
Transparent Accelerator Migration in a

Virtualized GPU Environment

Shucai Xiao,∗ Pavan Balaji,† James Dinan,† Qian Zhu,‡ Rajeev Thakur,† Susan Coghlan,§

Heshan Lin,∗ Gaojin Wen,¶ Jue Hong,¶ Wu-Chun Feng∗

∗Dept. of Computer Science, Virginia Tech. {shucai, hlin2, wfeng}@vt.edu
†Math. and Comp. Sci. Div., Argonne National Lab. {balaji, dinan, thakur}@mcs.anl.gov

‡Accenture Technologies. qian.zhu@accenture.com
§Leadership Comp. Facility, Argonne National Lab. smc@alcf.anl.gov

¶Shenzhen Inst. of Adv. Tech., Chinese Academy of Sciences. {gj.wen, jue.hong}@siat.ac.cn

Abstract—This paper presents a framework to support trans-
parent, live migration of virtual GPU accelerators in a virtualized
execution environment. Migration is a critical capability in such
environments because it provides support for fault tolerance, on-
demand system maintenance, resource management, and load
balancing in the mapping of virtual to physical GPUs. Techniques
to increase responsiveness and reduce migration overhead are
explored. The system is evaluated by using four application
kernels and is demonstrated to provide low migration overheads.
Through transparent load balancing, our system provides a
speedup of 1.7 to 1.9 for three of the four application kernels.

Keywords-GPU, Virtualization, OpenCL, Migration, VOCL

I. INTRODUCTION

Over the past several years, processor designers have en-

countered significant power constraints that have derailed

CPU clock frequency scaling trends. Transistor scaling trends,

however, continue to provide increasing numbers of devices

within a chip. As a result, current microprocessors provide

multiple cores per chip that must utilize application-level

parallelism to achieve performance gains. Graphics processing

units (GPUs) are many-core processors that have recently

gained widespread use as computation accelerators for high-

performance computing applications, and three of the top five

machines on the November 2011 Top500 list [1] utilize GPUs.

Accelerator programming models, such as AMD’s

Brook+ [2], NVIDIA’s CUDA [3], and the OpenCL [4]

standard, have greatly eased the complexity in programming

these devices and have quickened the pace of adoption.

However, these models are currently limited to interacting

with devices that are physically installed on the nodes

where an application is executed. In cluster computing

environments where GPUs are not available on every node or

are underutilized on some nodes, programmers must construct

their own system for coordinating the use of these resources.

In our prior work, we created Virtual OpenCL (VOCL) [5],

an implementation of the OpenCL programming model that

provides the ability to utilize and share nonlocal computation

accelerators through device virtualization. VOCL establishes

device proxies that manage the mapping of virtual to physical

OpenCL contexts and forward OpenCL commands from the

application to the physical device. VOCL can be used imme-

diately by any OpenCL application and provides a runtime

system that automatically manages the mapping of virtual to

physical GPUs.

The ability to migrate virtual devices is a key capability

in any virtualized environment. VOCL provides the ability to

migrate virtual GPUs when a failure is detected; perform on-

demand maintenance of compute resources; and dynamically

adjust the mapping of virtual to physical devices to manage

resource allocation and balance the workload.

In this work, we extend VOCL to support transparent, live

migration of virtual OpenCL GPUs. Migration is achieved by

transparently moving the virtual GPU state between VOCL

proxies and physical devices and remapping the virtual-to-

physical translation. Asynchronous, one-sided communication

is used to decouple and coordinate migration. In addition,

a command queueing strategy is introduced that allows the

proxy greater control over the migratability of the virtual

GPU and increases its responsiveness to migration events.

We evaluate our migration framework on four application

kernels from three application domains: dense linear algebra,

n-body calculations, and data-intensive bioinformatics. Results

indicate that, with our queueing technique, VOCL incurs low

migration overheads while maintaining fast response time to

migration events. In addition, through migration-enabled load

balancing, applications achieve speedups of 1.7 to 1.9.

The remainder of this paper is organized as follows. In

Section II, we provide an overview of the OpenCL program-

ming model, the VOCL framework, and the Message Passing

Interface (MPI) used internally by VOCL. In Sections III

and IV, we present our virtual GPU migration framework and

evaluate the overhead of migration and benefits from migra-

tion. In Section V, we discuss related work. In Section VI, we

summarize our conclusions.

II. BACKGROUND

In this section, we provide an overview of the OpenCL

accelerator programming model, our prior work on the VOCL

framework; and MPI, which VOCL uses internally for coor-

dination and communication.



Local computing node Remote computing

node 2

GPU

Application

program
Proxy process

GPU

Native OpenCL

library

MPI

Remote computing

node1

GPU

Proxy process

Native OpenCL

library

MPI

GPU

VOCL library

OpenCL API
OpenCL API OpenCL API

Fig. 1. VOCL framework enabling an application to utilize multiple,
distributed GPUs.

A. OpenCL Programming Model

OpenCL (the Open Computing Language) [4] is a frame-

work for programming various accelerators in heterogeneous

computing environments. OpenCL provides an API that can

be used to manage accelerator devices and execution con-

texts on various platforms. In addition, it defines a C-based

programming language for writing kernels, which are special

functions called on the host processor and executed on an

accelerator device, such as a GPU, Cell Broadband Engine [6],

or conventional CPU. An instance of a kernel is referred

to as an OpenCL work-item, which executes on a single

execution resource in the target device. A grid of work-items

can be launched, where each grid coordinate corresponds to

an element in the domain of the computation. Work-items can

be grouped together for synchronization as an OpenCL work-

group.

Current implementations of OpenCL provide the ability to

utilize only accelerators that are local (e.g., connected by a

high-speed PCIe link) to the host CPU. If a user wishes to

utilize accelerators that are not local, mechanisms such as

TCP/IP sockets or MPI are needed for data communication

and coordination between the different machines.

B. The Virtual OpenCL Framework

In our prior work, we presented the Virtual OpenCL frame-

work [5]. VOCL is a reimplementation of the OpenCL pro-

gramming model that enables the programmer to utilize both

local and remote accelerators through device virtualization.

For local devices, VOCL directly calls the native OpenCL

functions. For remote devices, VOCL forwards function calls

to the location of the physical device.

The VOCL framework consists of the VOCL library and a

proxy that is created on each remote node. The VOCL library

shares the same interface as the native OpenCL library for

their API functions. It forwards OpenCL function calls to the

corresponding physical GPUs and receives GPU computing

results for program output. The VOCL proxy is located on

each remote node. It is responsible for receiving inputs from

the application, calling the native OpenCL functions, and

sending results back to the application once computation is

completed. With the VOCL framework, all GPUs can be used

as if they were installed locally, as shown in Figure 1.

OpenCL can handle multiple devices on a machine. Simi-

larly, VOCL needs to handle devices on multiple computing

nodes. To this end, VOCL provides another level of abstraction

for resource management. Specifically, VOCL translates each

OpenCL handle to a VOCL handle with a unique value; even

two OpenCL handles share the same handle value. When

a VOCL handle is used, the library first translates it to

the corresponding OpenCL handle and then generates the

corresponding information for data communication (if there

is any). Next it sends the OpenCL handle to the device for the

native OpenCL function to be called. Since OpenCL handles

sharing, the same handle values are translated to different

VOCL handles; VOCL is able to differentiate them and send

function calls to the correct device. More details about the

VOCL framework and the VOCL abstraction are described in

our prior work [5].

C. The Message Passing Interface

The Message Passing Interface [7] is the industry standard

for parallel programming and is available on essentially every

parallel computing platform. MPI provides a rich commu-

nication interface, including basic point-to-point sends and

receives; collective operations; and asynchronous, one-sided

data transfer operations. MPI also provides the ability to dy-

namically establish and destroy new communication channels

between different MPI processes. For these reasons, we have

selected MPI as the communication runtime system on which

to construct VOCL. While the VOCL runtime utilizes MPI

internally, the application need only utilize OpenCL to take

advantage of VOCL.

III. TRANSPARENT VIRTUAL GPU MIGRATION

In this work, we extend the VOCL framework with the

ability to migrate virtual GPU images across different physical

GPUs. We first describe the virtual GPU abstraction, followed

by the virtual GPU migration algorithm. We then introduce

a queueing mechanism that can be used to improve the

performance of migration.

A. Virtual GPU Abstraction

A virtual GPU (or VGPU) represents the resources used

by an application process on a physical GPU. These resources

include OpenCL contexts, command queues, memory buffers,

programs, and kernels. An application process can use multiple

physical GPUs, with each represented by a virtual GPU.

Similarly, one physical GPU can be shared by multiple appli-

cations; in such a case, an individual virtual GPU is created

for each application. We illustrate the two cases in Figure 2.

In the VOCL framework, virtual GPUs exist both in the

VOCL library and in the proxy with a one-to-one mapping

relationship. That is, there is a virtual GPU in the VOCL

library corresponding to each virtual GPU in the proxy. A

virtual GPU in the VOCL library contains VOCL resources,

referred to as VOCL VGPU; a virtual GPU in the proxy

contains OpenCL resources and is referred to as OpenCL

VGPU. Throughout the paper, we use the source GPU to

indicate the GPU from which migration is originated and

destination GPU for the migration destination. A source proxy

is the proxy that contains the source GPU. Similarly, the

destination GPU belongs to the destination proxy.



VGPU1

VGPU2

VGPU1

VGPU2

VGPU1

VGPU2

VGPU1

VGPU2

VGPU3 VGPU1

VGPU2

VGPU3

Physical GPU Physical GPU Physical GPU

application application

Fig. 2. Mapping of VOCL VGPUs to OpenCL VGPUs for two applications
and three physical GPUs.

An OpenCL VGPU in the proxy is identified by the OpenCL

device ID and the index of the application that is using the

device. Once an application selects a physical GPU, a VGPU

is created, and all OpenCL resources created by the application

on the physical GPU will be saved in its VGPU. Besides

OpenCL handles, information used to create the handles is

also stored. For instance, when an OpenCL program is created,

besides the program handle, we need to store its source

code and build options. The reason is that OpenCL handles

created on one physical GPU may be invalid on another.

Therefore, when a VGPU is migrated, we need to recreate all

the OpenCL resources on the destination GPU that requires

all the information.

VOCL VGPUs reside in the VOCL library and have a one-

to-one correspondence with OpenCL VGPUs. Each VOCL

VGPU is identified by the VOCL device ID and the index

of the proxy where the device is located. VOCL VGPUs

store information such as VOCL contexts, VOCL command

queues, and VOCL programs. In contrast to OpenCL VGPUs,

which are created in the destination proxy and released in the

source proxy in a migration, the update of a VOCL VGPU

propagates from the source OpenCL VGPU to the destination

OpenCL VGPU. Specifically, for each VOCL handle in the

VOCL VGPU, its corresponding OpenCL handle and MPI data

communication information will be replaced by its counterpart

in the destination OpenCL VGPU. As a result, all OpenCL

function calls will be directed to the destination proxy and

GPU computation will be performed on the destination GPU.

Since we keep the same VOCL handle in the VOCL VGPU,

migration is transparent to the application.

B. Migrating Virtual GPUs

Migrating a VGPU across physical GPUs requires ma-

nipulation of the OpenCL and VOCL VGPUs as well as

management of the GPU device and transfer of the VGPU

image. When a migration is triggered, the OpenCL VGPU

image is copied from the source proxy to the destination proxy.

In the VOCL library, the corresponding VOCL VGPU needs

to be mapped from the source OpenCL VGPU to the desti-

nation OpenCL VGPU accordingly. As a result, as shown in

Figure 3, GPU computation performed on the source physical

GPU is migrated to the destination physical GPU. However,

careful synchronization must be employed to preserve data

consistency and provide migration that is transparent to the

user.

Local node

VOCL VGPU

OpenCL VGPU

Source proxy

OpenCL VGPU

Destination proxy

Before

migration

After

migration
migration

Fig. 3. Virtual GPU migration scenario.

We argue that migration should start as quickly as possible

with minimum overhead. To achieve this, we extend the VOCL

framework in two ways: (1) an internal command queue in the

proxy to reduce the time for waiting the issued kernels to be

completed, in order to support a quick start of migration; and

(2) atomic enqueueing of OpenCL function calls to reduce

the migration overhead. In the following, we first describe the

conditions in which migration should be triggered; we then

explain the steps involved in the migration. Finally, the above

extensions to the VOCL framework to improve the migration

performance are presented.

Currently, we consider two scenarios in which migration

can be triggered: to free the GPU resources on a node

(e.g. to perform maintenance) and to rebalance the VOCL

to OpenCL mapping of VGPUs. To free the GPU resources

on a given node, we provide a tool, voclForcedMigration,

to send messages to the proxy. When a proxy receives the

forced migration message, it will move all its tasks to other

nodes. The second scenario is for load balance. To enable this,

we provide a function called voclRebalance() to check

the loads on the physical GPUs. If the load difference across

physical GPUs is larger than a threshold value, migration will

happen to rebalance the loads on different GPUs. Currently, we

use a threshold of half of the internal queue depth N described

in Section III-C, which means if the difference of the number

of function calls that are issued to the native OpenCL library

but not completed on two physical GPUs is larger than N/2,
migration will be triggered. Many other strategies are possible

and VOCL provides an interface that allows users to define

new load-balancing modules.

Migration of a virtual GPU image across physical GPUs is

performed by using the following algorithm:

1) Lock the VGPU: The VGPU is locked to prevent

commands from being issued during migration.

2) Drain command queue: Before starting the migration

procedure, the source proxy must wait for completion

of all issued OpenCL function calls by invoking the

OpenCL function clFinish().

3) Select physical GPU: Select the physical GPU to which

the virtual GPU will be created. Many criteria are

possible; we select the physical GPU with the least

computational load. In this step, the source proxy queries

the load on each available physical GPU.

4) Transfer OpenCL VGPU: The source proxy marshalls

the source OpenCL VGPU and transmits it to the

destination proxy. In the destination proxy, an OpenCL

VGPU is created using this information.

5) Update VOCL VGPU: The VOCL VGPU is updated



Tail

HeadProxy process

Help thread

MPI receive of commands

Native OpenCL library

Fig. 4. Queueing of OpenCL operations in the VOCL proxy.

and mapped to the newly created OpenCL VGPU.

6) Transfer contents of device memory: Data in the

device memory of the source VGPU is sent to the

destination VGPU. Here, the data transfer is pipelined

to reduce the data transfer overhead.

7) Release source GPU: After data transfer is completed,

the source VGPU is released.

8) Unlock the VGPU: The migration lock on the VGPU is

released, allowing the client to resume issuing OpenCL

commands to the destination VGPU.

C. Queueing Virtual GPU Operations

One of the first steps in migration is to wait for completion

of all issued OpenCL commands. In this step, if a large number

of function calls are issued and migration is necessary, we

may need to wait a long time before migration can start. This

situation affects the delay until a fault can be migrated around,

maintenance can be performed, or the load can be rebalanced.

To reduce the waiting time, instead of issuing all received

OpenCL function calls to the GPU, the proxy creates an

internal command queue to queue up the received functions,

as shown in Figure 4. When an OpenCL function call is

received, the proxy enqueues it into the command queue. Also,

the proxy creates a help thread to issue function calls to the

GPU. Each time the help thread issues a fixed number, N , of

OpenCL function calls to the GPU and calls clFinish()

to wait for their completion. After that, the help thread issues

another N functions and calls the clFinish(), and so

forth. In this way, when migration is necessary, the proxy

process needs to wait for the completion of at most N function

calls. Thus, the wait for completion time can be significantly

reduced compared with issuing all OpenCL function calls

to the GPU. However, this approach will add overhead to

the program execution because kernel execution becomes

synchronous in some degree by calling clFinish(). For

example, if N = 1, clFinish() is called after every

kernel launch. Consequently, a kernel cannot be launched until

its previous kernel finishes the computation. This approach

can cause significant overhead because the kernel launch is

overlapped with the previous kernel’s execution in general.

Note that by tuning the queue depth, or N value, we can

control the overhead of this approach in a low level, as we

will show in our experimental results.

After the OpenCL VGPU is migrated to the destination

proxy, the source proxy will send the unissued function calls

to the destination proxy. After receiving the function calls,

the destination proxy will first update the OpenCL handles to

those in the destination OpenCL VGPU and will then enqueue

them to its internal queue.

D. Atomic Enqueueing Commands in the Presence of Migra-

tion

When migration starts, the source proxy stops issuing

OpenCL function calls to its GPU. Instead, it waits for com-

pletion of the issued function calls. At this time, any OpenCL

function calls received from the VOCL library are stored in its

internal command queue. Unissued function calls will be sent

to the destination proxy, thereby incurring additional overhead.

On the other hand, if the VOCL library stops issuing function

calls to the source proxy, the number of function calls to be

sent from the source proxy to the destination proxy can be

reduced, and migration overhead is reduced as a result. To

this end, we use a migration lock to prevent the VOCL library

from issuing function calls to the source proxy when migration

is in progress.

We utilize the MPI one-sided mutex algorithm of Ross et

al. [8] to establish a migration lock between the application

and the VOCL proxy. When migration starts, the source proxy

acquires the mutex and holds it until migration is complete.

In the VOCL library, the application must acquire the mutex

before it can issue OpenCL function calls to the device. If

there is no migration, the application can acquire the mutex

immediately. On the other hand, if migration is in progress

in the proxy, the application must wait for completion of the

migration, when the mutex will be released before it can issue

a function call to the proxy. In this way, function calls are

restricted in the application when migration is in progress.

Since the application is expected to issue OpenCL func-

tion calls much more frequently than migration will occur,

the mutex structure is located in the VOCL library on the

application’s node to reduce the overhead of locking.

IV. EXPERIMENTAL EVALUATION

We used four application kernels, shown in Table I, to

evaluate our system. Matrix multiplication and n-body are

compute intensive, whereas matrix transpose and Smith-

Waterman need more data movement between host memory

and device memory. Using these kernels, we measured the

cost of migration; demonstrated the performance impact of

rebalancing the mapping of VGPUs to physical GPUs; and

explored the tradeoff between a shallow queue depth, which

decreases the time-to-migration, and a deeper queue depth,

which can improve the efficiency of kernel execution.

Experiments were conducted on four QDR InfiniBand-

connected compute nodes. Each node contains two AMD

Magny-cours CPUs, 64 GB of memory, and two NVIDIA

Tesla M2070 GPUs, each with 6 GB of global memory. The

two GPUs are connected to different PCI express links, and

one GPU shares its PCI express link with the InfiniBand NIC.

In our experiment, we use two of the nodes as the remote

GPU nodes and the other two as the local nodes on which

only CPU is used. Each node runs the Centos Linux operating

system, and the CUDA 3.2 toolkit is installed to provide

OpenCL support. In addition, we use the MVAPICH2 [9]



TABLE I
COMPUTATION AND DATA ACCESS COMPLEXITIES FOR FOUR KERNELS.

THE VALUE n CORRESPONDS TO MATRIX DIMENSIONS IN MATRIX

MULTIPLICATION AND TRANSPOSE, THE NUMBER OF BODIES IN N-BODY,
AND THE LENGTH OF THE INPUT SEQUENCE IN SMITH-WATERMAN.
“MEMORY SIZE” ALSO CORRESPONDS TO THE VOLUME OF DATA

TRANSFERRED BETWEEN HOST AND DEVICE MEMORIES FOR KERNEL

EXECUTION.

Application Kernels Computation Memory size

Matrix multiplication O
(

n3
)

O
(

n2
)

N-body O
(

n2
)

O (n)

Matrix transpose O
(

n2
)

O
(

n2
)

Smith-Waterman O
(

n2
)

O
(

n2
)

 0

 10

 20

 30

 40

 50

 60

 70

2 4 8 12 16 20 Infini

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

Num. Kernels Dispatched

N-body
Smith-Waterman
Matrix transpose

Matrix multiplication

Fig. 5. Overhead caused by internal queue in proxy.

MPI implementation, which supports the QDR InfiniBand

interconnect.

A. Impact of Command Queue Depth

As described in Section III-C, the proxy issues batches

of N kernels to the OpenCL library and then blocks on

their completion by calling clFinish(). The value of N
determines the depth of the OpenCL command queue before

waiting for completion. High values of N can improve kernel

execution efficiency, whereas low values of N reduce the delay

between issuing a migration event and when migration can be

performed.

Figure 5 shows the total execution time with no migrations

over a range of queue depths. Infini indicates that the queue

has an infinite depth and that the proxy does not periodically

invoke clFinish(). As can be seen, for matrix multipli-

cation, matrix transpose, and n-body, program execution time

with different queue depths shows little variation. Specifically,

with N = 2, which means clFinish() is called after every

two kernel launches, program execution time increases by

4.6%, 2.7%, and 0.8% respectively. The reason is that these

three applications utilize long-running kernels that mitigate

performance degradation from synchronous kernel execution.

Smith-Waterman, on the other hand, launches a large number

of short kernels, resulting in a slowdown of 256% when

N = 2. Increasing of the N value reduces overhead for all

four applications.

While increasing queue depth improves device utilization,

it also impacts the waiting time before migration can be

initiated. As Figure 6 shows, with the increase of the N
value from 2 to 20, the wait for completion time increase for

all four applications. Note that the wait for completion time

 0

 20

 40

 60

 80

 100

 120

 140

 160

2 4 8 12 16 20

W
a

it
 f

o
r 

c
o

m
p

le
ti
o

n
 t

im
e

 (
m

s
)

Num. Kernels Dispatched

Matrix multiplication
Matrix transpose

N-body
Smith-Waterman

Fig. 6. Wait for completion time with different N values.

affects only the time interval between a migration event and

when migration can be performed; it does not correspond to

overhead.

Using the data from these two experiments, we chose a

value of N = 20 as the default queue depth in VOCL

(N is an user-adjustable parameter). When N = 20, the

overhead caused by queueing is less than 2%, and the wait

for completion time is also very low, only a few hundred

milliseconds for our application kernels.

B. Analysis of Migration Overhead

In Figure 7, we show the total execution time for each

kernel with no migration and with a single migration. From the

figure we see that, overall, as the problem size increases, the

relative overhead decreases. The reason is that the execution

time increases faster than the migration overhead with regard

to the problem size. Thus, less relative overhead is caused in

programs running a larger problem size. In addition, migration

overhead is a few hundred milliseconds. For programs that

run long enough, other factors such as network congestion

and system noise affect the total execution time more than

migration does. From these results, we conclude that perfor-

mance degradation caused by migration can be negligible for

programs running a reasonably long time (e.g., a few tens of

seconds).

Figure 8 shows a detailed breakdown of the migration

overhead for the four benchmarks across all input sizes. The

time for virtual GPU creation includes the latency of draining

the device’s command queue and the program build time for

the destination VGPU, which dominate the overhead in all

four applications. For Smith-Waterman, we see that the large

number of queued function calls generated by the application

also increases the cost of migrating the queue of unissued

functions. For n-body, which contains two kernel programs

each of which needs to be built separately, the copy VGPU

time is about twice that of the other three.

C. Impact of VGPU Oversubscription

Virtualization introduces the opportunity to oversubscribe a

physical GPU by binding multiple VGPUs to the same device.

This can have a positive effect on computational efficiency by

providing the device with ample computation to hide latencies

and maximize occupancy. In Figure 9, we show the total

execution time for each benchmark when multiple instances

of the application are running on the smallest input problem



 0

 20

 40

 60

 80

 100

 120

1K x 1K 2K x 2K 3K x 3K 4K x 4K 5K x 5K 6K x 6K
0 %

1 %

2 %

3 %

4 %

5 %

6 %

7 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

O
v
e

rh
e

a
d

 c
a

u
s
e

d
 b

y
 m

ig
ra

ti
o

n

Matrix size

without migration
with migration

migration overhead

(a) Matrix Multiplication

 0

 40

 80

 120

 160

 200

15360 23040 30720 38400 46080 53670
0 %

0.2 %

0.4 %

0.6 %

0.8 %

1 %

1.2 %

1.4 %

1.6 %

1.8 %

2 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

O
v
e

rh
e

a
d

 c
a

u
s
e

d
 b

y
 m

ig
ra

ti
o

n

Number of bodies

without migration
with migration

migration overhead

(b) N-body

 0

 20

 40

1K 2K 3K 4K 5K 6K

0 %

10 %

20 %

30 %

40 %

50 %

60 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

O
v
e

rh
e

a
d

 c
a

u
s
e

d
 b

y
 m

ig
ra

ti
o

n

Input sequence size

without migration
with migration

migration overhead

(c) Smith-Waterman

 0

 20

 40

 60

 80

 100

 120

 140

1K x 1K 2K x 2K 3K x 3K 4K x 4K 5K x 5K 6K x 6K
0 %

1 %

2 %

3 %

4 %

5 %

6 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

O
v
e

rh
e

a
d

 c
a

u
s
e

d
 b

y
 m

ig
ra

ti
o

n

Matrix size

without migration
with migration

migration overhead

(d) Matrix Transpose

Fig. 7. Total execution time for each kernel over a range of input sizes with and without migration.

 0

 100

 200

 300

 400

 500

 600

1K x 1K 2K x 2K 3K x 3K 4K x 4K 5K x 5K 6K x 6K

M
ig

ra
ti
o

n
 o

v
e

rh
e

a
d

 (
m

s
)

Matrix size

Find destination GPU
Copy virtual GPU

Transfer GPU data
Send unissued function calls

(a) Matrix multiplication

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

15360 23040 30720 38400 46080 53760

M
ig

ra
ti
o

n
 o

v
e

rh
e

a
d

 (
m

s
)

number of bodies

Find destination GPU
Copy virtual GPU

Transfer GPU data
Send unissued function calls

(b) N-body

 0

 100

 200

 300

 400

 500

 600

1K 2K 3K 4K 5K 6K

M
ig

ra
ti
o

n
 o

v
e

rh
e

a
d

 (
m

s
)

Sequence size

Find destination GPU
Copy virtual GPU

Transfer GPU data
Send unissued function calls

(c) Smith-Waterman

 0

 100

 200

 300

 400

 500

 600

 700

1K x 1K 2K x 2K 3K x 3K 4K x 4K 5K x 5K 6K x 6K

M
ig

ra
ti
o

n
 o

v
e

rh
e

a
d

 (
m

s
)

Matrix size

Find destination GPU
Copy virtual GPU

Transfer GPU data
Send unissued function calls

(d) Matrix transpose

Fig. 8. Breakdown of migration overheads for each benchmark across all input sizes.

and all share the same VGPU. For this graph, we show the

execution time with no migration, the execution time when

a single migration is performed, and the percent difference

in execution time due to migration. We see that increasing

the degree of oversubscription significantly decreases the cost

of migration by an order of magnitude or more across all

application kernels.

D. Performance Impact of Load Balancing

Migration also adds the capability to balance the VGPU

workload across physical GPUs. In Figure 10 we show the

performance improvement from VOCL’s load balancing. For

this experiment, we ran two instances of the same application

and mapped both VGPUs to the same physical device. This

represents a scenario where one device is initially occupied

when the new VGPUs are created. In the baseline case, both

instances share the physical GPU for their full execution. In

the migration case, one of the applications triggers the VOCL

load balancer, which performs migration. This corresponds

to a scenario in which resources become available while the

application is running. After migration, each VGPU is mapped

to a separate physical GPU.

From the data we see that, with task migration enabled in

the framework, application performance is improved for all



 1

 2

 4

 8

 16

 32

 64

 128

 256

1 2 4 8 16 32 64
0 %

5 %

10 %

15 %

20 %

25 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

O
v
e

rh
e

a
d

 c
a

u
s
e

d
 b

y
 m

ig
ra

ti
o

n

Number of problem instances

without migration
with migration

migration overhead

(a) Matrix multiplication

 1

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64
0 %

1 %

2 %

3 %

4 %

5 %

6 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

O
v
e

rh
e

a
d

 c
a

u
s
e

d
 b

y
 m

ig
ra

ti
o

n

Number of problem instances

without migration
with migration

migration overhead

(b) N-body

 1

 2

 4

 8

 16

 32

 64

 128

1 2 4 8 16 32 64
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

O
v
e

rh
e

a
d

 c
a

u
s
e

d
 b

y
 m

ig
ra

ti
o

n

Number of problem instances

without migration
with migration

migration overhead

(c) Smith-Waterman

 0.25

 0.5

 1

 2

 4

 8

 16

 32

1 2 4 8 16 32 64
0 %

20 %

40 %

60 %

80 %

100 %

120 %

140 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

O
v
e

rh
e

a
d

 c
a

u
s
e

d
 b

y
 m

ig
ra

ti
o

n

Number of problem instances

without migration
with migration

migration overhead

(d) Matrix Transpose

Fig. 9. Total execution time for each kernel over a varying degree of oversubscription with and without migration.

four applications. Specifically, the total time to complete the

matrix multiplication reduces by a factor of 1.7; n-body is 1.9

times faster; matrix transpose is 1.7 times faster; and Smith-

Waterman is 1.4 times faster. Among the four applications,

the speedup of n-body is the highest and Smith-Waterman the

lowest. These results are consistent with the varying degree

of overhead incurred by migration in all four applications, as

shown in Figure 7; the least amount of data is transferred

in the migration of n-body, whereas Smith-Waterman requires

the largest amount of data transfer. In addition, total execution

time of n-body is much larger than that of Smith-Waterman.

Hence, migration overhead has far less impact on its perfor-

mance than on that of Smith-Waterman.

V. RELATED WORK

Our work is related to task migration across different GPUs

and different nodes. Many studies have been conducted on

migration in large-scale computing systems.

Process migration can be achieved by the checkpoint ap-

proach. One study is the Berkeley Lab Checkpoint/Restart

(BLCR) [10]. It writes the process image to a file and then

restarts the process from the saved process image file. This

approach can be used for migrating a process from one node

to another, but it considers only the process image of CPU

processes.

Based on BLCR, Ouyang [11] used a proactive job mi-

gration scheme to enhance the fault tolerance of the MVA-

PICH2 [9]. This work implements the checkpoint/restart pro-

cedure by transferring the process image to a healthy spare

node for the purpose of resuming the process. Wang et al. [12]

proposed a process-level live migration mechanism to support

continued execution of MPI processes. This work is integrated

into an MPI execution environment to transparently sustain

health-inflated node failures, which eradicates the need to

restart and requeue MPI jobs. These studies are related to the

task migration in our VOCL framework in that we support live

migration of VGPUs from one physical GPU to another and

migration is transparent to the program execution.

Takizawa et al. [13], [14] demonstrated the feasibility of

migrating a GPU program from one node to another. This

work is similar to ours. However, our work is distinct in the

following ways. First, in their work, an API proxy is added

to store the image file, which makes OpenCL function calls

become a two-phase procedure. Thus, when large amounts of

data are transferred between host memory and device memory,

large overhead can be caused to the program execution even

in the local GPU usage. In contrast, in our VOCL framework,

there is no such API proxy on the local node, and no additional

overhead is caused to the usage of local GPUs. Second, when

migration is triggered, in Takizawa et al.’s work, execution

of the process needs to be terminated and restarted on the

target machine. In contrast, migration in the VOCL framework

is transparent to the application program and happens during

its execution, where process termination and restart are not

necessary. Third, process image is stored in the hard disk

in Takizawa et al.’s migration approach, which puts a heavy

burden on the storage subsystem and can cause significant

overhead for restarting the process. In contrast, we do not use

the hard disk; all data are transferred over the network.

Another strategy for task migration is based on the virtual

machine such as Xen [15], which enables migration of virtual

operating system (OS) instances across different compute

nodes. One example is vCUDA [16]. In this approach, all API

function calls on the target OS need to be redirected to the host

OS when migration happens. As a result, it causes significant

migration overhead on both the host and the target nodes.



 0

 50

 100

 150

 200

 250

1K x 1K 2K x 2K 3K x 3K 4K x 4K 5K x 5K 6K x 6K
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

S
p

e
e

d
u

p
 b

ro
u

g
h

t 
b

y
 m

ig
ra

ti
o

n

Matrix size

without migration
with migration

speedup

(a) Matrix multiplication

 0

 50

 100

 150

 200

 250

 300

 350

 400

15360 23040 30720 38400 46080 53760
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

S
p

e
e

d
u

p
 b

ro
u

g
h

t 
b

y
 m

ig
ra

ti
o

n

Number of bodies

without migration
with migration

speedup

(b) N-body

 0

 10

 20

 30

 40

 50

 60

 70

 80

1K 2K 3K 4K 5K 6K
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

S
p

e
e

d
u

p
 b

ro
u

g
h

t 
b

y
 m

ig
ra

ti
o

n

Input sequence size

without migration
with migration

speedup

(c) Smith-Waterman

 0

 50

 100

 150

 200

 250

 300

 350

 400

1K x 1K 2K x 2K 3K x 3K 4K x 4K 5K x 5K 6K x 6K
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

S
p

e
e

d
u

p
 b

ro
u

g
h

t 
b

y
 m

ig
ra

ti
o

n

Matrix size

without migration
with migration

speedup

(d) Matrix Transpose

Fig. 10. Total execution time for each benchmark over a range of input sizes without and with VOCL load balancing.

VI. CONCLUSION

In this paper, we extend our VOCL framework to support

transparent, live virtual GPU migration. VGPU migration

enables VOCL to provide fault tolerance, perform resource

management and load balancing, and provide facilities for

quick system maintenance. When a migration is triggered, the

VOCL framework collects the OpenCL and application states

from the source GPU and transmits it to the new destination

GPU. VOCL reconstructs the VGPU at the destination and

transparently updates the application’s handle to the VGPU

to establish a connection with the new VGPU. To reduce

migration latency, we extend VOCL with an OpenCL dispatch

queue that limits the command queue depth, thereby reducing

the time to migration.

We evaluate the VOCL framework using four application

kernels. Results indicate that schemes to improve time to

migration and migration overhead can effectively reduce per-

formance penalties. In addition, VOCL’s VGPU load balancing

is used to demonstrate performance improvement when addi-

tional resources become available to the application. VOCL

load balancing is shown to provide a speedup of 1.7 and

1.9 for two compute-intensive benchmarks and 1.4 and 1.7

for applications needing more data movement between host

memory and device memory.

ACKNOWLEDGMENTS

This work is supported in part by the U.S. Department

of Energy under Contract DE-AC02-06CH11357, the NSF

grant CSR 0916719, the National Natural Science Founda-

tion of China (Grant No. Y046021001, 60903116), and the

Shenzhen Science and Technology Foundation (Grant No.

ZYC201006130310A, JC200903170443A).

REFERENCES

[1] “Top500 Supercomputing Sites,” http://www.top500.org/.

[2] AMD/ATI, “Stream Computing User Guide,” April 2009, http://
developer.amd.com/gpu assets/Stream Computing User Guide.pdf.

[3] NVIDIA, “NVIDIA CUDA Programming Guide-4.0,” May 2011,
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/
doc/CUDA C Programming Guide.pdf.

[4] Khronos OpenCL Working Group, “The OpenCL Specification,” June
2011, http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf.

[5] S. Xiao, P. Balaji, Q. Zhu, R. Thakur, S. Coghlan, H. Lin, G. Wen,
J. Hong, and W. Feng, “VOCL: An Optimized Environment for
Transparent Virtualization of Graphics Processing Units,” in Proc. of
Innovative Parallel Computing, May 2012.

[6] T. Chen, R. Raghavan, J. Dale, and E. Iwata, “Cell Broadband Engine
Architecture and Its First Implementation – A Performance View,” IBM
Journal of Research and Development, vol. 51, no. 5, p. 559, Nov 2007.

[7] MPI Forum, “MPI-2: A message-passing interface standard, version
2.2,” University of Tennessee, Knoxville, Tech. Rep., Sept. 2009.

[8] R. Ross, R. Latham, W. Gropp, R. Thakur, and B. Toonen, “Imple-
menting MPI-IO Atomic Mode without File System Support,” in IEEE
International Symposium on Cluster Computing and the Grid, May
2005.

[9] Network-Based Computing Laboratory, “MVAPICH2 (MPI-2 over
OpenFabrics-IB, OpenFabrics-iWARP, PSM, uDAPL and TCP/IP),”
http://mvapich.cse.ohio-state.edu/overview/mvapich2.

[10] P. H. Hargrove and J. C. Duell1, “Berkeley Lab Checkpoint/Restart
(BLCR) for Linux Clusters,” in Proc. of SciDAC, June 2006.

[11] X. Ouyang, S. Marcarelli, R. Rajachandrasekar, and D. K. Panda,
“RDMA-Based Job Migration Framework for MPI over InfiniBand,”
in Proc. of IEEE International Conference on Cluster Computing,
September 2010.

[12] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive Process-
Level Live Migration in HPC Environments,” in Proc. of ACM/IEEE
conference on Supercomputing, June 2006.

[13] H. Takizawa, K. Sato, K. Komatsu, and H. Kobayashi, “CheCUDA: A
checkpoint/restart tool for cuda applications,” in Proc. of International
Conference on Parallel and Distributed Computing, Applications and
Technologies, December 2009.

[14] ——, “CheCL: Transparent Checkpointing and Process Migration of
OpenCL Applications,” in Proc. of 25th Intl. Parallel and Distributed
Processing Symp., May 2011.

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauery, I. Pratt, and A. Wareld, “Xen and the Art of Virtualization,” in
Proc. of ACM Symposium on Operating Systems Principles, December
2003.

[16] L. Shi, H. Chen, and J. Sun, “vCUDA: GPU Accelerated High Per-
formance Computing in Virtual Machines,” in IEEE Transactions on
Computers, 2011.


