Supporting the Global Arrays PGAS Model Using MPI One-Sided Communication

James Dinan, Pavan Balaji,
Jeff R. Hammond
Argonne National Laboratory
{dinan,balaji,jhammond} @anl.gov

Abstract—The industry-standard Message Passing Interface
(MPI) provides one-sided communication functionality and
is available on virtually every parallel computing system.
However, it is believed that MPI’s one-sided model is not
rich enough to support higher-level global address space
parallel programming models. We present the first successful
application of MPI one-sided communication as a runtime
system for a PGAS model, Global Arrays (GA). This work
has an immediate impact on users of GA applications, such
as NWChem, who often must wait several months to a year
or more before GA becomes available on a new architecture.
We explore challenges present in the application of MPI-2
to PGAS models and motivate new features in the upcoming
MPI-3 standard. The performance of our system is evaluated
on several popular high-performance computing architectures
through communication benchmarking and application bench-
marking using the NWChem computational chemistry suite.

Keywords-One-sided communication; Global address space;
MPI; Global Arrays; ARMCI; NWChem

I. INTRODUCTION

Computational chemistry applications, such as NWChem
[21], operate on large data sets that exceed the capacity
of a single node. Global Arrays (GA) [16] was developed
to address NWChem’s need for a large, asynchronously
accessible data space and it is now widely used across a
variety of scientific domains. GA allows the programmer
to create large, multidimensional shared arrays that span
the memory of multiple nodes in a distributed-memory
system. The programmer interacts with a GA through asyn-
chronous, one-sided get, put, and accumulate operations as
well as through high-level parallel mathematics routines.
GA provides a convenient data access interface that uses
high-level array indices; it also provides a rich lower-level
interface for managing data distribution, exploiting locality,
and managing communication.

GA is built on top of the aggregate remote memory copy
interface (ARMCI) [15], a low-level, one-sided communica-
tion runtime system. ARMCI forms GA’s portability layer;
and when porting GA to a new platform, ARMCI must
be implemented using that platform’s native communication
and data management primitives. Thus, ARMCI must be
implemented for a particular platform before scientists are
able to run NWChem and other GA applications.

TWork conducted while at Oak Ridge National Laboratory.

Sriram Krishnamoorthy
Pacific Northwest National Laboratory
sriram@pnnl.gov

Vinod Tipparaju
IEEE Member'
tipparajuv @ieee.org

Because of its sophistication, creating an efficient and
scalable implementation of ARMCI for a new system is
challenging. On many platforms, vendors have not provided
ARMCI support or have given it low priority, leaving
implementation and tuning to third parties. Because of this,
the availability of a stable, scalable ARMCI implementation
on many new parallel computing architectures has lagged
system delivery by several months to a year or more. Recent
examples include two leadership class systems: Tianhe and
the K computer. The Tianhe system has been available for
two years and, at the time of writing, still does not have
an ARMCI implementation available. The K computer has
been available for several months and a vendor-supported
ARMCI implementation is under development, but not yet
production-ready.

The Message Passing Interface (MPI) [13] is the indus-
try standard communication runtime for high-performance
computing. An efficient and scalable MPI implementation
is provided by the system vendor for virtually every paral-
lel computing platform. One-sided remote memory access
(RMA) communication support was introduced in version
2 of the MPI standard. MPI’s one-sided communication is
unique in targeting broad portability, even to non-cache-
coherent architectures. This design goal, however, led to
complexity in the model and semantic challenges that have
been an impediment to adoption. In addition, it is believed
that MPI RMA’s strict semantics limit its usefulness as a
runtime system for partitioned global address space (PGAS)
programming models [6].

In this work, we study the semantic mismatch between
MPI RMA and PGAS models like ARMCI; we develop
techniques for overcoming this mismatch and present a
complete implementation of GA’s low-level ARMCI run-
time system on MPI RMA. To our knowledge, this is the
first demonstration that MPI’'s RMA interface is a suitable
substrate for such higher-level PGAS and one-sided libraries.
The impact of this work is several-fold:

1) By harnessing the portability of MPI, we have created

a highly portable, high-performance runtime layer for
GA that extends the usability of GA and the NWChem
computational chemistry suite to a wide variety of
systems, including systems where a native ARMCI im-
plementation is not available or has not yet been fully

tuned for scaling. This has the immediate impact of
enabling first-year science on new architectures, using
e.g. the NWChem computational chemistry suite [21].

2) Currently, although GA and MPI are commonly used
together, they have separate runtime systems, which
leads to consumption of extra resources and potential
losses in communication performance because of sep-
arate memory registration mechanisms. By enabling
GA to share MPI’s runtime system, we achieve a
greater degree of interoperability that increases the
resources available to the application.

3) MPI RMA adoption has presented a causality
dilemma: few applications use MPI RMA because it
is not well supported and sufficient investment has
not been made by MPI implementers to tune the
performance of MPI RMA. By enabling GA to use
MPI RMA, we have introduced a sizable user base
for MPI RMA.

4) While we demonstrate that MPI-2 RMA is sufficient
to support GA, there remains much room for improve-
ment in MPI’s one-sided interface. We identify these
gaps in current MPI-2 RMA and project toward the
upcoming MPI-3 RMA standard.

Our implementation of ARMCI-MPI is compared with
the best-available native implementations on four popular
parallel computing architectures: IBM Blue Gene/P, an In-
finiBand cluster, Cray XTS5, and Cray XE6. Communication
benchmarking demonstrates that MPI RMA provides lower,
but comparable, performance to highly tuned native ARMCI
implementations. Through application-level benchmarking,
we demonstrate that in spite of the measurable performance
gap between moderately tuned MPI one-sided operations and
aggressively tuned ARMCI one-sided operations, ARMCI-
MPI provides the level of support needed to achieve com-
petitive and portable application-level performance for the
NWChem computational chemistry suite. One one system,
the Cray XE6, the ARMCI-MPI implementation provides
performance and scalability that is superior to the vendor
supplied ARMCI implementation.

In Section II we present an overview of the NWChem
and GA software stack. In Sections IIl and IV we discuss
the MPI RMA and ARMCI communication models, respec-
tively. In Section V we present the design of the ARMCI-
MPI layer that bridges the semantic gap between ARMCI
and MPIL. In Section VII we present our empirical evaluation
using the NWChem computational chemistry application. In
Section VIII we discuss extensions to GA and ARMCI that
can enhance performance and portability while maintaining
backward compatibility. We also discuss the implications of
this work to the ongoing MPI-3 standardization process.
In Section IX we discuss related work and conclude in
Section X with a brief summary.

II. OVERVIEW

We begin with an overview of the NWChem computa-
tional chemistry suite, the Global Arrays software stack, and
the industry-standard MPIL.

A. NWChem

NWChem [21] is one of the most widely used computa-
tional chemistry software packages, especially on large-scale
supercomputers, as a result of its breadth of functionality
(particularly, the density functional and quantum many-body
methods) and its portability. The computational methods
implemented in NWChem are often both compute- and
memory-intensive. In this paper, we focus on the coupled-
cluster singles and doubles with perturbative triples method,
known as CCSD(T), which requires O(N") floating-point
operations and O(N*) memory, where N is a measure of
the size of the molecular system. If N = 500, which is
required for a molecule with more than a dozen atoms, the
memory required exceeds 100 GB, which exceeds the mem-
ory available on today’s compute nodes. As N grows larger,
the data structures of CCSD(T) require many terabytes of
memory. Hence, distributed-data algorithms are required.

B. The Global Arrays Software Stack

Global Arrays [16] is a partitioned global address space
(PGAS) library that provides a high-level interface to dis-
tributed, shared, multidimensional arrays. In the GA model,
the memory of many nodes is aggregated to store large
array structures, and locality information can be leveraged to
optimize for local data access. GA data is accessed through
one-sided GA_Get, GA_Put, and GA_Accumulate operations
that specify the desired data by using array index ranges.
These operations may access data that is stored across
several nodes and strided within those nodes. The resulting
communication and data assembly is managed by the GA
runtime.

Global Arrays is layered on top of the ARMCI one-
sided communication library [15]. ARMCI is a PGAS
communication substrate that provides GA with the ability
to allocate shared buffers that can be accessed through
one-sided get, put, and accumulate operations. In addition,
ARMCI provides highly tuned strided and I/O vector op-
erations that can be used to perform the noncontiguous
remote accesses generated as a result of GA accesses to array
patches. As shown in Figure 1, GA typically utilizes both
ARMCI and MPI. An alternative configuration of the GA
software stack does not utilize MPI; however, on almost all
high-end systems, MPI is used for two-sided and collective
communication, process management, and bootstrapping.

C. The Message Passing Interface

MPI [13] is an industry-standard communication library
for parallel programming. The first MPI standard defined the
core two-sided messaging and collective operations. With

NWChem NWChem
Global Arrays Global Arrays

ARMCI _ARMCI
MPI MPI

Native Native

(a) Native ARMCI (b) ARMCI-MPI

Figure 1. Global Arrays software stack: native and MPI implementations.

MPI-2, new one-sided functionality was added in response
to the growing popularity of one-sided models. In contrast
with one-sided models of the time, the MPI Forum created
a model that uses a window concept to explicitly manage
data consistency and provide portability, even to non-cache-
coherent architectures. A consequence of this design was
added complexity in the interface and data access semantics.
For this reason, the one-sided functionality has not enjoyed
the same degree of popularity as the core two-sided and
collective communication functionality.

III. USING MPI RMA EFFECTIVELY

MPI’s one-sided Remote Memory Access programming
interface supports two modes of operation: active and pas-
sive. Active mode requires synchronization among all parties
involved in the RMA operation. Passive mode is asyn-
chronous and requires participation only from the initiator, or
origin process, of the operation. Because of the synchroniza-
tion involved in active-mode communication, passive-mode
RMA is more suitable for the asynchronous communication
model used by GA.

MPT’s passive-mode operations must be performed within
an access epoch that is initiated through a call to
MPI_Win_Lock and completed by a call to MPI_Win_Unlock.
On systems where core-core and processor-network memory
accesses are noncoherent, concurrent accesses to memory
can overlap on data transfer units, resulting in data corrup-
tion even if they do not access the same location. Some other
systems have weak core-core and core-network consistency.
Calls to lock or unlock ensure that accesses are ordered
and result in the expected data. All one-sided operations
initiated during a passive mode epoch are nonblocking and
logically occur concurrently. Thus, conflicting operations
(e.g., overlapping put and get operations) within an epoch
can cause unexpected results; such groupings of operations
are defined to be an error by the MPI standard.

Passive-mode MPI RMA supports two data access (lock-
ing) modes: shared and exclusive. Shared locks allow mul-
tiple origins to access the same target concurrently, whereas
exclusive locks prevent this type of access. If two origin
processes perform concurrent conflicting operations on the
same target (e.g., both use a shared lock), unexpected results
can be generated, leading to data corruption. Thus, this
behavior is also defined to be an error by the MPI standard.

0: 1
ARMCI_|PutS ‘
Sl RN
GA_Put PGS A
%%\': rrrrrrrrrrr rrrrrrrrrrrrrr
\\ \\‘A X
S~ ___x
2 3

Figure 2. Put operation on a GA distributed across four processes. This
operation results in four ARMCI noncontiguous put operations.

An MPI window object is logically separated into two
copies: a public copy and a private copy. This separation
is to accommodate systems with no coherence between
the network and the host processor. Remote accesses are
performed on the public copy, and local load/store accesses
are performed on the private copy. When direct load/store
accesses are performed, the private copy must be synchro-
nized with the public copy; however, the MPI library has no
knowledge of which data has been updated. Thus, the entire
window may be copied, potentially resulting in memory
corruption if a remote process is in the process of accessing
the public window. Therefore, unless careful synchronization
is used, direct local access should be performed only while
the window is locked for exclusive access.

IV. THE ARMCI RUNTIME SYSTEM

ARMCI provides a partitioned global address space
(PGAS) view of distributed shared data, where a global
address takes the form (process_id,address). Allocation
and freeing of globally accessible memory are performed
via the collective ARMCI_Malloc and ARMCI_Free routines.
ARMCI_Malloc returns a vector of pointers to the patch of
globally accessible memory on each process. The pointer
for a given target process is used to calculate and specify
the address component for the destination of Put or Accu-
mulate operations or to specify the source location of a Get
operation. As shown in Figure 2, GA operations can result
in accesses to data stored on several processes. The array
elements accessed on each process are often noncontiguous,
and ARMCI provides a noncontiguous communication in-
terface to efficiently support this mode of communication.

ARMCI also supports processor groups that are created
through collective and noncollective group creation calls.
ARMCI’s communication operations operate on absolute
process identities (ranks in the ARMCI world group) rather
than group identities. Thus, group ids must be converted
to absolute ids through a call to ARMCI_Absolute_id before
they can be used in communication operations.

A. ARMCI Semantics

ARMCI distinguishes between local and remote comple-
tion for its communication operations. When a blocking

operation returns or a nonblocking operation is completed,
the operation is said to be locally complete and the local
buffer is available for use by the application. In the case
of a get operation, this also means that the desired data has
been fetched and the communication is complete. In the case
of a put or accumulate operation, it does not guarantee that
the operation has completed remotely. If remote completion
is desired, the programmer must perform an ARMCI_Fence
operation.

ARMCI also follows a location-consistent model for over-
lapping data access [10]. In this model, a process observes
its own operations with respect to a given target process
p in the order in which they completed locally. Another
process accessing the same data on p may observe a different
ordering of these operations. This model provides flexibility
that can be leveraged for performance while still giving the
programmer the convenience of a shared-memory-like data
access model.

In order to achieve a high degree of interoperability,
GA and, by extension, ARMCI guarantee asynchronous
progress for one-sided operations. This guarantees that com-
munication will make progress even if the target of the
communication operation is blocked in a non-ARMCI/GA
(e.g., DGEMM) call, allowing blocking ARMCI operations
to be interleaved with blocking MPI operations in the same
program with no risk of deadlock. Most native ARMCI
implementations use a communication helper thread (CHT)
that ensures asynchronous progress and provides support for
ARMCI operations that are not natively supported, such as
double-precision accumulate and ARMCI’s atomic swap and
atomic fetch-and-add operations.

V. DESIGN OF ARMCI-MPI

We align MPT’s restrictive, but portable, one-sided se-
mantics with ARMCI through an intermediate global data
management layer called global memory regions (GMR).
In addition to translating between ARMCI and MPI data
spaces, GMR manages accesses to global memory to ensure
that MPI semantics are not violated.

A. Address and Rank Translation

ARMCI communication operations are performed on
global addresses, whereas MPI one-sided operations are per-
formed by using RMA windows and window displacements.
GMR maintains a translation table that is used to look up
the allocation corresponding to an ARMCI global address
and retrieve its GMR handle. GMR handles contain all
the information needed to access a global memory region,
including a reference to its MPI window object and the
ARMCI group on which the allocation was performed.
ARMCI communication operations are performed on abso-
lute process ids, whereas MPI’s one-sided communication
operations target a rank in the given window’s group. Thus,

GMR must also translate between ARMCI absolute process
ids and ranks in the target window.

ARMCI supports two modes of process group creation:
collective and noncollective. Collective group creation is im-
plemented directly by using MPI communicators; however,
noncollective group creation cannot be performed directly
by using MPI’s communicator creation interface. Instead,
we use the recursive intercommunicator creation and merg-
ing algorithm presented in our prior work [9]. Using this
technique, we can back both types of process groups using
an MPI communicator.

B. Global Memory Allocation

When global memory allocation is performed, a new
GMR handle is created and entered into the translation table.
An MPI window is then created on the given ARMCI group
by using the group’s communicator and is attached to the
GMR handle. All processes participating in the allocation
then perform an all-to-all exchange of their local base
addresses to build the base address vector that will be
returned to the user. If a process requests an allocation of
size 0, a base address of NULL will be used for this process.
Likewise, for all processes not participating in the allocation,
a base address of NULL is entered in the translation table and
into the base address vector entry for that process.

In order to free an GMR, the MPI window object must
be located and then collectively freed. If any processes have
a zero-size slice of the allocation, they will supply NULL to
the call to ARMCI_Free. The translation table may also have
several NULL entries from other allocations for this process
id. In order to locate the correct GMR handle, a leader
process is selected by performing a reduction on process
ids, where processes put forth their rank if they have been
given a non-NULL global address for the free operation. The
selected leader then broadcasts this address to the remaining
processes, and this (leader_rank, address) pair is used to
look up the GMR handle and free the MPI window.

C. Avoiding Data Access Conflicts

MPI RMA defines any concurrent, conflicting operations
to be an error because they have the potential to corrupt
memory, for example, on noncoherent systems. Thus, GMR
must ensure that operations issued within the same epoch
are nonconflicting and that operations issued by different
sources targeting the same process also do not conflict. In
order to ensure that operations issued by a given process do
not conflict, we issue each within its own epoch. In general,
an ARMCI process has no knowledge of the operations
issued by other processes. Therefore, MPI's exclusive access
mode must be used to ensure that conflicts do not occur.
As we discuss in Section VIII-A, however, when more
application-level knowledge is available, these strict access
modes can be relaxed.

D. Synchronization and Atomic Operations

In addition to process-level synchronization via
ARMCI_Send, ARMCI_Recv, and ARMCI_Barrier, ARMCI
provides mutexes and atomic operations that can be used to
perform asynchronous, data-driven synchronization.

We have implemented the ARMCI mutexes API using
the MPI RMA queueing mutex algorithm of Latham et
al. [12], which is the most scalable one-sided mutual ex-
clusion algorithm currently known for MPI RMA. In this
algorithm, a byte vector B of length nproc is created on
the process hosting the mutex; the ¢th entry in this vector
indicates whether process ¢ has requested the lock. Initially
B[0...nproc — 1] = 0. A lock operation from process @
performs several nonoverlapping communication operations
in a single MPI RMA exclusive access epoch: entry Bli] is
set to 1, and all other entries are fetched. If all other entries
are 0, the lock operation has succeeded; otherwise the lock
operation has effectively enqueued process ¢ in the waiting
queue for the mutex. Once enqueued, the process waits on
an MPI_Recv operation from a wildcard source. Thus, when
a process is blocked in the lock operation, it waits locally for
a message to arrive and does not generate network traffic.

When process ¢ performs an unlock operation, it again
performs an exclusive RMA access epoch on B that sets
Bli] = 0 and fetches all other entries. B is then scanned for
an enqueued request starting at entry ¢ + 1, which ensures
fairness. If a request is found in the queue, a zero-byte
notification message is sent to this process, forwarding the
lock. If no request is found, the unlock is finished.

In addition to mutexes, ARMCI provides atomic swap
atomic fetch-and-add routines that operate on a single-
integer or long-integer location in memory. These operations
are defined to be atomic with respect to other ARMCI RMW
operations, but atomicity with respect to other operations is
not guaranteed. The MPI 2.2 standard does not provide any
operation that can perform atomic read-modify-write, and
such a sequence of operations is forbidden within an access
epoch since the read and write are necessarily conflicting.
Thus, the only possible approach using the current MPI
standard is to implement RMW operations using a mutex.
We associate a mutex with each GMR and perform RMW
operations in two epochs (read and write).

E. Direct Local Access to Global Data

Direct load/store access to memory exposed in an MPI
window conflicts with all other accesses to that window
region. To avoid these conflicts, we adopt a strategy of
performing direct access only within exclusive mode epochs.
GA provides GA_Access/Release calls that are used to
acquire and release direct access to data stored within a
GA; however, ARMCI does not currently provide such
functions. We have extended the ARMCI API to include
ARMCI_Access_begin/end calls that initiate and complete

direct access to data within a GMR. This extension has re-
quired the modifications to GA described in Section VIII-A,
but it requires no application-level modifications.

1) Communicating with Global Buffers: In the ARMCI
model, the user can provide a memory location that is
globally accessible as the local buffer in a communication
operation. Several issues arise when a global buffer is used
as the local source or destination in a communication opera-
tion: we may need to lock the same window more than once,
which is forbidden by MPI; the local access may conflict
with another access to the local window region; or, by
locking multiple windows, we may induce a deadlock due to
circular dependence between two processes’ communication
operations. In order to avoid these issues, ARMCI-MPI must
check local buffers to ensure they are not exposed in an MPI
window. If they are, the accesses must be managed correctly
to prevent data corruption, an MPI error, or deadlock.

Several strategies are possible for managing communi-
cation where the local buffer is in global space. However,
because of the possibility of deadlock from locking multiple
windows, the only safe method is to stage the data through a
temporary local buffer. Thus, in a put or accumulate opera-
tion, the source window is locked and the data copied into a
temporary local buffer. This exclusive lock for local access is
then released before requesting the lock on the target process
and performing the communication operation, eliminating
the possibility of deadlock. Many MPI implementations have
extended the MPI standard on coherent memory systems to
allow for concurrent access to shared data. On such systems,
ARMCTI’s global buffer management mechanisms can be
disabled to provide better performance.

F. Aligning Consistency and Progress Semantics

Given the described mapping of ARMCI to MPI opera-
tions, three dimensions of ARMCI’s communication seman-
tics must to be aligned with MPI: local/remote completion
semantics, location consistent global data access, and asyn-
chronous progress.

MPI’'s RMA operations do not distinguish between local
and remote completion. All operations within the same
epoch are logically concurrent; operations are not guaranteed
to complete until the MPI_Unlock call that completes the
epoch. Since ARMCI-MPI must issue each operation within
its own exclusive access epoch to avoid conflicts, when
the ARMCI-MPI operation returns, the operation will have
completed both locally and remotely. These completion
semantics guarantee that an origin process will observe its
operations in the order in which they were issued, which cap-
tures ARMCT’s location-consistent semantics. Since com-
munication operations are not left in-flight, the implemen-
tation of ARMCI’s Fence operation is a no-op. Further,
just like under ARMCI, the MPI standard specifies that
RMA operations should make asynchronous progress. On
some platforms, a performance cost is associated with this

requirement, and implementers have chosen to make this a
runtime option that must be enabled.

VI. NONCONTIGUOUS COMMUNICATION OPERATIONS

The most performance-critical component in ARMCI is
its support for noncontiguous communication. As shown in
Figure 2, a GA communication operation is often trans-
lated into several ARMCI communication operations. The
resulting ARMCI operations may access only a part of each
dimension of the array, resulting in a noncontiguous transfer.
ARMCI provides two facilities for performing noncontigu-
ous data transfers: generalized I/O vectors and a strided API.

A. Generalized I/O Vector Operations

ARMCTI’s generalized 1/0O vector (IOV) operations per-
form a series of data transfers of the same size. The
programmer describes an IOV operation as an armci_giov_t
IOV descriptor:

typedef struct {

void x+src_ptr_array; // Source address of each segment
void xxdst_ptr_array; // Dest. address of each segment
int bytes; // Length of each segment in bytes
int ptr_array_len; // Number of data segments
armci_giov_t;

ARMCI-MPI provides three methods for performing IOV
operations: conservative, batched, and direct. The conserva-
tive method issues one RMA communication operation per
segment, each in a separate RMA epoch. This method is
conservative because it permits each segment to correspond
to a different GMR (call to ARMCI_Malloc) and allows
segments to overlap (although we are not aware of any ap-
plication that performs this type of operation). The batched
method requires that all segments in the same GMR have
no overlap (the overwhelmingly common use case). It issues
up to B operations per epoch, where B is a configurable
parameter and has a default setting of 0, or unlimited.
The direct method generates two MPI indexed datatypes to
represent the data layout at the source and at the destination.
A single communication operation is issued using these
datatypes, thus allowing the MPI implementation to select
the most efficient way to perform the given operation (e.g.,
pack/unpack of the data or batched) for the given system.
This method also requires that global addresses correspond
to the same GMR and not overlap.

B. Checking for IOV Errors

The batched and datatype methods of IOV transfer can
generate an MPI error if segments are overlapping or if
they correspond to different GMRs. It is possible (but
not required) for MPI implementations to detect this and
generate an MPI error; however it is possible for data to
already be corrupted when this error is detected, making re-
covery impossible. We therefore have added an auto method
that scans the IOV descriptor to detect these conditions
and use the conservative method when needed. A naive

Table I
GA/ARMCI STRIDED NOTATION.

Strided Notation | Definition

Src Source pointer

dst Destination pointer

sl Stride level (dimensionality — 1)

count[] Num. units in each dimension, length sl + 1
src_strd[] Source stride array, length sl

dst_strd[| Destination stride array, length sl

approach requires an O(IN?) scan of the segments to detect
overlap. For applications such as NWChem, N can be tens
to hundreds of thousands of segments for a typical GA
operation.

We have developed an O(N -log N) approach to overlap
detection that uses a binary tree to detect conflicts. In this
approach, each node represents an address range [lo..hi];
nodes in the tree are ordered such that, for any given node,
all nodes in the left subtree are less than [o and all nodes
in the right subtree are greater than hi. When considering a
new range, [lo’..hi’], a conflict can be detected by searching
the tree for a node where [0’ or hi’ lie in the range [lo..hi]
or lo) < lo A hi’ > hi. A full proof that such a node
will be encountered in a search is outside the scope of
this paper. Roughly speaking, however, a conflicting node
must be encountered during a search of the tree since the
tree is ordered and such a node would not lie to the left
or right of the node being checked. If a conflict is not
found, the range is inserted into the tree, and the next
range is checked. In our implementation, we used an AVL
tree [1] for its self-balancing property, and we merged
the checking and insertion steps. When insertion fails, the
range is not inserted into the tree, and an error is returned,
indicating that the conservative transfer method should be
used. The simpler behavior and organization with respect
to conflict handling are the primary differences between
our conflict tree structure and an interval tree [7], which
supports multiple overlapping regions and queries that return
all matching regions.

C. Strided Operations

Noncontiguous array operations in ARMCI can also be
expressed by using ARMCI/GA strided notation. This rep-
resentation, shown in Table I, is more compact than the
IOV representation and lends itself readily to the pointer
arithmetic needed to perform the desired operation.

In this representation, src and dst point to the first element
to be transferred and the start of the target buffer. The
number of units to be transferred in each dimension is
specified in the count array; count[0] specifies the number of
bytes in the contiguous dimension. Source and destination
stride arrays are both specified to allow for different layouts
of the source and destination array. The stride array specifies
the displacement in bytes of the given dimension from the
base address.

Strided notation can be readily translated into IOV repre-
sentation by using the algorithm presented in Algorithm 1.
Translation into IOV operations is a common implemen-
tation strategy for ARMCI and is supported by ARMCI-
MPI; Algorithm 1 is used to construct an iterator and reduce
space overheads. In addition to IOV translation, ARMCI-
MPI provides a direct implementation of strided operations
that translates ARMCI strided notation directly into an
MPI subarray derived datatype. Similar to the IOV datatype
implementation, once the MPI datatype has been generated,
a single MPI RMA communication operation is issued to
hand off the communication to MPI, which can optimize the
operation, for example. by doing pack/unpack or by using
special machine capabilities.

Algorithm 1 Algorithm to convert ARMCI strided opera-
tions to the generalized I/O vector representation.
In: sl,sre,dst,sre_strd|sl),dst_strd[sl],count[sl + 1]
Out: i0v
Let: zfer < 0, idz[0...sl —1] + 0
while idx[sl — 1] < count[sl] do
Let: disp_src < 0, disp_dst < 0

/I Calculate displacements from the base pointers
fori=0...sl—1do
disp_src « disp_src + src_strd|[i] - idx|i]
disp_dst < disp_dst + dst_strd[i] - idz|i]
end for
tov.sre_ptr_arraylx fer] <— src_ptr + disp_src
tov.dst_ptr_arraylx fer] <+ dst_ptr + disp_dst
/I Increment innermost index and propagate “carry”
1dx[0] < idx[0] + 1
fori=0...sl—1do
if idz[i] > count[i + 1] then
idzxfi] < 0
idxli + 1] < ddxli + 1] + 1
end if
end for
zfer < xfer+1
end while

Translation from ARMCTI’s strided notation to an MPI
subarray type involves regenerating the array and subarray
dimensions by using the count and stride array information.
In contrast to ARMCT’s strided notation, which is convenient
for pointer arithmetic, MPI’s subarray types are expressed in
terms of the array dimensions, subarray starting index, and
subarray dimensions. Thus, we must translate backwards to
get the higher-level information that is present at the GA
level but not at the lower ARMCI level. Datatypes must be
generated for both the source and destination. For the origin
buffer the datatype is generated relative to the origin pointer,
and for the target the datatype is generated relative to the
beginning of the window. The subarray can be expressed as

an array that originates at index 0 in each dimension, which
has dimensionality sl+1; the size of each dimension is given
as the count array. This subarray is contained within an array
whose dimensions are given via the (src or dst, respectively)
stride array. With MPI’s C subarray dimension ordering,
the parent array has outermost and innermost dimensions
dim[0] = stride[0] and dim[sl] = count[sl], respectively.
The inner dimensions, ¢ = sl — 1...sl, can be found as
dimli] = count[i]/count[i — 1].

VII. EXPERIMENTAL EVALUATION

We have evaluated ARMCI-MPI on four platforms that
capture a broad range of the high-performance computing
landscape: IBM Blue Gene/P, Cray XTS5, Cray XE6, and
InfiniBand clusters. These systems currently have a native
ARMCI implementation available and represent important
execution targets for NWChem. The hardware characteristics
of these systems are given in Table II. For each platform, we
compare the raw communication performance of ARMCI-
MPI with ARMCI-Native. We also conduct an application
performance study using NWChem.

A. Communication Benchmarks

In Figure 3 we present the bandwidth achieved for con-
tiguous ARMCT get, put, and double-precision accumulate
operations over a range of message sizes. Data is presented
for the native implementation of ARMCI as well as ARMCI-
MPL

From this data we can see that ARMCI-MPI’s get and
put performance is less than but comparable to that of Blue
Gene/P and InfiniBand cluster. However, double-precision
accumulate performance does not keep up, especially on the
InfiniBand cluster where the bandwidth gap is more than
1.5 GB/sec. This indicates an area where a great deal of
improvement is needed in MPI IS-sided implementations.
On the Cray XT, performance is comparable for messages
up to 32 kB; however, beyond this point, MPI achieves half
of the bandwidth achieved by native ARMCI, indicating that
performance tuning in the MPI implementation could benefit
this transfer regime. On the Cray XE ARMCI-MPI achieves
twice the bandwidth of native ARMCI for put and get on
large messages and a 25% higher bandwidth for double
precision accumulate.

In Figure 4 we present communication bandwidth mea-
surements for stridled ARMCI operations on our four test
systems. In these figures, we show plots where the contigu-
ous segment being transferred is 16 and 1,024 bytes for a
number of segments ranging from 1 to 1,024.

On Blue Gene/P, the direct strided method gives the best
performance for small segments as a result of the benefit of
data packing done by the MPI implementation. For larger
segments, however, the slow speed of BG/P’s processors
becomes an impediment for data packing, and we see that
the batched method of transfer gives performance that is

Table II
EXPERIMENTAL PLATFORMS AND SYSTEM CHARACTERISTICS.

System Nodes | Cores per Node | Memory per Node Interconnect MPI Version
IBM Blue Gene/P (Intrepid) | 40,960 1x4 2 GB 3D Torus IBM MPI
Cluster (Fusion) 320 2x4 36 GB InfiniBand QDR | MVAPICH2 1.6
Cray XTS5 (Jaguar PF) 18,688 2x6 16 GB Seastar 2+ Cray MPI
Cray XE6 (Hopper II) 6,392 2x 12 32 GB Gemini Cray MPI
Blue Gene/P InfiniBand Cluster
10° 10!
— g;.,. 35V 55-6-55 ~ 0
g 10 g 10
1%} %)
Q aQ
S e
< 102 < 107
° ke
E Get (Nat.) E
2 . Put (Nat.) --=--- 2 ., P
m 10 Acc (Nat.) -- = -- m 10 #
Get (MPI) ~o-- E/
Put (MPI) —=-— 7
4 Acc (MPI) ---o--- 3
10 g L v . 10 * .
20 25 510 15 220 225 20 25 210 215 220 225
Transfer Size (Bytes) Transfer Size (Bytes)
Cray XT Cray XE
10’ 10
— 10° — 10°
(o] (&)
Q]
@ Y
&5 107 & 107
£ £
S -2 2 2
510 Get (MPl) —— z 10 Get (MPl) ——
= ; Put (MPI) ---- 2 Put (MPI) -----
& . 3 ; Acc (MPI) ---x--- | & .3 Acc (MPI) ---x---]
R Bt (Nat) o " Bt (Nar)
; u e u e
")) _Acc (Nat,) -- = -- 4) _Acc (Nat.,) -- = --
10 20 25 210 215 220 225 10 20 25 210 15 220 225
Transfer Size (Bytes) Transfer Size (Bytes)
Figure 3. Bandwidth achieved for contiguous ARMCI operations using ARMCI-MPI and native ARMCI.

near that of the native ARMCI implementation. On the
InfiniBand cluster, the direct method is again advantageous
for small segments; however, for large segments the batched
method offers better bandwidth. For both this and the BG/P
case, these results indicates that tuning is needed within
the MPI implementation to automatically switch between
data packing and direct transfer modes when handling
noncontiguous datatypes. For large numbers of segments
on InfiniBand, performance of the batched transfer method
suffers severely. This is due to a performance-related issue in
MPICH-2 that has recently been fixed but not yet integrated
into MVAPICH-2.

On the Cray-XT, we see that both MPI datatypes imple-
mentations of ARMCI’s strided operations (IOV Dtype and
Direct) outperform the batched method. For more than tens
of segments, however, performance falls off to roughly half
the native bandwidth, indicating some internal inefficiencies
in the runtime. On the Cray XE, the story is reversed:
ARMCI-MPI achieves significantly higher bandwidth for put
and get transfers and matches native performance for double-

precision accumulate.

Overall, these results indicate that further tuning is needed
across several important MPI implementations to better han-
dle switching from data packing to direct transmission and
to better handle large numbers of noncontiguous transfers
within a single passive mode epoch. The Cray XE is a new
system architecture, and its software stack continues to be
improved. Even though the performance of ARMCI-MPI is
well below peak for this system, MPI RMA offers better
performance than the development release of ARMCI that
is currently available.

B. Evaluation of Interoperability

Typically, a GA application utilizes both ARMCI and
MPI for its runtime support. When both runtime systems
are active, additional memory and processing resources are
consumed. In addition, many systems require that memory
used for communication be pinned, or locked to physical
frames, and registered with the network device so that
DMA transfers can be performed. Registration mechanisms

SIZE = 16B SIZE = 1024B
0.08 0.35
oa0 [
0.06 10V-Direct = = - 1 o025 o= SR TIIETS
0.05 |- IOV-Batched s 1 o020 & Ps
0.04 10V-Consrv . 32
0.15 |- =2
=
0.10 a2®
0.05 ==
0.00
_ 0.35
E 0.30 Acc
@ 0.25
S 0.20 -
] 0.15 [ome
H 0.10 =
s 0.05 —
0.00
0.08 0.35
Put 1 P [Put o aeeen
0.07 ut 0.30 Put/ ——
0.06 025 e o]
0.05 o ozo | A .
0.04 = o015 I 27 Ciisim-
0.03 s B e
0.02 e ol
0.01 ./-)"(h, T id 4 005 Lo
0,00 E====t 0.00
20 22 24 26 28 210 20 22 2A 26 28 210
Number of Contiguous Segments
(a) Blue Gene/P
SIZE = 16B SIZE = 1024B
06 1.0
Get
05 0s |1 &
g': e 0.6
- g
A 0.4
0.2 P o 2
0.1 R 2 [
00 i 0.0
06— o
05 08 12

06
0.4
02

0.0 =

f
........ =

Bandwidth (GB/Sec)
o
©

0.6 1.0
05 08

0.6
0.4
0.2

28 210 20 22 24 26 28 210
Number of Contiguous Segments

(c) Cray XT

SIZE = 16B

SIZE = 1024B

Bandwidth (GB/Sec)

00000 —n—ia 00000 ——oo 00000 ——o=

Put

ohvromoONMPO® ONMPOWONPO® ONPOPONRD®

25
20 /
15 g
1.0 St T
[
2 - A- == 1 0.0 2 4 1
20 2 2 2 22 2P 20 2 2 28 26 2™

Number of Contiguous Segments

(b) InfiniBand Cluster

SIZE = 16B SIZE = 1024B

Bandwidth (GB/Sec)

06 Put 14 Put .
o8 A bt e
- N)
g'g ST o8 v
- 06 <
02 0.4 fete
01 |grrmen e PO RI B 0.2
0.0 o

.0
28 210 20 22 24 26 28 210
Number of Contiguous Seaments

(d) Cray XE

Figure 4. Bandwidth comparison for strided ARMCI operations when using several ARMCI-MPI strided methods and native ARMCI. Contiguous segment
sizes of 16 and 1024 bytes are shown, and the number of segments ranges from 1 to 1,024.

typically cannot be shared between two runtime systems;
thus, both ARMCI and MPI must maintain separate buffer
pinning mechanisms. This strategy can lead to additional
resource consumption in memory and on the network de-
vice. In addition, it can impact communication performance
because each runtime system will be unaware that buffers
have already been pinned by the other runtime system.

In Figure 5 we present an example of communication
performance loss due to mismatched buffer registration. The
figure shows the bandwidth achieved for contiguous ARMCI
and MPI get operations on the InfiniBand cluster using
buffers that are registered by ARMCI and MPI runtime
systems. For a native ARMCI get, performance with the
ARMCI allocated buffer is the best; however, there is a
significant bandwidth gap when communicating using a
buffer allocated by MPI forces ARMCI to switch to its
nonpinned communication path. While ARMCI allocates
prepinned buffers from a pinned region, MVAPICH uses
on-demand memory registration. At the time of writing,

MVAPICH does not support prepinned allocation; however,
it is allowed by the MPI standard through the use of an
info argument to the MPI_Alloc_mem routine. On-demand
registration is more flexible than prepinning; however, it
can consume more resources because of fragmentation, and
it has a high registration cost. In Figure 5 we show the
bandwidth achieved by using an MPI get when MPI has
touched (i.e., registered) the buffer, versus when MPI has not
touched the given buffer. For transfers smaller than 8kB, or
two pages, MVAPICH copies the data into internal prepinned
buffers. For transfers larger than this, MVAPICH pins the
buffer and does the transfers directly; the high cost of on-
demand registration can be seen for transfers in this range.

C. NWChem Experimental Setup

In order to evaluate the performance of NWChem, a water
cluster was modeled by using the CCSD(T) method and
the aug-cc-pVTZ basis set. Water clusters are the subject
of intense scientific interest and have been previously con-
sidered in performance-oriented studies involving NWChem.

10

o 10° /_,r TEE

5 e o

2 P

[an) 1 o

g 10 /.l‘:,

5 e

= 10 Y%

° /;r

8 ol a” ARMCI-IB, ARMCI Alloc
107 MPI, MPI Touch --x--- 1

ARMCI-IB,” MPI Touch ---x---

104 MPI, ARMCI Allog =

22 o4 96 98 10 512 514 516 518 520 522
Transfer Size (Bytes)

Figure 5. Bandwidth achieved for contiguous get operations for ARMCI
and MPI when using ARMCI and MPI allocated local buffers.

The water pentamer (henceforth referred to as w5) has 50
electrons, which are represented by using 460 atom-centered
Gaussian basis functions. For simplicity, no higher angular
momentum functions were removed, in contrast to Ref. [2].
Following convention, the 10 core electrons were frozen;
that is, they were not included in the CCSD(T) calculation.
Thus, n, = 20 and n,, = 435 in the O(n3n?) computational
cost of CCSD(T) using the spin-free formalism.

D. NWChem Performance Analysis

In Figure 6 we present a performance comparison between
NWChem running on GA using ARMCI-MPI and GA using
ARMCI-Native. We show CCSD computation timings for
all platforms and (T) timings for the InfiniBand cluster and
XE6. For each system, we selected the best strided method
using the 1 kB segments data presented in Figure 4: batched
on Blue Gene and direct on InfiniBand, Cray XT, and Cray
XE.

The InfiniBand target is the most aggressively tuned
native implementation of ARMCI; it was written by ARMCI
developers rather than system vendors and is well main-
tained. For this platform, there is a performance gap of
roughly 2x for the CCSD and (T) calculations; however,
this gap shrinks as the processor count is increased. On
Blue Gene/P, we see that ARMCI-MPI’s performance is
comparable to the performance of the native implementation
for the CCSD calculation and maintains good scaling. On
the Cray XT, we see that performance is only 15%-20%
less for ARMCI-MPI. On the Cray XE6 we see the impact
of the increased communication performance observed in
the communication benchmarks. On this system, ARMCI-
MPI performs 30% better than the currently available native
implementation on the CCSD calculation. ARMCI-MPI also
scales much better and continues to improve execution time
of the expensive (T) calculation on 5,952 processors while
the native implementation’s performance flattens for (T) and
worsens for CCSD.

VIII. DISCUSSION

Through this work, we have uncovered several opportuni-
ties to improve the portability and performance of GA and
ARMCI as well as gaps in the current MPI standard that
limit its performance and applicability as a PGAS runtime
system.

A. Extensions to GA and ARMCI

We have made two extensions to the ARMCI API that
will be included in the next GA/ARMCI software re-
lease: ARMCI direct local access (DLA) extensions and
GA/ARMCI access modes. As discussed in Section V-C,
DLA extensions are required for a correct implementation
on top of MPI but will also help extend the GA and ARMCI
models to weakly consistent and noncoherent platforms
that are expected to become more prevalent as node-level
architecture continues to grow larger and more complex.
This extension requires changes to GA; however, it does
not affect existing GA programs.

GA/ARMCI access modes are not required for correct-
ness; they expose significant opportunities for performance
optimization through application-level hints about how data
will be accessed. Currently, as discussed in Section V-C,
MPI exclusive mode epochs must be used to ensure correct
behavior of ARMCI-MPI. In many cases, arrays will be
used as read-only, accumulate-only, or will not use direct
access during different phases of the program. These access
patterns influence whether conflicting accesses are possible,
and knowledge of the access mode can enable the use of
more efficient shared locks within ARMCI-MPI. In native
implementations of ARMCI, these access modes can also
reduce the overheads from mechanisms used to ensure loca-
tion consistency and allow ARMCI to better exploit native
performance, for example by enabling adaptive routing when
using relaxed consistency. In addition, they introduce the
possibility for GA-level optimizations, such as caching or
data replication.

B. MPI RMA Status and Future Directions

Most implementations of MPI-2 RMA that we have en-
countered are not as aggressively optimized for performance
as one-sided libraries such as ARMCI. In addition, many are
not well tested; in this project alone, we have worked with
MPI developers to fix numerous MPI RMA bugs across a
variety of MPI distributions. We hope that the open source
release of our ARMCI implementation and its integration
into GA will greatly increase the level of focus on testing
and tuning current MPI RMA implementations.

Through this work, we have uncovered several character-
istics of MPI-2 RMA that significantly limit performance.
MPI’s definition of conflicting accesses as fatal program
errors significantly impedes our ability support communi-
cation concurrency. The need to encapsulate all commu-
nication within an epoch introduces the extra overhead of

Blue Gene/P

% ARMCI-MP| CCSD ——e—
30| s ARMCI-Native CCSD ===+ |
— 3
£ 25 i
E H
o 20 !
£
T A
a .,
(&) 10 “‘\
(-3 seiimaremmmerrr]
0 , , ,
0 256 512 768 1024
Number of Nodes
Cray XT5
18 ¥ : . . x .
ARMCI-MP| CCSD =
16 \ ARMCI-Native CCSD ====+ 4
14

M A O ® O N
g
mmnzzz=s®

CCSD Time (min)

0 2048 4096 6144 8192 10240 12288

Number of Cores

InfiniBand Cluster

45 - - - - 102
ARMCI-MPI CCSD =———
ARMCI-Native CCSD ====-
3.75 ¢ ARMCI-MPI (T) ---s:-+ 1 85
- \ ARMCI-Native (T) s
E s
° E
£ ©
= E
o ol
3 S
o
0 0
192 224 256 288 320 352 384
Number of Cores
Cray XE6
18 q - v - 30
ARMCI-MPI CCSD =———
ARMCI-Native CCSD ====+
15 b5 ARMCI-MPI (T) =--s--- 1 25
= ., ARMCI-Native (T)
€ 20 £
0 E
(0]
e B g
(=) 3 ol
8 10 £
o
5

0 0
744 1488 2232 2976 3720 4464 5208 5952
Number of Cores

Figure 6. NWChem CCSD and (T) execution time for ARMCI-Native and ARMCI-MPL.

remote completion that is not required by ARMCI. The
lack of persistent nonblocking operations has prevented us
from providing efficient support for ARMCI’s nonblocking
operations that overlap communication with computation.
Further, the lack of atomic read-modify-write operations has
forced us to resort to a high-latency implementation using
mutexes.

Currently, the MPI Forum is working to overhaul the MPI
RMA functionality. We are excited to report that the MPI-
3 RMA proposal introduces several important extensions to
passive mode RMA that will address all the above chal-
lenges: (1) a better definition of how conflicting operations
will interact with each other and relaxation from erroneous
to undefined, (2) an epochless passive communication mode,
(3) nonblocking request-based communication operations
that allow overlap of computation and communication, and
(4) new atomic read-modify-write operations.

IX. RELATED WORK

Global Arrays [16] and, more specifically, its runtime
system, ARMCI [15], have been implemented for a wide
variety of high-performance architectures and interconnects
[14], [17], [20]. However, this work is the first effort
to utilize MPI’s one-sided interface as an implementation
vehicle for ARMCI. An implementation of ARMCI on MPI
two-sided messaging has been included in the ARMCI dis-
tribution for several years. This implementation implements

ARMCT’s one-sided operations by running a data server
process on each node. The data server maps shared memory
that is shared with all processes on the node and services
requests to read from and write to this data. However, this
approach does not utilize MPI’s one-sided functionality and
has several overheads, including consumption of a core,
bottlenecking on the data server, and two-sided messaging
overheads such as tag matching. In comparison, the approach
presented in this paper uses MPI RMA operations, which
provide access to the RDMA hardware capabilities of mod-
ern high-performance interconnects.

GASNet [5] is a runtime system used by several PGAS
models, including the Berkeley implementation of Unified
Parallel C (UPC) [3]. GASNet also provides an MPI imple-
mentation that does not use MPI RMA because of a semantic
mismatch between MPI and UPC that cannot be overcome
at the runtime level [6]. Instead, GASNet-MPI is based on
the AMMPI [4] active messages runtime system that uses
MPT’s two-sided communication.

MPI RMA has been standardized for over a decade,
and significant effort has been invested in improving its
performance [11], [18] and in building higher-level libraries
using MPI RMA [12]. In spite of these efforts, adoption
of MPI RMA by users has been slow. Nevertheless, MPI
RMA has been demonstrated to be effective in several
applications including earthquake modeling simulations [8]
and cosmological simulations [19].

X. CONCLUSION

We have presented an implementation of the Global
Arrays parallel programming model using MPI's RMA
functionality. This implementation was achieved by porting
GA’s low-level ARMCI PGAS runtime system to MPI’s one-
sided API. The impact of this implementation is several-
fold: enhanced portability for GA and GA applications, es-
pecially to new platforms where a production-capable native
ARMCI implementation is not available; improved resource
utilization and interoperability for applications using both
GA and MPI; and an expanded user base to drive devel-
opment of MPI one-sided features. Through an evaluation
using the NWChem computational chemistry suite, we have
demonstrated that performance is competitive with that of
native implementations of ARMCI. Furthermore, we have
investigated the effectiveness of the MPI one-sided model
and provided important motivation to drive the inclusion of
new features in the next version of the MPI standard.

ACKNOWLEDGEMENT

This work was supported through resource grants from
ALCF, Argonne LCRC, NCCS, and NERSC and by
the U.S. Department of Energy under contracts DE-
AC02-06CH11357, DE-AC05-000R22725, and DE-ACO6-
76RLO1830.

REFERENCES

[1] G.M. Adelson-Velskii and E. M. Landis. An algorithm for the
organization of information. Soviet Mathmatics, 3(5):1259—
1262, 1962. Translated from Russian Doklady, Akademit
Nauk SSSR 146:263-266.

[2] Edoardo Apra, Alistair P. Rendell, Robert J. Harrison, Vinod
Tipparaju, Wibe A. de Jong, and Sotiris S. Xantheas. Liquid
water: obtaining the right answer for the right reasons. In
SC ’09: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, pages 1-7,
New York, NY, USA, 2009. ACM.

[3] Berkeley UPC. Berkeley UPC user’s guide version 2.8.0,
2009.

[4] Dan Bonachea. AMMPI: Active messages over MPIL. Website.
http://www.cs.berkeley.edu/~bonachea/ammpi/.

[5] Dan Bonachea. GASNet specification, v1.1. Technical Report
UCB/CSD-02-1207, U.C. Berkeley, 2002.

[6] Dan Bonachea and Jason Duell. Problems with using MPI
1.1 and 2.0 as compilation targets for parallel language
implementations. Int. J. High Perform. Comput. Netw., 1:91—
99, August 2004.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 3rd edition, 2009.

[8] Y. Cui, K. B. Olsen, T. H. Jordan, K. Lee, J. Zhou, P. Small,
D. Roten, G. Ely, D.K. Panda, A. Chourasia, J. Levesque,
S. M. Day, and P. Maechling. Scalable Earthquake Simu-
lation on Petascale Supercomputers. In Proceedings of the
IEEE/ACM International Conference for High Performance
Computing, Networking, Storage and Analysis, New Orleans,
LA, Nov 2010.

91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

James Dinan, Sriram Krishnamoorthy, Pavan Balaji, Jeff R.
Hammond, Manojkumar Krishnan, Vinod Tipparaju, and Ab-
hinav Vishnu. Noncollective communicator creation in mpi.
In Recent Advances in the Message Passing Interface - 18th
European MPI Users’ Group Meeting, EuroMPI "11, 2011.

G.R. Gao and V. Sarkar. Location consistency — a new mem-
ory model and cache consistency protocol. IEEE Transactions
on Computers, 49(8):798 —813, August 2000.

P. Lai, S. Sur, and D. K. Panda. Designing Truly One-
Sided MPI-2 RMA Intra-node Communication on Multi-core
Systems. In International Supercomputing Conference (ISC),
June 2010.

Robert Latham, Robert Ross, and Rajeev Thakur. Implement-
ing MPI-IO Atomic Mode and Shared File Pointers Using
MPI One-Sided Communication. International Journal of
High Performance Computing Applications, 21(2):132-143,
2007.

MPI Forum. MPI-2: Extensions to the message-passing in-
terface. Technical report, University of Tennessee, Knoxville,
1996.

Jarek Nieplocha, Edoardo Apra, Jialin Ju, and Vinod Tip-
paraju. One-sided communication on clusters with Myrinet.
Cluster Computing, 6(2):115-124, 2003. TY - JOUR.

Jarek Nieplocha and Bryan Carpenter. ARMCI: A portable
remote memory copy library for distributed array libraries
and compiler run-time systems. Lecture Notes in Computer
Science, 1586, 1999.

Jarek Nieplocha, Bruce Palmer, Vinod Tipparaju, Manojku-
mar Krishnan, Harold Trease, and Edoardo Apra. Advances,
applications and performance of the global arrays shared
memory programming toolkit. Int. J. High Perform. Comput.
Appl., 20(2):203-231, 2006.

Jarek Nieplocha, Vinod Tipparaju, and Manoj Krishnan. Op-
timizing strided remote memory access operations on the
quadrics gsnetii network interconnect. In HPCASIA ’05:
Proceedings of the Eighth International Conference on High-
Performance Computing in Asia-Pacific Region, page 28,
Washington, DC, USA, 2005. IEEE Computer Society.

G. Santhanaraman, P. Balaji, K. Gopalakrishnan, R. Thakur,
W. Gropp, and D. K. Panda. Natively Supporting True
One-sided Communication in MPI on Multi-core Systems
with InfiniBand. In Proceedings of the IEEE International
Symposium on Cluster Computing and the Grid (CCGrid),
Shanghai, China, May 18-21 2009.

Thacker R. J., Pringle, G., Couchman H. M. P and Booth,
S. HYDRA-MPI: An adaptive particle-particle, particle-
mesh code for conducting cosmological simulations on mpp
architectures. High Performance Computing Systems and
Applications, 2003.

V. Tipparaju, E. Apra, W. Yu, and J. Vetter. Enabling a highly-
scalable global address space model for petascale computing.
In CF ’10: Proceedings of the 7th ACM conference on
Computing frontiers, New York, NY, USA, 2010. ACM.

M. Valiev, EJ. Bylaska, N. Govind, K. Kowalski, T.P.
Straatsma, H.J.J. Van Dam, D. Wang, J. Nieplocha, E. Apra,
T.L. Windus, and W.A. de Jong. NWChem: A comprehensive
and scalable open-source solution for large scale molecular
simulations. Computer Physics Communications, 181(9):1477
— 1489, 2010.

