systems
will contain billions of hardware components and com-
plex software stacks. In addition, higher fabrication den-
sity and power challenges will further compound fault de-
tection, management and recovery. Efficient fault toler-
ance and resiliency frameworks are thus of immense im-
portance in the path to the exascale era [7].

Faults and errors are broadly categorized as hard errors
(where a hardware component has failed and requires hu-
man intervention to be corrected), soft/transient errors
(where a fault occurred, but has been corrected by the
hardware or low-level system software), and silent/unde-
tectable errors (where an error occurred but the hardware
and low-level system software could not detect the er-
ror) [4]. While there has been a tremendous amount of
work for tolerating each of these types of faults, these
mechanisms fundamentally lack the ability to share infor-
mation. For example, the behavior of most operating sys-
tems when a hard fault occurs is to kill the application or
the entire node. Similarly, the behavior when a soft error
occurs is to automatically correct the error, but not inform
the user about it. Furthermore, there is currently no way
for the user to hint to the operating system about the ap-
plication’s ability to work around hard or soft errors.

2 Introspective Fault Tolerance
While resiliency is achievable in various forms throughout
the software stack, a comprehensive fault infrastructure
would need mechanisms for lower-level hardware and
operating system to interface with upper layers libraries
and applications for fault detection, fault information ex-
change, error handling negotiations as well as recovery
in a standardized way. Currently approaches, where most
faults are detected at system level through return error
codes and OS signals (containing limited information),
are insufficient and of little use when available to up-
per layers libraries and applications [7]. Upper-level soft-
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ware typically cannot make educated decisions for fault
recovery based on this information and typically resort to
checkpoint/restart/migration or fall-back to program abor-
tion.

This problem of information exchange exists in the re-
verse direction as well. Considering the power and fault
challenges exposed by exascale systems, it is under-
standable that high tradeoffs will exist between power,
resiliency and performance on a system. Increased re-
siliency may come at the cost of power and/or perfor-
mance. Similarly, low power may come at the cost of de-
ceased resiliency.

The goal of introspective fault tolerance is to bridge this
gap, by providing a two-way communication mechanism
between the application and the operating system to ex-
change information on fault occurrences as well as tuning
power/performance/resilience tradeoffs based on applica-
tion characteristics. To achieve a goal for comprehensive
resiliency, it is mandatory to focus on operating system-
level methodologies, frameworks and interfaces with the
following open questions: 1) What faults/system-changes
highly impact upper-level software/applications and how
to improve this fault detection at OS- or system-level. 2)
how do we bridge the gap for information exchange be-
tween the operating system and upper level software, 3)
what techniques would allow upper-level software to use
this information exchange for either adapting and recov-
ering from faults pro-actively or negotiating tradeoffs be-
tween performance, resiliency and power.

Specifically, the operating system would need to provide
hooks for users to access and control power, resiliency and
performance-impacting hardware. One example of such a
behavior can be with respect to memory allocations. For
instance, if an application can tolerate memory bit flips for
certain parts of its memory, it can ask the OS to turn off
ECC checks for those memory regions (e.g., one memory
DIMM) and potentially improve power and performance.
The form of interface that we envision is a model where
memory allocation is conservatively most resilient, but the
application can relax this requirement through annotations
as shown in Figure 1.

Another example of such introspection demonstrated in



1 void *buf1 = malloc(1000); /* memory allocation conservative by default; if a hard error occurs, abort! */
2
3 foo(buf1); /* function foo works on reliable memory */
4 os_check_ecc_errors(&errors); /* introspect soft ecc errors */
5 /* if there are too many correctable ECC errors. perhaps better
6 to use a different memory region or a different node */
7
8 void *buf2 = malloc_with_error_returns(1000); /* if a hard error occurs, return an error */
9

10 bar(buf2); /* function bar works on reliable memory, but can tolerate errors */
11 os_check_hard_memory_errors(&errors); /* introspect hard memory errors (e.g., double bit flips) */
12 iif (errors) {
13 /* recompute data computed in bar */
14 }
15
16 void *buf3 = unreliable_malloc(1000); /* allow OS to turn off reliability checks */
17
18 foobar(buf3); /* function foobar handles memory errors */

Figure 1: Memory Management Example

Figure 1 is the ability of the application to query the OS
for soft errors and decide whether to continue execution
or migrate to a different memory region/node.

Such introspection capabilities allow applications and
upper-level software to be closely involved in the perfor-
mance, power, and resilience management of the over-
all system, thus guiding the OS into making more edu-
cated choices. Such capabilities are already important to-
day, and will be critical in the exascale era.

3 Related Work
Research in the field of resiliency in high performance
computing has been vast and varied. Following is some
related work from the perspective of this paper.

Several studies have been conducted to understand the
types and nature of fault on large supercomputers [3, 8,
13,17,20]. Attention has been directed to fault communi-
cation and exchange as well, which includes systems logs
and log analysis, log compression, analysis and prediction
using system logs as well as root causing failures by min-
ing logs [5, 13, 15, 23]. Using environmental monitoring
information for system-wide event and fault monitoring
has also been vastly studied; along with tools and soft-
ware to handle and predict faults [6, 11, 12, 16, 21, 22].

There exists several APIs for exchanging information be-
tween network peers. However, limited research has tar-
geted interfaces and API focussing on faults, fault moni-
toring, adaptive fault and recovery handling and fault in-
formation exchange at the operating system level [1, 14].
Modern systems and operating systems come with certain
interfaces, tools and software that allow upper-level soft-
ware access to portions of the hardware [2,9,12], but these
interfaces are not generic for fault and cannot be used by
all levels of the software stack. Gupta et al. [10, 18, 19]
developed coordination and fault exchange framework for
exchanging fault information among various software on
the system. This work serves as the most relevant prior

work for our paper.

4 Summary
Challenges addressed: A unified comprehensive fault
and resiliency introspection framework for exascale oper-
ating systems.

Maturity: Applications and upper level software are
playing an increasing important role in system-wide fault
tolerance and resiliency. There is already a large body of
literature that deals with improving system and applica-
tion fault tolerance when the fault information is available.
There are also ongoing DOE funded activities that deal
with managing the performance/power/resilience trade-
offs in applications. Thus, the time is ripe for designing an
comprehensive introspection framework that allows these
activities to blend with the design and future directions of
exascale operating systems.

Uniqueness: Exascale systems are expected to have
stricter power and resilience constraints than anything we
have seen before. Thus, a model where an OS or hard-
ware architecture can independently manage the perfor-
mance/power/resilience tradeoffs is already strained and
would be irrelevant in the exascale era.

Novelty: Exascale systems will allow tradeoffs between
power, performance and faults. This tradeoffs are trans-
parent to applications currently. Our approach allows the
operating system to help applications work more closely
with system hardware for its optimal needs.

Applicability: We expect the framework and interfaces
to be used by researchers working with upper level soft-
ware such as math libraries, programming libraries and
applications.

Effort: The effort would require upper level software
folks (i.e programming models, applications scientists) to
work closely with operating system researchers and possi-
bly vendors. Estimated effort would be around four-to-five
people over the span of three-to-five years.
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