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Abstract. An important aspect of support for multithreaded MPI ex-
ecutions is the management of communication context identifiers (IDs),
which are used to associate MPI communication operations with a com-
municator. New communicator creation functionality in MPI 3.0 adds
complexity to this core resource management problem. We present an
efficient algorithm for multithreaded context ID allocation that builds on
an existing production algorithm developed to support MPI 2.2. Through
this work, we have discovered a subtle concurrency bug in the existing
algorithm that can result in deadlock. We correct this bug and develop
methods to overcome the performance impact of deadlock prevention.
We evaluate the performance of the new algorithm and prove that it is
free from deadlock.

1 Introduction

Hybrid parallel programming that combines MPI with a shared-memory pro-
gramming model, such as threads or OpenMP, has become a popular paradigm
for constructing scalable and efficient high-performance applications. In this
model, MPI is used for internode coordination and data movement, while
hardware-supported shared memory is leveraged to achieve efficient intranode
execution. The adoption of such hybrid programming techniques has been driven
by sustained increases in the number of cores and hardware threads provided
per processor. This trend indicates not only that MPI must interoperate well
with a variety of shared-memory programming models but also that MPI must
efficiently manage increasing levels of concurrency within the MPI library [6].

The MPI 2.2 standard [7] defined the interaction of MPI with threads, and
significant effort was invested to extend MPI implementations to support this
new hybrid execution model [5,8,9]. An important component of this effort
was the development of multithreaded context identifier (ID) allocation algo-
rithms [5]. MPI uses context IDs internally to match communication operations
with communicators; a new context ID must be generated each time MPI con-
structs a new communicator.
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The MPI 3.0 specification that is nearing completion contains new func-
tionality that will require modification to how an MPI implementation allocates
context IDs. Among these changes is a new, noncollective communicator creation
routine that supports multiple concurrent invocations that are differentiated by
using a tag argument [3]. Traditional communicator creation routines are collec-
tive over all processes in a parent communicator; in contrast, this new routine
is collective over only the group of processes that will be members of the new
communicator. The functionality of this routine is expected to address several
key application needs. For example, when a node failure occurs, processes must
create a new communicator to re-establish collective communication; however,
traditional communicator creation would require participation from failed pro-
cesses. This routine also enables the use of load balancing techniques that asyn-
chronously reassign idle processes to heavily loaded execution teams [2]. More-
over, this routine can significantly reduce the cost of communicator creation by
including only processes that will be members of the new communicator.

We have extended the MPICH2 [1] multithreaded context ID allocation rou-
tine to support this new functionality. Through this work, we discovered a bug
in the production algorithm that can result in deadlock. We correct this bug
and discuss techniques to eliminate the performance impact of deadlock preven-
tion. We prove that the new algorithm meets all constraints and is free from
deadlock. We compare the performance of native noncollective communicator
creation with the user-level algorithm [3] and demonstrate that the native imple-
mentation provides a significant speedup by eliminating O(log n) communicator
creation operations. Furthermore, we show that noncollective communicator cre-
ation can provide a several-fold speedup over collective communicator creation
when the output group is smaller than the parent communicator.

This paper is organized as follows. In Section 2 we discuss the interaction
of MPI with threads and the new, noncollective communicator creation routine
that will be added in MPI-3. Section 3 presents the enhanced multithreaded
context ID allocation algorithm, which prevents the deadlock condition that
was possible in the existing algorithm. In Section 4 we prove correctness and
deadlock freedom for this new routine. An optimization to eliminate deadlock
prevention overheads is presented in Section 5. We evaluate the performance of
our implementation in Section 6 and summarize our conclusions in Section 8.

2 Multithreading and MPI

The MPI 2.0 standard defined MPI’s interaction with threads; several lev-
els of multithreading are supported depending on the needs of the applica-
tion. In this work, we consider the case where MPI is initialized to support
MPI THREAD MULTIPLE because other, more restrictive threading levels don’t
subject the MPI implementation to a level of concurrency that necessitates these
techniques.

Of particular importance to this work is the interaction of MPI collectives
with threads. The MPI standard states that a program may perform only one



collective operation per communicator at a time. If the application uses threads,
the programmer must ensure that threads do not perform multiple collectives
concurrently on the same communicator. However, multiple collectives can be
issued concurrently on different communicators. In the MPI-2 standard, commu-
nicator construction is a collective operation that is performed on a parent com-
municator. Thus, when threads are in use, multiple communicator construction
operations can be issued concurrently if the parent communicators are different.

A new routine, MPI Comm create group, which was proposed by the authors,
is anticipated in MPI 3.0. The input to this routine is a parent communicator,
a group of processes (represented by an MPI Group object) that will be members
of the new communicator, and a tag argument. All processes in the input group
must call this routine with the same arguments. A new communicator containing
the processes in this group is returned as output; if a process is not a member
of the group, MPI COMM NULL is returned. In contrast with other collective
operations, this routine can be invoked concurrently by multiple threads on the
same parent communicator. In such a case, each call must use a distinct tag
argument, which is used to distinguish operations. Communication generated by
this routine is defined not to interfere with other point-to-point communication
on the parent communicator, even if the same tag (or MPI ANY TAG) is already
in use.

3 Multithreaded Context ID Allocation Algorithm

Communicators are internally identified by an integer context ID in most MPI
runtime systems. The context ID value uniquely identifies a given communicator
on all processes that are members of the communicator’s group. This value is
included as a part of the message envelope and is used to ensure that communi-
cation operations match only within the same communicator. Allocation of the
context ID is at the core of all communicator creation operations. To ensure
efficient message matching, all known MPI implementations use context ids that
are unique and uniform across all involved processes.

In MPI-2, a parent communicator that contains all processes in the out-
put communicator’s group is used to perform any communication needed to
select the context ID—typically a collective allreduce operation. Multiple com-
municator creation operations can be issued concurrently by different threads
on different parent communicators; however, the user must ensure that opera-
tions are ordered such that only one collective operation is performed on a given
parent communicator at any time. In contrast with these semantics, the new
MPI Comm create group routine permits threads to issue multiple such operations
concurrently on the same parent communicator, and individual operations are
distinguished through an additional tag argument.

We have extended the existing multithreaded MPICH2 context ID allocation
algorithm [5] to include support for MPI Comm create group; we present the mod-
ified algorithm in Listing 1.1. In this algorithm, the state of all context IDs is
tracked through a vector of Boolean entries, called mask. The context ID mask



1 /* Input: my_comm , my_group , my_tag. Output: integer context ID */
/* Shared variables ( shared by threads at a each process ) */

3 mask /* Bit array , indicates if each context ID is free */
mask_in_use = 0 /* Flag , indicates if mask is in use */

5 lowest_ctx_id = MAXINT /* Indicates which thread has the highest priority */
lowest_tag /* Breaks lowest_ctx_id priority ties */

7

/* Private variables ( not shared across threads ) */
9 local_mask /* Thread private copy of the mask */

i_own_the_mask = 0 /* Flag indicating if this thread holds the mask */
11 context_id = 0 /* Output context ID */

13 MPIR_Barrier_group(my_comm , my_group , my_tag) /* new barrier , prevents deadlock */
while ( context_id == 0 ) {

15 Mutex_lock ()
if ( my_comm ->context_id < lowest_ctx_id

17 || ( my_comm ->context_id == lowest_ctx_id && my_tag < lowest_tag ) ) {
lowest_ctx_id = my_comm -> context_id

19 lowest_tag = my_tag
}

21 if ( !mask_in_use
&& my_comm ->context_id == lowest_ctx_id && my_tag == lowest_tag ) {

23 local_mask = mask
mask_in_use = 1, i_own_the_mask = 1

25 }
else {

27 local_mask = 0, i_own_the_mask = 0
}

29 Mutex_unlock ()
MPIR_Allreduce_group ( local_mask , MPI_BAND , my_comm , my_group , my_tag )

31 if ( i_own_the_mask ) {
Mutex_lock ()

33 if ( local_mask != 0 ) {
context_id = location of first set bit in local_mask

35 mask[context_id] = 0
if ( lowest_ctx_id == my_comm ->context_id && lowest_tag == my_tag ) {

37 lowest_ctx_id = MAXINT
}

39 }
mask_in_use = 0

41 Mutex_unlock ()
}

43 }

Listing 1.1. Multithreaded context ID allocation algorithm.

vector is an array of bits, where the nth bit identifies whether the context ID
value n is unused. To allocate a context ID, processes perform a bitwise AND
allreduce on the full vector and select the first context ID corresponding to the
first nonzero bit.

Group-collective allreduce and barrier routines were created that include only
the processes specified by a group argument. Multiple group-collective operations
can occur concurrently in different threads, and operations are distinguished by
using the tag argument provided by the user. One bit in the tag space was
reserved to indicate messages using the given tag correspond to group-collective
operation traffic. Thus, we ensure that messages generated during context ID
allocation do not conflict with application-generated point-to-point operations.

Concurrent attempts to allocate context IDs by multiple threads in the same
process are managed by allowing only one thread to access the context ID mask
at any given time. If a thread is not able to gain access to the mask, it must



still participate in the allreduce to prevent another thread in its communicator
creation operation from blocking indefinitely while holding the mask. Threads
that are unable to access the context ID mask pass a vector of zeroes to the
allreduce, indicating that no context IDs are currently available and effectively
aborting the attempt to allocate the context ID. Thus, multiple attempts may
be needed for a successful allreduce to occur; threads continue to retry until a
context ID is successfully allocated. In order to prevent livelock where threads
cause each other to mutually abort indefinitely, a simple prioritization scheme is
used where the threads whose parent communicator has the lowest context ID
are given priority for access to the context ID mask.

Two components of the existing algorithm were modified to support the new
MPI Comm create group routine. A group-collective version of allreduce was sub-
stituted for the communicator-collective implementation. In addition, the prior-
itization scheme was modified to prioritize threads based on the 〈context id , tag〉
pair.

Freeing a given context ID, n, requires simply acquiring the mutex and mark-
ing mask [n] = 1 without waiting for the mask to be available. Threads update
only one bit in the mask at a time while holding the mutex. If a context ID, n,
is freed during a concurrent allocation attempt, the ongoing allocation attempt
will continue to use the initial value n = 0 of the given context ID. Context ID
n will be observed as available during the next allocation attempt.

3.1 Deadlock Issue and Prevention Mechanism

The existing version of this multithreaded context ID algorithm has been de-
ployed in production for several years in MPICH2, and it was verified by a
student collaborator using model checking [5]. However, while extending the al-
gorithm to support noncollective communicator creation, we discovered a subtle
bug that can lead to deadlock in the multithreaded case The existence of this
bug for several years indicates that the algorithm may not have been used ex-
tensively in the field in multithreaded situations, and that the model used for
verification did not capture the case that leads to the deadlock.

The existing algorithm did not contain the barrier in Listing 1.1, line 13.
In the absence of the barrier, a thread is permitted to reserve the context ID
mask and perform the collective allreduce even though the other threads may
not have made matching calls to the communicator creation routine, introducing
the possibility of a hold-and-wait scenario. If another thread in the same process
attempts to perform a second communicator creation operation, a circular wait
can occur, resulting in deadlock. One such scenario is illustrated in Figure 1,
where there are two processes and two threads per process; each thread executes
the following code.

if (thread_id == mpi_rank) { MPI_Comm_dup(MPI_COMM_SELF , &self_dup ); }
MPI_Comm_dup(thread_comm , &thread_comm_dup );

Here, thread comm is a communicator of the threads at all processes with the same
thread ID. In this scenario, calls to duplicate thread comm block in the allreduce
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Fig. 1. Deadlock scenario with two processes and two threads per process. Blocked
threads hold the mask, preventing other threads from making matching collective calls.

while holding the mask, preventing the calls to duplicate MPI COMM SELF from
successfully allocating a context ID.

To avoid this deadlock scenario, we break the hold-and-wait condition by
ensuring that all threads have arrived before allowing them to reserve the mask.
This is accomplished by performing a barrier before entering the allocation loop.
Once threads have completed the barrier, they can perform the allreduce and
reserve the mask without risk of deadlock. The addition of the barrier, can have
a negative impact on performance; in Section 5 we present an optimization that
avoids this barrier in many cases while still avoiding the deadlock.

4 Proof of Correctness

We demonstrate that the multithreaded context ID allocation algorithm guar-
antees progress and ensures that allocation invariants are not violated under
a failure-free assumption. MPICH2 requires that the following conditions are
satisfied for a context ID allocation to be correct.

Property 1. For a given operation, all processes select the same context ID and
this ID is allocated at most once at every process.

Uniform context IDs are guaranteed through the allreduce, which ensures
that the output mask is the same at all processes. In addition, the locking disci-
pline and bitwise AND reduction operation ensure that if the given context ID
is unavailable (the corresponding bit is zero) at any process, it will be observed
as unavailable in the output mask at all processes.

4.1 Proof of Progress

To prove global progress, we must first prove the following liveness property,
which did not hold in the original version of the algorithm:

Property 2. No thread can block indefinitely.



The initial barrier added to the algorithm ensures that all processes with the
same parent communicator, group, and tag arguments are present before they
can reserve the mask or be prioritized for access to the mask. If the mask has
been reserved by another thread, threads supply a zero mask to indicate that the
mask is locally unavailable. These mechanisms ensure that all necessary threads
participate in the ensuing allreduce operation.

Property 3. Threads with the globally highest priority will eventually succeed.

Access to the mask is prioritized according to the 〈context id, tag〉 pair. This
prioritization is critical to ensure that threads do not enter a livelock situation
where allocation attempts repeatedly fail because all threads in a given group are
unable to obtain the mask at the same time. As threads iterate in the allocation
loop, they update the 〈context id , tag〉 pair when their value is less than the cur-
rent minimum. Threads are permitted to reserve the mask only when they have
the highest priority, and they must release the mask after an allocation attempt
if they no longer have the highest priority. A total 〈context id, tag〉 ordering can
be imposed across all threads. The prioritization scheme ensures that threads
with the globally highest priority will eventually be able to acquire the mask
at all processes involved in the given operation. Assuming that a common, free
context ID exists, the globally highest priority operation will eventually succeed.

Property 4. The highest priority thread at a process will eventually succeed.

Once the globally highest priority operation succeeds, the priority variables
are reset, and the next 〈context id , tag〉 pair in the total ordering has the highest
priority. A consequence of a prioritization scheme based on such a total ordering
of operations is that a low-priority operation can be starved by repeated arrivals
of higher-priority operations. Since realistic MPI programs perform a finite num-
ber of communicator creation operations, this starvation is bounded in practice.
If we assume such finite MPI programs, we observe that as the globally highest-
priority operations complete, a locally highest-priority operation will eventually
become the globally highest priority and also complete.

Property 5. Every allocation attempt will eventually succeed.

When a locally highest-priority operation completes, the next highest-priority
operation becomes the locally highest priority. Thus, assuming finite MPI pro-
grams, every operation eventually gains the locally highest priority and com-
pletes.

5 Eliminating the Overhead of Deadlock Avoidance

As discussed in Section 3, a synchronization step before entry to the context ID
allocation loop is necessary to avoid deadlock. In Listing 1.1 a barrier is used as a
simple solution; however, any operation that synchronizes all threads is sufficient
to prevent them from entering the context ID allocation loop until all threads



/* Shared variables ( shared by threads at a each process ) */
2 eager_split /* Reserves mask [0.. eager_split -1] for eager alloc.*/

eager_mask_in_use = 0 /* Flag , indicates if eager mask is already in use */
4

/* Private variables ( not shared across threads ) */
6 i_own_eager_mask = 0 /* Flag , indicates if this thread has eager mask */

8 Mutex_lock ( eager_lock )
if ( ! eager_mask_in_use ) {

10 eager_mask_in_use = 1, i_own_eager_mask = 1
local_mask = mask [0.. eager_split -1]

12 } else {
local_mask = 0

14 }
Mutex_unlock ( eager_lock )

16 MPIR_Allreduce_group ( local_mask , MPI_BAND , my_comm , my_group , my_tag )
if ( i_own_eager_mask ) {

18 Mutex_lock ( eager_lock )
eager_mask_in_use = 0, i_own_eager_mask = 0

20 context_id = location of first set bit in local_mask
mask[context_id] = 0

22 Mutex_unlock ( eager_lock )
}

Listing 1.2. Multithreaded context ID allocation algorithm.

have made matching calls. We use this observation to attempt allocation of a
context ID during the synchronization step itself. In most MPI programs, this
method results in successful context ID allocation in a single step and eliminates
the additional overhead incurred by the new synchronization step.

This eager mode of context ID allocation is achieved by splitting the con-
text ID mask into eager and base segments. During the synchronization step, an
allreduce on the eager context ID space is performed. If eager allocation fails,
the allreduce effectively acts as a barrier and threads proceed to the base allo-
cation algorithm, which utilizes the base segment of the mask. Many variations
of this optimization are possible, and an important property is the method used
to divide the context ID space between eager and base protocols. Dynamic ap-
proaches where each process selects the first n available context IDs are possible.
However, fragmentation in the context ID mask due to repeated communicator
creation and destruction can cause individual masks to diverge and render this
approach ineffective. Static allocation approaches are not as susceptible to this
issue, but they limit the number of context IDs available to each protocol.

We define a static allocation strategy that reserves the first n context IDs for
eager allocation and utilizes the remaining max id−n IDs for the base protocol,
where n is a configurable parameter. This strategy maximizes the likelihood of
successful eager allocation and, as a tradeoff, in the worst case reduces the size
of the context ID space to max id − n. The algorithm is shown in Listing 1.2,
and this code is substituted in place of the barrier in Listing 1.1, line 13. In
addition, line 23 in Listing 1.1 must be modified as follows.

local_mask[ 0.. eager_split -1 ] = 0
local_mask[eager_split ..MAXID] = mask
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Fig. 2. Comparison of native MPI Comm create group (CCG) performance with two
other communication creation routines. The impact of eager versus baseline allocation
is shown for each algorithm. The input communicator always contains 1024 processes.

6 Experimental Evaluation

We compare the cost of several communicator-creation operations on a QDR
InfiniBand cluster. Each node is configured with two 2.6 GHz, quad-core Intel
Nehalem processors, and 36 GB memory. In Figure 2, we use MPI COMM WORLD

as the parent communicator and vary the size of the output communicator.
We compare the execution time of MPI Comm create with MPI Comm create group

(CCG) in Figure 2a. Two implementations of MPI Comm create group are evalu-
ated in Figure 2b: a user-level implementation that performs recursive intercom-
municator merging [3] and a direct implementation that uses the new context
ID allocation algorithm. For each comparison, we show the impact of the eager
allocation optimization.

From these results, we see that MPI Comm create group provides a significant
performance advantage over MPI Comm create, whose cost is always proportional
to the size of the parent communicator. In addition, we see that there is an
O(log p) performance advantage of the direct O(log p) MPI Comm create group

algorithm over the O(log2 p) user-level algorithm. Moreover, the eager-allocation
protocol accomplishes allocation in one, rather than two, allreduce operations,
yielding a factor of two or more improvement in communicator-creation cost.

7 Related Work

Open MPI [4] utilizes a similar approach to context ID allocation; however,
rather than considering the full context ID mask when performing allocation,
one context ID is evaluated at a time. In this algorithm, each thread starts with
its lowest available context ID and a MAX allreduce is performed. A second AND

allreduce is performed to determine if the operation succeeded at all threads
and, if not, the process is repeated with the next highest context ID. Assuming



a fixed-size context ID space, this algorithm is also susceptible to the dead-
lock scenario presented in Section 3.1 when the number of threads attempting
allocation approaches the number of available context IDs at any process. In
comparison with the algorithm presented in this work, the algorithm currently
used by Open MPI always performs two allreduce operations (on a single inte-
ger, rather than the full mask) and can require multiple iterations if the context
ID space becomes fragmented. This algorithm can also be extended to support
MPI Comm create group through the same priority and tag space approaches pre-
sented in Section 3.

8 Conclusions

We have presented an efficient, multithreaded context ID allocation routine that
includes support for new functionality in MPI 3.0. This work builds on the ex-
isting MPICH2 algorithm that was found to contain a subtle deadlock bug. We
corrected this bug and proposed an eager allocation protocol that eliminates the
performance impact of deadlock avoidance. We prove correctness of the new al-
gorithm and evaluate its performance relative to existing approaches. Results in-
dicate that the MPI Comm create group routine built on top of the multithreaded
context ID allocation algorithm significantly reduces the cost of communica-
tor creation when the output group is smaller than the parent communicator’s
group.
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