
VOCL: An Optimized Environment for Transparent

Virtualization of Graphics Processing Units

Shucai Xiao1 Pavan Balaji2 Qian Zhu3 Rajeev Thakur2 Susan Coghlan4

Heshan Lin1 Gaojin Wen5 Jue Hong5 Wu-chun Feng1

1Dept. of Computer Science, Virginia Tech. {shucai, hlin2, wfeng}@vt.edu
2Math. and Comp. Sci. Div., Argonne National Lab. {balaji, thakur}@mcs.anl.gov

3Accenture Technology Labs, qian.zhu@accenture.com
4Leadership Comp. Facility, Argonne National Lab. smc@alcf.anl.gov

5Shenzhen Inst. of Adv. Tech., Chinese Academy of Sciences. {gj.wen,jue.hong}@siat.ac.cn

ABSTRACT

Graphics processing units (GPUs) have been widely used for
general-purpose computation acceleration. However, cur-
rent programming models such as CUDA and OpenCL can
support GPUs only on the local computing node, where
the application execution is tightly coupled to the physical
GPU hardware. In this work, we propose a virtual OpenCL
(VOCL) framework to support the transparent utilization
of local or remote GPUs. This framework, based on the
OpenCL programming model, exposes physical GPUs as de-
coupled virtual resources that can be transparently managed
independent of the application execution. The proposed
framework requires no source code modifications. We also
propose various strategies for reducing the overhead caused
by data communication and kernel launching and demon-
strate about 85% of the data write bandwidth and 90% of
the data read bandwidth compared to data write and read,
respectively, in a native nonvirtualized environment. We
evaluate the performance of VOCL using four real-world
applications with various computation and memory access
intensities and demonstrate that compute-intensive appli-
cations can execute with negligible overhead in the VOCL
environment.

Keywords

Graphics Processing Unit (GPU), Transparent Virtualiza-
tion, OpenCL

1. INTRODUCTION
General-purpose graphics processing units (GPGPUs or

GPUs) are becoming increasingly popular as accelerator de-
vices for core computational kernels in scientific and en-
terprise computing applications. The advent of program-
ming models such as NVIDIA’s CUDA [21], AMD/ATI’s
Brook+ [1], and Open Computing Language (OpenCL) [15]
has further accelerated the adoption of GPUs by allowing
many applications and high-level libraries to be ported to
them [17, 19, 23, 26]. While GPUs have heavily prolifer-
ated into high-end computing systems, current programming
models require each computational node to be equipped with
one or more local GPUs, and application executions are
tightly coupled to the physical GPU hardware. Thus, any
changes to the hardware (e.g., if it needs to be taken down
for maintenance) require the application to stall.
Recent developments in virtualization techniques, on the

other hand, have advocated decoupling the application view

of “local hardware resources” (such as processors and stor-
age) from the physical hardware itself. That is, each appli-
cation (or user) gets a “virtual independent view” of a po-
tentially shared set of physical resources. Such decoupling
has many advantages, including ease of management, abil-
ity to hot-swap the available physical resources on demand,
improved resource utilization, and fault tolerance.

For GPUs, virtualization technologies offer several ben-
efits. GPU virtualization can enable computers without
physical GPUs to enjoy virtualized GPU acceleration abil-
ity provided by other computers in the same system. Even
in a system where all computers are configured with GPUs,
virtualization allows allocating more GPU resources to ap-
plications that can be better accelerated.

However, with the current GPU programming model im-
plementations, such virtualization is not possible. To ad-
dress this situation, we have investigated the role of ac-
celerators such as GPUs in heterogeneous computing en-
vironments. Specifically, our goal is to understand the fea-
sibility and efficacy of virtualizing GPUs in such environ-
ments, allowing for compute nodes to transparently and

efficiently view remote GPUs as local virtual GPUs. To
this end, we propose a new implementation of the OpenCL
programming model, called Virtual OpenCL, or VOCL.
The VOCL framework provides the OpenCL-1.1 API and
it enables application programs to utilize all GPUs in the
same way as local GPUs. VOCL internally calls native
OpenCL functions for local GPUs and it calls the Message
Passing Interface (MPI) [18] for data transfer across different
machines. VOCL also utilizes several techniques, including
argument caching and data transfer pipelining, to improve
performance.

Computing

node

Computing

node
Computing

node

Computing

node

Computing

node

GPU

GPU

GPU GPU GPU GPU GPU

GPU GPU GPU GPU GPU

Network connection

Virtual GPUs

Physical GPUs

GPUGPU

Figure 1: Transparent GPU virtualization

We note that this work does not deal with using GPUs on



virtual machines, which essentially provide operating system-
level or even lower-level virtualization techniques (that is,
full or paravirtualization). Instead, it deals with user-level
virtualization of the GPU devices themselves. Unlike full
or para-virtualization using virtual machines, VOCL does
not handle security and operating system-level access isola-
tion. However, it does provide similar usage and manage-
ment benefits, and the added benefit of being able to trans-
parently utilize remote GPUs. As illustrated in Figure 1,
VOCL allows a user to construct a virtual system that has,
for example, 32 virtual GPUs, even though no physical ma-
chine in the entire system might have 32 collocated physical
GPUs.
We describe here the VOCL framework as well as the op-

timizations to improve its performance, which is of great im-
portance to virtual GPUs since performance improvements
brought by the GPUs would otherwise be killed by overhead
involved in the virtualization. We also present a detailed
evaluation of the framework. This includes microbench-
mark evaluation measuring data transfer overheads to and
from GPUs associated with such virtualization. Also pro-
vided is a detailed profiling of overheads for various OpenCL
functions. We evaluate our framework with several real
application kernels, including SGEMM/DGEMM, N-body
computations, matrix transpose kernels, and the compu-
tational biology Smith-Waterman application. We observe
that for compute-intensive kernels (high ratio of computa-
tion required to data movement between host and GPU),
VOCL’s performance differs from native OpenCL’s perfor-
mance by only a small percentage. However, for kernels
that are not compute-intensive (low ratio of computation
required to data movement between host and GPU) and
where the PCI-Express bus connecting the host processor
to the GPU is already a bottleneck, such virtualization does
have some impact on performance, as expected.
The rest of the paper is organized as follows. Section 2

provides an overview of the OpenCL programming model
and the MPI standard. Sections 3 and 4 describe the VOCL
framework, its implementation challenges, and the various
performance optimization techniques we used. Section 5
presents the performance evaluation. Section 6 describes
related work, and Section 7 presents our conclusions.

2. BACKGROUND
In this section, we provide a brief overview of the OpenCL

programming model.
OpenCL [15] is a framework for programming heteroge-

neous computing systems. It provides functions to define
and control the programming context for different platforms.
It also includes a C-based programming language for writ-
ing kernels to be executed on different platforms such as the
GPU, CPU, and Cell Broadband Engine (Cell/BE) [7]. A
kernel is a special function called on the host and executed
on the aforementioned device. Usually, the data-parallel and
compute-intensive parts of applications are implemented as
kernels to take advantage of the computational power of the
various accelerators. A kernel consists of a few work groups,
with each work group consisting of a few work items. In
OpenCL, kernels use a different memory space from the host
program and OpenCL provides API functions for data copy
between host memory and device memory for kernel execu-
tion on the GPU.
In general, execution of a typical OpenCL program in-

cludes the following steps. The program first allocates OpenCL
objects such as contexts, programs, command queues, device
memories, etc, on the device. Then it copies kernel inputs
to device memory and performs computation on the device.
After kernel execution is completed, the program copies the
results back to the host memory for program output. Fi-
nally, the program releases the OpenCL objects. Compared
to programs executed on the traditional CPU processors,
data copy is needed between host memory and device mem-
ory in OpenCL programs. As to the data-copy time, in
compute-intensive programs, it can be negligible; while in
programs requiring more data movement, such data copy
can occupy a significant portion of the total program execu-
tion time.

The current implementations of the OpenCL program-
ming model only provide capabilities to utilize accelerators
installed locally on a compute node.

3. VIRTUAL OPENCL ENVIRONMENT
VOCL consists of the VOCL library on the local node and

a VOCL proxy process on each remote node, as shown in Fig-
ure 2. The VOCL library exposes the OpenCL API to appli-
cations and is responsible for sending information about the
OpenCL calls made by the application to the VOCL proxy
using MPI, and returning the proxy responses to the appli-
cation. The VOCL proxy is essentially a service provider for
applications, allowing them to utilize GPUs remotely. The
proxies are expected to be set up initially (for example, by
the system administrator) on all nodes that would be pro-
viding virtual GPUs to potential applications. The proxy is
responsible for handling messages from the VOCL library,
executing the actual functionality on physical GPUs, and
sending results back to the VOCL library. When an appli-
cation wants to use a virtual GPU, its corresponding VOCL
library would connect to the appropriate proxy, utilize the
physical GPUs associated with the proxy, and disconnect
when it is done.

We chose OpenCL as the programming model for two rea-
sons. First, OpenCL provides general support for multiple
accelerators (including AMD/ATI GPUs, NVIDIA GPUs,
Intel accelerators, and the Cell/BE), as well as for general-
purpose multicore processors. By supporting OpenCL, our
VOCL framework can support transparent utilization of va-
rieties of remote accelerators and multicore processors. Sec-
ond, OpenCL is primarily based on a library-based inter-
face, rather than a compiler-supported user interface such
as CUDA. Thus, a runtime library can easily implement the
OpenCL interface without requiring to design a new com-
piler.

Local computing node Remote computing

node 2

GPU

Application

program
Proxy process

GPU

Native OpenCL

library

MPI

Remote computing

node1

GPU

Proxy process

Native OpenCL

library

MPI

GPU

VOCL library

OpenCL API
OpenCL API OpenCL API

Figure 2: Virtual OpenCL framework

3.1 VOCL Library



VOCL is compatible with the native OpenCL implementa-
tion available on the system with respect to its abstract pro-
gramming interface (API) as well as its abstract binary in-
terface (ABI). Specifically, since the VOCL library presents
the OpenCL API to the user, all OpenCL applications can
use it without any source code modification. At the same
time, VOCL is built on top of the native OpenCL library
available on the system and utilizes the same OpenCL head-
ers on the system. Thus, applications that have been com-
piled with the native OpenCL infrastructure need only to be
relinked with VOCL and do not have to be recompiled. Fur-
thermore, if the native OpenCL library is a shared library
and the application has opted to do dynamic linking of the
library (which is the common usage mode for most libraries
and default linker mode for most compilers), such linking
can be performed at runtime just by preloading the VOCL
library through the environment variable LD_PRELOAD.
The VOCL library is responsible for managing all virtual

GPUs exposed to the application. Thus, if the system has
multiple nodes, each equipped with GPUs, the VOCL li-
brary is responsible for coordinating with the VOCL proxy
processes on all these nodes. Moreover, the library should
be aware of the locally installed physical GPUs and call the
native OpenCL functions on them if they are available.

3.1.1 VOCL Function Operations

When an OpenCL function is called, VOCL performs the
following operations.

• Check whether the physical GPU to which a virtual
GPU is mapped is local or remote.

• If the virtual GPU is mapped to a local physical GPU,
call the native OpenCL function and return.

• If the virtual GPU is mapped to a remote physical
GPU, check whether the communication channels be-
tween applications and proxy processes have been con-
nected. If not, call the MPI_Comm_connect() function
to establish the communication channel.

• Pack the input parameters of the OpenCL functions
into a structure and call MPI_Isend() to send the mes-
sage (referred to as control message) to the VOCL
proxy. Here, a different MPI message tag is used for
each OpenCL function to differentiate them.

• Call MPI_Irecv() to receive output and error informa-
tion from the proxy process, if necessary.

• Call MPI_Wait()when the application requires comple-
tion of pending OpenCL operations (e.g., in blocking
OpenCL calls or flush calls).

3.1.2 VOCL Abstraction

In OpenCL, kernel execution is performed within a host-
defined context, which includes several objects such as de-
vices, program objects, memory objects, command queues,
and kernels. A node can contain multiple devices; there-
fore, objects such as command queues need to be mapped
onto a specific device before computation can be performed.
As such, in environments where a node is equipped with
multiple physical GPUs, to do this mapping, the OpenCL
library includes additional information in each object that

lets it identify which physical GPU the object belongs to.
For example, when OpenCL returns a command queue (i.e.,
cl_command_queue), this object internally has enough in-
formation to distinguish which physical GPU the command
queue resides on.

GPU 0 GPU 1

OpenCL lib

GPU 0 GPU 1

OpenCL lib

OpenCL handle OpenCL handle

VOCL lib

VOCL handle

node 2node 1

Local

node

Figure 3: VOCL abstraction

With VOCL, since the physical GPUs might be located
on multiple physical nodes, the VOCL library needs to co-
ordinate with the native OpenCL library on multiple nodes
(through the VOCL proxy). To this end, we propose another
level of abstraction for the OpenCL object management.
Specifically, we define an equivalent VOCL object for each
OpenCL object as shown in Figure 3. Then for each OpenCL
object, its handle is translated to a VOCL handle with a
unique value even OpenCL handles share the same value.
Together with the native OpenCL handle, the VOCL object
contains additional information to identify which physical
node (and thus, which native OpenCL library instance) an
OpenCL object corresponds to.

When a VOCL handle is used, VOCL will first translate
it to the OpenCL handle. Then it sends the OpenCL han-
dle to the corresponding computing node based on the MPI
communication information contained in the VOCL object.
However, care must be taken when a memory handle is used
as a kernel input. As we know, a kernel argument is set by
calling the function
clSetKernelArg(cl_kernel kernel, cl_uint arg_index,

size_t arg_size, const void *arg_value) and the argu-
ment arg_value should be a pointer to an OpenCL mem-
ory handle. But with the VOCL abstraction, arg_value

is a pointer to a VOCL handle, which is invalid for kernel
execution. Moreover, from the arguments in the function
clSetKernelArg(), it is impossible to figure out whether a
kernel argument is a memory handle or not. To address this
problem, we wrote a parser to parse the kernel source code
and figure out the device memory arguments in the kernel1.
As such, when clSetKernelArg() is called, VOCL can first
translate a VOCL memory handle to an OpenCL memory
handle based on the parser output. Then VOCL uses the
OpenCL memory handle as input to the native OpenCL
function clSetKernelArg(). In this way, kernel arguments
can be set correctly.

3.2 VOCL Proxy
The VOCL proxy is responsible for (1) receiving connec-

tion requests from the VOCL library to establish communi-
cation channels with each application process, (2) receiving
inputs from the VOCL library and executing them on its lo-
cal GPUs, (3) sending output and error codes to the VOCL
1This approach needs the kernel source code to be available.



library, and (4) destroying the communication channels after
the program execution has completed.

3.2.1 Managing Communication Channels

Communication channels between the VOCL library and
VOCL proxy are established and destroyed dynamically. Each
proxy calls MPI_Comm_accept() to wait for connection re-
quests from the VOCL library. When such a request is
received, a channel is established between them, which is
referred to as the control message channel. Once the appli-
cation has completed utilizing the virtual GPU, the VOCL
library sends a termination message to the proxy. Then
MPI_Comm_disconnect() is called by both the VOCL library
and the VOCL proxy to terminate the communication chan-
nel.
In the VOCL framework, each application can utilize GPUs

on multiple remote nodes. Similarly, GPUs on a remote node
can be used by multiple applications simultaneously. In ad-
dition, applications may start their execution at different
times. Thus, the proxy should be able to accept connection
request from application processes at any arbitrary time. To
achieve this, we use an additional thread at the proxy that
continuously waits for new incoming connection requests.
When a connection request is received, this thread updates
the communication channels such that messages sent by the
VOCL library can be handled by the main proxy process,
and the thread waits for the next connection request.

3.2.2 Handling Native OpenCL Function Calls

Once a control message channel is established between
the VOCL proxy and the VOCL library, the proxy preposts
buffers to receive control messages from the VOCL library
(using nonblocking MPI receive operations). Each VOCL
control message is only a few bytes large, so the buffers are
preposted with a fixed maximum buffer size that is large
enough for any control message. When a control message is
received, it contains information on what OpenCL function
needs to be executed as well as information about any addi-
tional input for the OpenCL function call. If any data needs
to be transferred for the function call, the proxy posts ad-
ditional receive buffers to receive this data from the VOCL
library. It is worth noting that the actual data communica-
tion happens on a separate communicator to avoid conflicts
with control messages; this communicator will be referred
to as the data channel.
Specifically, for each control message, the proxy process

performs the followed steps.

• When a control message is received, the corresponding
OpenCL function is determined based on the message
tag. Then the proxy process decodes the received mes-
sage according to the OpenCL function. Depending on
the specific OpenCL function, other messages may be
received in the data channel as inputs for the function
execution.

• Once all of the input data is available, the native OpenCL
function is executed.

• Once the native OpenCL function completes, the proxy
packs the output and sends it back to the VOCL li-
brary.

• If dependencies exist across different functions or if
the current function is a blocking operation, the proxy

waits for the current operation to finish and the re-
sult sent back to the VOCL library before the next
OpenCL function is processed. On the other hand,
if the OpenCL function is nonblocking, the proxy will
send out the return code and continue processing other
functions.

• Another nonblocking receive will be issued to replace
the processed control message to receive additional
control messages.

Since the number of messages received is not known be-
forehand, the proxy process uses an infinite loop waiting to
receive messages. It is terminated by a message with a spe-
cific tag. Once the termination message is received, the loop
is ended.

4. VOCL OPTIMIZATIONS
The VOCL framework enables applications to utilize all

GPUs in the same way to accelerate their execution. How-
ever, we should reduce the virtualization overhead to as lit-
tle as possible, since otherwise, performance improvements
brought by using virtual GPUs would be killed by such over-
head. Since VOCL internally calls native OpenCL functions
for local GPUs, overhead of using local GPUs is expected to
be very little as shown later. Thus in the following, our op-
timization focuses on reducing the overhead of using remote
GPUs.

Compared to local GPUs, function calls on remote GPUs
need one more phase of data transfer between the local node
and the remote node. Specifically, if a function is executed
without reading or writing device memory, data transfer is
performed only between local node and remote node for re-
mote GPUs. On the other hand, if device memory reads
or writes are performed in a function call, we should con-
sider data transfer between local host memory and remote
device memory, which includes two phases – between local
host memory and remote host memory and between remote
host memory and remote GPU memory. In general, over-
head of data transfer depends on the amount of data to be
transferred, network bandwidth, as well as the times of data
transfer.

In a typical OpenCL program, API functions for allo-
cating and releasing OpenCL objects are called only a few
times. Inputs and outputs of these functions are of tens
of bytes. As a result, overhead of these functions is neg-
ligible in practice. But functions related to kernel execu-
tion (GPU memory read/write, kernel argument setting,
and kernel launch) can cause significant overhead for pro-
gram execution in some scenarios. According to the work
of Gregg et al. [14], even when local GPUs are used, data
transfer between host memory and device memory can be
the bottleneck, which can make kernel execution take 2 to
50x longer than the GPU processing alone. With one more
phase of data transfer for the remote GPU utilization, it
is expected that data transfer will cause more overhead to
program execution. Thus, optimizing such data transfer is
of great importance in the remote GPU utilization.

To reduce these overheads, we have implemented three op-
timizations: (1) kernel argument caching to reduce the times
of data transfer; (2) data transfer pipelining to improve the
bandwidth between local host memory and GPU memory;
and (3) modifications to error handling.



4.1 Kernel Argument Caching
When remote GPUs are used, execution of functions with-

out accessing GPU memory needs the data transfer only be-
tween local node and remote node and the amount of data is
of tens of bytes in general. If these functions are called only
a few times (e.g., OpenCL object allocation and release),
the data transfer overhead involved in remote GPU utiliza-
tion can be ignored. But if a function is called thousands of
times, the overhead can be very large. One such function is
the kernel argument set function clSetKernelArg(), which
can be called thousands of times in some applications.

Table 1: Overhead (in ms) of kernel execution for
utilization of remote GPUs

Function Name
Runtime Runtime

Overhead
Local Remote

clSetKernelArg 4.33 420.45 416.12
clEnqueueND-

1210.85 1316.92 106.07
RangeKernel
Total time 1215.18 1737.37 522.19

In Table 1, we compare the kernel execution overhead for
VOCL (using a remote GPU) vs. the native OpenCL li-
brary for aligning 6K base-pair sequences using the Smith-
Waterman application [25, 27] on an NVIDIA Tesla M2070
GPU with the QDR InfiniBand as the network connection
between different nodes. In this example, clSetKernelArg()
has an overhead of 416.12 ms, which is 4x more than the
kernel execution overhead (106.07ms). The reason is that
this function is called more than 86,000 times (the kernel
is called 12,288 times, and 7 parameters have to be set for
each call). Though overhead of each function call is small,
it causes significant overhead in total.
The basic idea of kernel argument caching is to com-

bine the arguments to be transferred for multiple clSetK-

ernelArg() calls. Rather than sending the arguments in
each call of clSetKernelArg() to the proxy, we send kernel
arguments to the remote node only once per kernel launch,
no matter how many arguments are set in the kernel launch.
Since all arguments should be set before the kernel is launched,
we just cache all the arguments locally at the VOCL library.
When the kernel launch function is called, the arguments are
sent to the proxy. The proxy performs two steps on being
notified of the kernel launch: (1) it receives the argument
message and sets the individual kernel arguments, and (2)
it launches the kernel.
Table 2 shows the execution time of Smith-Waterman for

aligning the same 6K base-pair sequences using our kernel
argument caching approach. As we can see in the table, the
execution time of clSetKernelArg() decreases from 420.45
ms (Table 1) to 4.03 ms (Table 2). We notice a slight
speedup compared with native OpenCL; the reason is that,
in VOCL, arguments are cached in host memory and are
not passed to the GPU immediately. We also notice a lit-
tle more time spent on the kernel execution (increase from
1316.92 ms to 1344.01 ms). The reason is that kernel argu-
ment data need to be passed to the proxy and they have to
be set for the kernel execution within this call. On the whole,
the total kernel execution time decreases from 1737.37 ms
to 1348.04 ms, or by (1737.37− 1348.04)/1737.37 = 22.41%
.

Table 2: Overhead (in ms) of kernel execution with
kernel argument caching optimization

Function Name
Native VOCL

Overhead
OpenCL remote

clSetKernelArg 4.33 4.03 -0.30
clEnqueueND-

1210.85 1344.01 133.17
RangeKernel
Total time 1215.18 1348.04 132.71

4.2 Data Transfer Pipelining
Two types of data need to be transferred between the

VOCL library and the VOCL proxy for remote GPU uti-
lization. The first type is the input arguments to OpenCL
functions without GPU memory accesses involved; This type
of data is transferred from the local host memory to the re-
mote host memory. The size of such input arguments is
generally of a few hundred bytes and the transfer cannot
be started in one function until execution of its previous
functions is completed. Their data transfers cause negligi-
ble overhead and pipelining them brings no useful benefits
for program execution.

The second type is the GPU memory accesses, in which
data are transferred from the local host memory to the re-
mote GPU memory. This type of data transfer has two
stages: (1) between the VOCL library and the VOCL proxy
and (2) between the VOCL proxy and the GPU. In a naive
implementation of VOCL, these two stages would be serial-
ized and buffers to store the data are dynamically allocated
and released in the proxy. Such an implementation, though
simple, has two primary problems. First, there is no pipelin-
ing of the data transfer between the two stages. In another
word, for each data chunk, the second stage can be started
only after the first stage is finished. Moreover, transfer of a
data chunk cannot be started until transfers of its previous
data chunks are completed as shown in Figure 4. Second,
since the temporary buffer used for storing data in the proxy
is dynamically allocated and freed, this buffer is not stati-
cally registered with the local GPU device and has to be
registered for each data transfer;2 this causes additional loss
of performance.

In order to optimize the data transfer overhead within
VOCL, we designed a data pipelining mechanism with stat-
ically registered buffer pool for data storage in the proxy.
Specifically, with pipeline, the first stage transfer of one data
chunk can be done concurrently with the second stage trans-
fer of another as shown in Figure 5. As to the buffer pool,
each buffer is of size B bytes and is statically allocated and
maintained in the proxy. As such, it does not encounter
the buffer allocation or buffer registration overheads that we
face in the nonpipelined approach. When the VOCL library
needs to write some user data to the GPU, it segments this
data into blocks of size at most B bytes, and transfers them
to the VOCL proxy as a series of nonblocking sends. The
VOCL proxy, on receiving each block, initiates the transfer
of that data block to the GPU. The read operation is sim-
ilar, but in the opposite direction. Figure 6 illustrates this

2All hardware devices require host memory to be registered,
which includes pinning virtual address pages from swapping
out, as well as caching virtual-to-physical address transla-
tions on the device.



App_send_db1
App_send_db2

Proxy_recv_db1
Proxy_recv_db2

Proxy_wrt_GPU_mem

events

time

: Msg request : Data block : GPU memory operation

(a) Blocking Write to the GPU Memory

App_recv_db1
App_recv_db2

Proxy_send_db1
Proxy_send_db2

Proxy_read_GPU_mem

events

time

(b) Blocking Read from the GPU Memory

Figure 4: Blocking data transmission scenarios

App_send_db1
App_send_db2

Proxy_recv_db1
Proxy_recv_db2

Proxy_wrt_GPU_mem

events

time

: Msg request : Data block

overlapped

: GPU memory operation

(a) Nonblocking Write to the GPU Memory

App_recv_db1
App_recv_db2

Proxy_send_db1
Proxy_send_db2

Proxy_read_GPU_mem

events

time

overlapped

(b) Nonblocking Read from the GPU Memory

Figure 5: Nonblocking data transmission scenarios

buffer pool model utilized in VOCL. In the example shown,
data segments 1 and 2 are smaller than the maximum size
of each buffer in the buffer pool. Thus, they are transmit-
ted as contiguous blocks. Data segment 3, however, is larger
than the maximum size, and hence is segmented into smaller
blocks. Since the number of buffers in the pool is limited, we
reuse buffers in a circular fashion. Note that before we reuse
a buffer, we have to ensure that the previous data transfers
(both from the network transfer as well as the GPU trans-
fer) have completed. The number of buffers available in the
pool dictates how often we need to wait for such completion,
and thus has to be carefully configured.
We also note that, at the VOCL proxy, the tasks of send-

ing/receiving data from the VOCL library, and writing/read-
ing data from the GPU, are performed by two different
threads. This allows each thread to perform data movement
in a dedicated manner without having to switch between the
network communication and GPU communication. This ap-
proach allowed us to further improve the data transfer per-
formance by a few percent.

Data chunk 1

Data chunk 3

Data chunk 3

Data chunk 2

1

3

2

N

Figure 6: Buffer pool on proxy processes

4.3 Error ReturnHandling in NonblockingOp-
erations

Most OpenCL functions provide a return code to the user:
either CL_SUCCESS or an appropriate error code. Such return
values, however, are tricky for VOCL to handle, especially
for nonblocking operations. The OpenCL specification does
not define how error codes are handled for nonblocking op-
erations. That is, if the GPU device is not functional, is a
nonblocking operation that tries to move data to the GPU
expected to return an error?

While the OpenCL specification does not describe the re-
turn value in such cases, current OpenCL implementations
do return an error. For VOCL, however, since every OpenCL
operation translates into a network operation, significant
overhead can occur for nonblocking operations if the VOCL
library has to wait until the OpenCL request is transferred
over the network, a local GPU operation is initiated by the
VOCL proxy, and the return code sent back.

We believe this is an oversight in the OpenCL specifica-
tion, since all other specifications or user documents that
we are aware of (including MPI, CUDA, and InfiniBand) do
not require nonblocking operations to return such errors—
the corresponding wait-for-completion operation can return
these errors at a later time. In our implementation, there-
fore, we assume this behavior and return such errors during
the corresponding wait operation.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the efficiency of the proposed

VOCL framework. First, we analyze the overhead of indi-
vidual OpenCL operations with VOCL and the bandwidth
increase brought by the data transfer pipelining. Then, we
quantitatively evaluate the VOCL framework with several
application kernels: SGEMM/DGEMM, matrix transpose,
n-body [22], and Smith-Waterman [25, 27].

The compute nodes used for our experiments are con-
nected with QDR InfiniBand. Each node is installed with
two Magny-cours AMD CPUs with host memory of 64 GB
and two NVIDIA Tesla M2070 GPUs each with 6 GB global
memory. The two GPU cards are installed on two different
PCIe slots, one of which shares the PCIe bandwidth with the
InfiniBand adapter as shown in Figure 7. The computing
nodes are installed with the Centos Linux operating system
and the CUDA 3.2 toolkit. We use the MVAPICH2 [20] MPI
implementation. Each of our experiments was conducted
three times and the average is reported.

5.1 Microbenchmark Evaluation
In this section, we study the overhead of various individual

OpenCL operations using the SHOC benchmark suite [8]
and a benchmark suite developed within our group.



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

512K 1024K 2048K 4096K 8192K 16384K 32768K
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

D
a

ta
 t

ra
n

s
fe

r 
ra

te
 (

G
B

/s
)

P
e

rc
e

n
ta

g
e

 o
f 

b
a

n
d

w
id

th
 d

e
c
re

a
s
e

Data chunk size

Native OpenCL
VOCL (local)

VOCL (remote, pipeline)
Percentage of bandwidth decrease, pipeline

VOCL (remote, no-pipeline)
Percentage of bandwidth decrease, no-pipeline

(a) Bandwidth from Host Memory to Device Memory (Lo-
cal transfer is from CPU1 to GPU1 and remote transfer
is from CPU3 to GPU1.)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

512K 1024K 2048K 4096K 8192K 16384K 32768K
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

D
a

ta
 t

ra
n

s
fe

r 
ra

te
 (

G
B

/s
)

P
e

rc
e

n
ta

g
e

 o
f 

b
a

n
d

w
id

th
 d

e
c
re

a
s
e

Data chunk size

Native OpenCL
VOCL (local)

VOCL (remote, pipeline)
Percentage of bandwidth decrease, pipeline

VOCL (remote, no-pipeline)
Percentage of bandwidth decrease, no-pipeline

(b) Bandwidth from Device Memory to Host Memory (Lo-
cal transfer is from GPU1 to CPU1 and remote is from
GPU1 to CPU3.)

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

512K 1024K 2048K 4096K 8192K 16384K 32768K
0 %

10 %

20 %

30 %

40 %

50 %

60 %

D
a

ta
 t

ra
n

s
fe

r 
ra

te
 (

G
B

/s
)

P
e

rc
e

n
ta

g
e

 o
f 

b
a

n
d

w
id

th
 d

e
c
re

a
s
e

Data chunk size

Native OpenCL
VOCL (local)

VOCL (remote, pipeline)
Percentage of bandwidth decrease, pipeline

VOCL (remote, no-pipeline)
Percentage of bandwidth decrease, no-pipeline

(c) Bandwidth from Host Memory to Device Memory (Lo-
cal transfer from CPU1 to GPU0 and remote transfer is
from CPU3 to GPU0.)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

512K 1024K 2048K 4096K 8192K 16384K 32768K
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

D
a

ta
 t

ra
n

s
fe

r 
ra

te
 (

G
B

/s
)

P
e

rc
e

n
ta

g
e

 o
f 

b
a

n
d

w
id

th
 d

e
c
re

a
s
e

Data chunk size

Native OpenCL
VOCL (local)

VOCL (remote, pipeline)
Percentage of bandwidth decrease, pipeline

VOCL (remote, no-pipeline)
Percentage of bandwidth decrease, no-pipeline

(d) Bandwidth from Device Memory to Host Memory (Lo-
cal transfer is from GPU0 to CPU1 and remote transfer
is from GPU0 to CPU3.)

Figure 8: Bandwidth between host memory and device memory for nonblocking data transfer

GPU0 GPU1 InfiniBand

CPU0 CPU1

PCIe PCIe

proxy

Remote node

GPU2 GPU3 InfiniBand

CPU2 CPU3

PCIe PCIe

program

Local node

Figure 7: GPU configuration and the scenario for
the bandwidth test

5.1.1 Initialization/Finalization Overheads

In this section, we study the performance of initializing
and finalizing OpenCL objects within the VOCL framework.
Overhead of these functions are mainly caused by the trans-
fer of function parameters as described in Section 4.2. These
functions and their overhead are listed in Table 3. As we
can notice in the table, for most functions, the overhead
caused by VOCL is minimal. The one exception to this is
the clGetPlatformIDs() function which has the overhead of
402.68 ms. The reason for this overhead is that clGetPlat-
formIDs() is typically the first OpenCL function executed
by the application in order to query the platform. There-
fore, the VOCL framework performs most of its initialization
during this function, including setting up the MPI commu-
nication channels as described in Section 3.
The total overhead caused by all the initialization and

finalization functions together is a few hundred milliseconds.
However, this overhead is a one-time overhead unrelated to
the total program execution time. Thus, in practice, for any
program that executes for a reasonably long time (e.g., a
few tens of seconds), these overheads play little role in the
noticeable performance of VOCL.

Table 3: Overhead of OpenCL API Functions for
Resource Initialization/Release (Unit: ms)

Function Name
Native VOCL

Overhead
OpenCL (remote)

clGetPlatformIDs 50.84 453.52 402.68
clGetDeviceIDs 0.002 0.173 0.171
clCreateContext 253.28 254.11 0.83
clCreateCommandQueue 0.018 0.044 0.026
clCreateProgrami-

0.009 0.042 0.033
WithSource
clBuildProgram 488.82 480.90 -7.92
clCreateBuffer 0.025 0.051 0.026
clCreateKernel 0.019 0.030 0.011
clReleaseKernel 0.003 0.012 0.009
clReleaseMemObj 0.004 0.011 0.007
clReleaseProgram 0.375 0.291 -0.084
clReleaseCmdQueue 0.051 0.059 0.008
clReleaseContext 177.47 178.43 0.96

5.1.2 Performance of Kernel Execution on the GPU

Kernel execution on the GPU would be the same no mat-
ter which host processor launches the kernel. Thus, utilizing
remote GPUs via VOCL should not affect the kernel execu-
tion on the GPU card. By evaluating VOCL with the SHOC
microbenchmark [8], we verified that the maximum flops, on-
chip memory bandwidth, and off-chip memory bandwidth
are the same as native OpenCL. These results are not pro-
vided here because they show no useful difference in perfor-
mance.



5.1.3 Data Transfer between Local Host Memory and
GPU Memory

In this section, we measure the data transfer bandwidth
increase brought by our pipelining mechanism and the band-
width achieved for GPU write and read operations using
VOCL. The experiment is performed with different message
sizes. For each message size, a window of 32 messages is is-
sued in a nonblocking manner, followed by a flush operation
to wait for their completion. The bandwidth is calculated
as the amount of data transferred per second. A few initial
“warm up” iterations are skipped from the timing loop.

Figure 8 shows the performance of native OpenCL, VOCL
when using a local GPU (legend “VOCL (local)”), VOCL
with the pipelining mechanism when using a remote GPU
(legend “VOCL (remote, pipeline)”), and VOCL without
pipelining for remote GPUs (legend “VOCL (remote, no-
pipeline)”). Native OpenCL uses only the local GPU. Two
scenarios are shown—bandwidth between CPU3 and GPU0
(Figures 8(c) and 8(d)) and between CPU3 and GPU1 (Fig-
ures 8(a) and 8(b)); see Figure 7. In our experiments, the
VOCL proxy is bound to CPU1. For native OpenCL, the
application process is bound to CPU1.
As shown in the figures, when remote GPUs are used, the

pipelining mechanism significantly increases the data trans-
fer bandwidth for all message sizes. Compared to the band-
width without pipelining, data transfer bandwidth is almost
doubled. This is important for GPU computing since data
transfer between host memory and device memory can cause
large overhead in some applications [14].
Compare the bandwidth in the above various scenarios,

VOCL-local has no degradation in performance as compared
to native OpenCL, as expected. VOCL-remote, however,
has some degradation in performance because of the addi-
tional overhead of transmitting data over the network. As
the message size increases, the bandwidth increases for na-
tive OpenCL as well as VOCL (both local and remote). But
VOCL-remote saturates at a bandwidth of around 10-25%
lesser than that of native OpenCL if the pipelining mech-
anism is used. Comparing the bandwidth between GPU0
and GPU1, we notice that the absolute bandwidth of native
OpenCL as well as VOCL (local and remote) is lesser when
using GPU0 as compared to GPU1. The reason for this
behavior is that data transfer between CPU1 and GPU0 re-
quires additional hops compared to transfer between CPU1
and GPU1, causing some drop in performance. This lower
absolute performance also results in lesser difference between
VOCL-remote (with data transfer pipelining) and native
OpenCL (10% performance difference, as compared to the
25% difference when transmitting from CPU1 to GPU1).
The results for reading data from the GPU are similar.
We also note that the shared PCIe between the network

adapter and GPU1 does not degrade performance because
for most communication the direction of data transfer to/from
the network and to/from the GPU does not conflict. Specif-
ically, when the application is writing data to the GPU,
the proxy needs to read the data from the network and
write it to the GPU. Similarly, when the application is read-
ing data from the GPU, the proxy needs to read the data
from the GPU and write it to the network. Since PCIe is
a bidirectional interconnect, data transfers in opposite di-
rections do not share the bandwidth. This allows transfers
to/from GPU1 to achieve a higher bandwidth as compared
with GPU0. Consequently, the performance difference for

VOCL is higher for GPU1 than for GPU0.
For the remaining results, we use GPU1 with data transfer

pipelined because of the higher absolute performance it can
achieve.

5.2 Evaluation with Application Kernels
In this section, we evaluate the efficiency of the VOCL

framework using four application kernels: SGEMM/DGEMM,
n-body, matrix transpose and Smith-Waterman. Table 4
shows the computation and memory access complexities for
these four kernels. The first two kernels, SGEMM/DGEMM
and n-body, can be classified as compute-intensive based on
their computational requirements, while the other two re-
quire more data movement.

Table 4: Computation and the amount of mem-
ory transferred between host memory and device
memory of the four applications. The value n cor-
responds to matrix dimensions in matrix multipli-
cation and transpose, the number of bodies in n-
body, and the length of the input sequence in Smith-
Waterman. “Memory size” also corresponds to the
amount of data transferred between host and device
memories for kernel execution.

Application Kernels Computation Memory Size

SGEMM/DGEMM O
(

n3
)

O
(

n2
)

N-body O
(

n2
)

O (n)

Matrix transpose O
(

n2
)

O
(

n2
)

Smith-Waterman O
(

n2
)

O
(

n2
)

The difference in computational intensity of these four
kernels is further illustrated in Figure 9, where the percent-
age of time spent on computation for each of these ker-
nels is shown. As we can see in the figure, the n-body
kernel spends almost 100% of its time computing. SGEM-
M/DGEMM spend a large fraction of time computing, and
this fraction increases with increasing problem size. Matrix
transpose spends a very small fraction of time computing.
While Smith-waterman spends a reasonable amount of time
computing (70-80%), most of the computational kernels it
launches are very small kernels which, as we will discuss
later, are harder to optimize because of the large number of
small message transfers they trigger.

0 %

20 %

40 %

60 %

80 %

100 %

120 %

1 2 3 4 5 6

P
e

rc
e

n
ta

g
e

 o
f 

k
e

rn
e

l 
e

x
e

c
u

ti
o

n
 t

im
e

Different problem size

n-body
SGEMM

Smith-Waterman
Matrix transpose

Figure 9: Percentage of the kernel execution time
in the single precision case

Next we evaluate the overhead of program execution time
with different problem sizes. Recall that the program execu-
tion time in this experiment includes the data transfer time,
kernel argument setting, and kernel execution. We ran both



10
0

10
1

10
2

10
3

10
4

1K X 1K 2K X 2K 3K X 3K 4K X 4K 5K X 5K 6K X 6K
0 %

0.5 %

1 %

1.5 %

2 %

2.5 %

3 %

3.5 %

4 %

4.5 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

P
e

rc
e

n
ta

g
e

 o
f 

s
lo

w
d

o
w

n

Matrix size

Native OpenCL
VOCL (local)

VOCL (remote)
Percentage of slowdown

(a) SGEMM

 0

 2

 4

 6

 8

 10

15360 23040 30720 38400 46080 53760
0 %

0.01 %

0.02 %

0.03 %

0.04 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

P
e

rc
e

n
ta

g
e

 o
f 

s
lo

w
d

o
w

n

Number of bodies

Native OpenCL
VOCL (local)

VOCL (remote)
Percentage of slowdown

(b) N-body

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1K 2K 3K 4K 5K 6K
0 %

20 %

40 %

60 %

80 %

100 %

120 %

140 %

160 %

180 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

P
e

rc
e

n
ta

g
e

 o
f 

s
lo

w
d

o
w

n

Sequence size

Native OpenCL
VOCL (local)

VOCL (remote)
Percentage of slowdown

(c) Smith-Waterman

 0

 50

 100

 150

 200

 250

 300

 350

1K X 1K 2K X 2K 3K X 3K 4K X 4K 5K X 5K 6K X 6K
0 %

10 %

20 %

30 %

40 %

50 %

60 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

P
e

rc
e

n
ta

g
e

 o
f 

s
lo

w
d

o
w

n

Matrix size

Native OpenCL
VOCL (local)

VOCL (remote)
Percentage of slowdown

(d) Matrix Transpose

Figure 10: Overhead in total execution time for single-precision computations

the single-precision and double-precision implementations of
all application kernels, except Smith-Waterman since se-
quence alignment scores are usually stored as integers or
single-precision floats in practice. We ran multiple problem
instances in a nonblocking manner to pipeline data transfer
and kernel execution. After we issue all nonblocking function
calls, the OpenCL function clFinish() is called to ensure
that all computation and data transfer has completed before
measuring the overall execution time.
Figure 10 shows the performance and the overhead of

the application kernels for single precision computations.
We notice that the performance of native OpenCL is al-
most identical to that of VOCL-local; this is expected as
VOCL does very little additional processing (e.g., transla-
tion between OpenCL and VOCL handles) in this case. For
VOCL-remote, however, the performance depends on the
application. For compute-intensive algorithms, the overhead
of VOCL is very small; 1-4% for SGEMM and nearly zero
for n-body. This is because for these applications the total
execution time is dominated by the kernel execution. For
SGEMM, we further notice that the overhead decreases with
increasing problem size. This is because the computation
time for SGEMM increases as O(N3) while the amount of
data that needs to be transferred only increases as O(N2);
thus, the computation time accounts for a larger percent-
age of the overall execution time for larger problem sizes as
shown in Figure 9.
For algorithms that need more data movement, the over-

head of VOCL is higher. For matrix transpose, for example,
this is between 20-55%, which is expected because it spends
a large fraction of its execution time in data transfer (based
on Figure 9, matrix transpose spends only 7% of its time
computing). With VOCL-remote, this data has to be trans-
mitted over the network causing significant overhead. For
Smith-Waterman, the overhead is much higher and closer to
150%. This is because of two reasons. First, since the VOCL

proxy is a multi-threaded process, the MPI implementation
has to be initialized to support multiple threads. It is well
known in the MPI literature that multi-threaded MPI im-
plementations can add significant overhead in performance,
especially for small messages [3, 4, 9, 13]. Second, Smith-
Waterman relies on a large number of kernel launches for a
given amount of data [27]. For a 1K sequence alignment,
for example, more than 2000 kernels are launched causing
a large number of small messages to be issued, which, as
mentioned above, cause a lot of performance overhead. We
verified this by artificially initializing the MPI library in
single-threaded mode and noticed that the overhead with
VOCL comes down to around 35% by doing so.3

Figure 11 shows the performance and the overhead of the
application kernels for double precision computations. The
observed trends for double precision are nearly identical to
the single-precision cases. This is because the amount of
data transferred for double precision computations is dou-
ble that of the single precision computations; and on the
NVIDIA Tesla M2070 GPUs, the double precision compu-
tations are about twice as slow as the single precision com-
putations. Thus, both the computation time and the data
transfer time double and result in no relative difference.
On other architectures, such as the older NVIDIA adapters
where the double precision computations were much slower
than the single precision computations, we expect this bal-
ance to change and the relative overhead of VOCL to reduce
since time percentage of kernel execution will be higher than
that on the Tesla M2070.

3Note that, in this case, the VOCL proxy can accept only
one connection request each time it is started. After an ap-
plication finishes its execution and disconnects the commu-
nication channel, we would need to restart the proxy process
for the next run; a process that is unusable in practice. We
only tried this approach to understand the overhead of using
a multi-threaded vs. single-threaded MPI implementations.



10
0

10
1

10
2

10
3

10
4

1K X 1K 2K X 2K 3K X 3K 4K X 4K 5K X 5K 6K X 6K
0 %

1 %

2 %

3 %

4 %

5 %

6 %

7 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

P
e

rc
e

n
ta

g
e

 o
f 

s
lo

w
d

o
w

n

Matrix size

Native OpenCL
VOCL (local)

VOCL (remote)
Percentage of slowdown

(a) DGEMM

 0

 5

 10

 15

 20

 25

15360 23040 30720 38400 46080 53760
0 %

0.04 %

0.08 %

0.12 %

0.16 %

0.2 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

P
e

rc
e

n
ta

g
e

 o
f 

s
lo

w
d

o
w

n

Number of bodies

Native OpenCL
VOCL (local)

VOCL (remote)
Percentage of slowdown

(b) N-body

 0

 100

 200

 300

 400

 500

 600

 700

1K X 1K 2K X 2K 3K X 3K 4K X 4K 5K X 5K 6K X 6K
0 %

10 %

20 %

30 %

40 %

50 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

P
e

rc
e

n
ta

g
e

 o
f 

s
lo

w
d

o
w

n

Matrix size

Native OpenCL
VOCL (local)

VOCL (remote)
Percentage of slowdown

(c) Matrix Transpose

Figure 11: Overhead in total execution time for double-precision computations

5.3 Multiple Virtual GPUs
OpenCL allows applications to query for the available

GPUs and distribute their problem instances on them. Thus,
with native OpenCL, an application can query for all the lo-
cal GPUs and utilize them. With VOCL, on the other hand,
the application would have access to all the GPUs in the en-
tire system; thus, when the application executes the resource
query function, it looks like it has a very large number of
GPUs.
In this section, we perform experiments with a setup that

has 16 compute nodes, each with 2 local GPUs; thus, with
VOCL, it would appear to the applications that they have
32 local (virtual) GPUs. In this environment, the applica-
tion can distribute its work on 32 GPUs instead of the 2
GPUs that it would use with the native OpenCL. Figure 12
shows the total speedup achieved with 1, 2, 4, 8, 16, and
32 virtual GPUs utilized. Same as the overhead evaluation
in Section 5.2, we assign multiple problem instances to each
GPU in the nonblocking way, then call the function clFin-

ish() to wait for their completion. With one and two GPUs,
only local GPUs are used. In other cases, two of the GPUs
are local, and the remaining GPUs are remote.

 0.5

 1

 2

 4

 8

 16

 32

1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs 32 GPUs

O
v
e

ra
ll 

s
p

e
e

d
u

p

n-body
SGEMM

Matrix transpose
Smith-Waterman

Figure 12: Performance improvement with multiple
virtual GPUs utilized (single precision)

As shown in the figure, for compute-intensive applications
such as SGEMM and n-body, significant speedup is achieved.
For instance, with 32 GPUs, the n-body achieves a speedup
of about 31-fold. For SGEMM, it is about 11.5-fold, which
is due to the serialization of the data transfer over a single
network link. For data-intensive applications such as matrix
transpose and Smith-Waterman, on the other hand, almost
no performance improvement is observed; in fact, the perfor-
mance becomes worse in some cases. For the matrix trans-
pose, the reason for this behavior is that it spends most of
the execution time on data transfer between the host mem-
ory and the device memory. Since all data transfers share the
same network link, program execution still needs about the
same time as with that using a single GPU. As to the Smith-

Waterman, as shown in the previous section, data transfer
associated with remote GPUs causes large overhead to its
execution. With large portion of the computation performed
on remote GPUs, the overall performance can be worse than
the single GPU case.

 0.5

 1

 2

 4

 8

 16

 32

1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs 32 GPUs

O
v
e

ra
ll 

s
p

e
e

d
u

p

n-body
SGEMM

Matrix transpose

Figure 13: Performance improvement with multiple
virtual GPUs utilized (double precision)

Figure 13 illustrates a similar experiment, but for double-
precision computations. Again, we notice similar trends as
single precision computations because there is no relative
difference in data transfer time and computation time be-
tween the single-precision and double-precision applications,
as explained above.

6. RELATEDWORK
Several researchers have studied GPU virtualization and

data transfer between computing nodes and GPUs.
Lawlor et al. proposed the cudaMPI library, which pro-

vides an MPI-like message-passing interface for data commu-
nication across different GPUs [16]. They compared the per-
formance of different approaches for inter-GPU data com-
munication and suggested various data transfer strategies.
Their work is complementary to VOCL and can be adopted
in our framework for efficient data transfer.

Athalye et al. designed and implemented a preliminary
version of GPU-Aware MPI (GAMPI) for CUDA-enabled
device-based clusters [2]. It is a C library with an interface
similar to MPI, allowing application developers to visualize
an MPI-style consistent view of all GPUs within a system.
With such API functions, all GPUs, local or remote, in a
cluster can be used in the same way. This work provides
a general approach for using both local and remote GPUs.
However, their solution requires invoking GPUs in a way
different from the CUDA or OpenCL programming models,
and thus is nontransparent. In comparison, our framework
supports both local and remote GPUs without any source
code modification.

Duato et al. [10, 11, 12] presented a GPU virtualization



middleware that makes remote CUDA-compatible GPUs avail-
able to all compute nodes in a cluster. They implemented
the software on top of TCP sockets to ensure portability over
commodity networks. Similar to the work by Athalye et al.,
API functions have to be called explicitly for data transfer
between the local node and the remote node. Thus, addi-
tional efforts are needed to modify the GPU programs to use
their virtualization middleware. Further, this work requires
all CUDA kernels to be separated into a different file, so this
file can be shipped to the remote node and executed. This
is a fundamental limitation of trying to utilize remote GPUs
with the CUDA programming model, because of its depen-
dency on a compiler. With OpenCL, on the other hand, the
compilation of the computational kernel is embedded into
the runtime library thus allowing such virtualization to be
done transparently.
Shi et al. [24] proposed a framework that allows high per-

formance computing applications in virtual machines to ben-
efit from GPU acceleration, where a prototype system was
developed on top of KVM and CUDA. This work consid-
ers OS-level virtualization of GPUs installed locally, and
the overhead comes from the usage of virtual machines.
Therefore, GPUs that can be used in vCUDA are restricted
by local GPUs. In contrast, our VOCL framework pro-
vides the transparent utilization of both local and remote
GPUs. Overhead in VOCL applies only to remote GPUs,
which comes from data transfer between the local and re-
mote nodes.
Barak et al. [6] provided a framework to transparently use

cluster-based GPUs based on the MOSIX [5]. This frame-
work implements the same functionality as VOCL. However,
VOCL is distinct in the following aspects: 1) In MOSIX, an
API proxy is used by each application on the local node
for resource management to use all GPUs. As such, signif-
icant overhead is caused, even for local GPUs. In contrast,
VOCL does not need such an API proxy and it calls the na-
tive OpenCL functions directly for local GPUs. As a result,
the same performance as the native OpenCL library can be
achieved on local GPUs. 2) The MOSIX framework does not
consider the overhead of data transfer between host memory
and device memory. However, data transfer can slow down
the program execution on local GPUs by 2 to 50x in some
applications [14]. For remote GPUs, it is expected that this
overhead becomes even more and application performance
can be further impacted. If the data transfer is not opti-
mized, it is possible performance improvements brought by
the GPU will be killed. To this end, our VOCL framework
optimizes the data transfer between host memory and device
memory and it can achieve 80% - 90% of the data transfer
bandwidth of the native OpenCL. 3) The VOCL framework
is designed to be a true virtualization framework, rather
than simple wrappers to execute regular OpenCL functions.
One aspect of these functionalities is its ability to perform
live migration of “virtual GPUs” between different physical
GPUs in a cluster.
In summary, the proposed VOCL framework provides a

unique and interesting enhancement to the state-of-art in
GPU virtualization.

7. CONCLUDING REMARKS
GPUs have been widely adopted to accelerate general-

purpose applications. However, the current programming
models, such as CUDA and OpenCL, can support usage of

GPUs only on local computing nodes. In this work, we pro-
posed an optimized environment to support the transparent
virtualization of GPUs, which in turn allows applications to
use local and remote GPUs as if they were installed locally.
In this environment, we proposed several mechanisms to re-
duce the overhead for virtualization. Also, we studied the
overhead of the VOCL framework using various microbench-
marks as well as four application kernels with various com-
pute and memory access intensities.

8. ACKNOWLEDGEMENTS
This work is supported in part by the U.S. Department

of Energy under Contract DE-AC02-06CH11357, NSF CNS-
CSR grant 0916719, the National Natural Science Founda-
tion of China (Grant No. Y046021001, 60903116), and the
Shenzhen Science and Technology Foundation (Grant No.
ZYC201006130310A, JC200903170443A).

9. REFERENCES

[1] AMD/ATI. Stream Computing User Guide. April
2009. http://developer.amd.com/gpu_assets/
Stream_Computing_User_Guide.pdf.

[2] A. Athalye, N. Baliga, P. Bhandarkar, and
V. Venkataraman. GAMPI is GPU Aware MPI - A
CUDA Based Approach, May 2010. http:
//www.cs.utexas.edu/~pranavb/html/index.html.

[3] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and
R. Thakur. Toward Efficient Support for
Multithreaded MPI Communication. In Proc. of the
15th EuroPVM/MPI, September 2008.

[4] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and
R. Thakur. Fine-Grained Multithreading Support for
Hybrid Threaded MPI Programming. International
Journal of High Performance Computing Applications
(IJHPCA), 24(1):49–57, 2009.

[5] A. Barak and A. Shiloh. The MOSIX Cluster
Operating System for High-Performance Computing
on Linux Clusters, Multi-Clusters, GPU Clusters and
Clouds, 2011. A white paper.

[6] A. Barak and A. Shiloh. The MOSIX Virtual OpenCL
(VCL) Cluster Platform. In Proc. Intel European
Research and Innovation Conference, October 2011.

[7] T. Chen, R. Raghavan, J. Dale, and E. Iwata. Cell
Broadband Engine Architecture and Its First
Implementation – A Performance View. IBM
developerWorks, Nov 2005.

[8] A. Danaliszy, G. Mariny, C. McCurdyy, J. S.
Meredithy, P. C. Rothy, K. Spaffordy, V. Tipparajuy,
and J. S. Vetter. The Scalable HeterOgeneous
Computing (SHOC) Benchmark Suite, March 2010.
http://ft.ornl.gov/doku/shoc/start.

[9] G. Dozsa, S. Kumar, P. Balaji, D. Buntinas,
D. Goodell, W. Gropp, J. Ratterman, and R. Thakur.
Enabling Concurrent Multithreaded MPI
Communication on Multicore Petascale Systems. In
Proc. of the 15th EuroMPI, September 2010.

[10] J. Duato, F. D. Igual, R. Mayo, A. J. Pena, E. S.
Quintana-Orti, and F. Silla. An Efficient
Implementation of GPU Virtualization in High
Performance Clusters. In Lecture Notes in Computer
Science, volume 6043, pages 385–394, 2010.



[11] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S.
Quintana-Orti. rCUDA: Reducing the Number of
GPU-Based Accelerators in High Performance
Clusters. In Proc. of International Conference on High
Performance Computing and Simulation (HPCS),
pages 224–231, June 2010.

[12] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S.
Quintana-Orti. Performance of CUDA Virtualized
Remote GPUs in High Performance Clusters. In Proc.
of International Conference on Parallel Processing
(ICPP), September 2011.

[13] D. Goodell, P. Balaji, D. Buntinas, G. Dozsa,
W. Gropp, S. Kumar, B. R. de Supinski, and
R. Thakur. Minimizing MPI Resource Contention in
Multithreaded Multicore Environments. In Proc. of
the IEEE International Conference on Cluster
Computing, September 2010.

[14] C. Gregg and K. Hazelwood. Where is the Data? Why
You Cannot Debate CPU vs. GPU Performance
Without the Answer. In Proc. of the IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), April 2011.

[15] Khronos OpenCL Working Group. The OpenCL
Specification. June 2011. http://www.khronos.org/
registry/cl/specs/opencl-1.1.pdf.

[16] O. S. Lawlor. Message Passing for GPGPU Clusters:
cudaMPI. In IEEE Cluster PPAC Workshop, August
2009.

[17] S. A. Manavski and G. Valle. CUDA Compatible GPU
Cards as Efficient Hardware Accelerators for
Smith-Waterman Sequence Alignment. BMC
Bioinformatics, March 2008.

[18] Message Passing Interface Forum. The Message
Passing Interface (MPI) Standard.
http://www.mcs.anl.gov/research/projects/mpi.

[19] Y. Munekawa, F. Ino, and K. Hagihara. Design and
Implementation of the Smith-Waterman Algorithm on
the CUDA-Compatible GPU. In Proc. of the 8th IEEE
International Conference on BioInformatics and
BioEngineering, pages 1–6, October 2008.

[20] Network-Based Computing Laboratory. MVAPICH2
(MPI-2 over OpenFabrics-IB, OpenFabrics-iWARP,
PSM, uDAPL and TCP/IP). http:
//mvapich.cse.ohio-state.edu/overview/mvapich2.

[21] NVIDIA. NVIDIA CUDA Programming Guide-3.2,
November 2010. http://developer.download.
nvidia.com/compute/cuda/3_2_prod/toolkit/docs/

CUDA_C_Programming_Guide.pdf.

[22] L. Nyland, M. Harris, and J. Prins. Fast N-Body
Simulation with CUDA. GPU Gems, 3:677–695, 2007.

[23] C. I. Rodrigues, D. J. Hardy, J. E. Stone, K. Schulten,
and W. W. Hwu. GPU Acceleration of Cutoff Pair
Potentials for Molecular Modeling Applications. In
Proc. of the Conference on Computing Frontiers,
pages 273–282, May 2008.

[24] L. Shi, H. Chen, and J. Sun. vCUDA: GPU
Accelerated High Performance Computing in Virtual
Machines. IEEE Transactions on Computers, 99, 2011.

[25] T. Smith and M. Waterman. Identification of
Common Molecular Subsequences. Journal of
Molecular Biology, 147(1):195–197, 1981.

[26] G. M. Striemer and A. Akoglu. Sequence Alignment
with GPU: Performance and Design Challenges. In
Proc. of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May
2009.

[27] S. Xiao, A. Aji, and W. Feng. On the Robust Mapping
of Dynamic Programming onto a Graphics Processing
Unit. In Proc. of the International Conference of
Parallel and Distributed System, December 2009.


