
Poster – High-Level, One-Sided Models on MPI:
A Case Study with Global Arrays and NWChem

James Dinan, Pavan
Balaji, Jeff R. Hammond
Argonne National Laboratory

{dinan, balaji,
hammond}@anl.gov

Sriram Krishnamoorthy
Pacific Northwest National

Laboratory
sriram@pnnl.gov

Vinod Tipparaju∗

Advanced Micro Devices
tipparajuv@ieee.org

ABSTRACT
Global Arrays (GA) is popular high-level parallel programming
model that provides data and computation management facilities
to the NWChem computational chemistry suite. GA’s global-view
data model is supported by the ARMCI partitioned global address
space runtime system, which traditionally is implemented natively
on each supported platform in order to provide the best perfor-
mance. The industry standard Message Passing Interface (MPI)
also provides one-sided functionality and is available on virtually
every supercomputing system. We present the first high-performance,
portable implementation of ARMCI using MPI one-sided commu-
nication. We interface the existing GA infrastructure with ARMCI-
MPI and demonstrate that this approach performance comparable
to a native implementation and enhances portability for applica-
tions like NWChem.

Categories and Subject Descriptors: D.1.3 [Programming Tech-
niques]: Concurrent Programming– Parallel programming; D.3.3
[Programming Languages]: Language Constructs and Features–
Concurrent programming structures

General Terms: Design, Performance

Keywords: One-sided Communication, MPI, GA, ARMCI, PGAS

1. OVERVIEW
The Global Arrays (GA) [5] programming model has gained

popularity in the scientific computing community, especially in the
computational chemistry domain where GA has been used to sup-
port many applications, including the popular NWChem compu-
tational chemistry suite [6]. GA allows the programmer to cre-
ate large, multidimensional shared arrays that span the memory of
multiple nodes in a distributed memory system. The programmer
interacts with global arrays through asynchronous, one-sided Get,
Put, and Accumulate operations as well as through high-level math-
ematical routines provided by GA.

The programmer access a global array through high-level array
indices; GA translates these high-level operations into low-level
communication operations that may target multiple nodes depend-
ing on the underlying data distribution. GA’s low-level commu-
nication is managed by the Aggregate Remote Memory Copy In-
terface (ARMCI) [4] one-sided communication runtime system.
Porting and tuning GA for a new platform, is accomplished at the

∗Work conducted while at Oak Ridge National Laboratory.

Copyright is held by the author/owner(s).
SC’11 Companion, November 12–18, 2011, Seattle, Washington, USA.
ACM 978-1-4503-1030-7/11/11.

ARMCI level and ARMCI traditionally is implemented natively us-
ing each platform’s low-level primitives. Because of its sophistica-
tion, creating an efficient and scalable implementation of ARMCI
for a new system is challenging; and production-ready, native im-
plementations are not yet available for several of the current top
performing machines.

The Message Passing Interface (MPI) [3] is the industry standard
communication runtime for high performance computing. An effi-
cient and scalable MPI implementation is provided by the system
vendor for virtually every parallel computing platform. One-sided
Remote Memory Access (RMA) communication support was in-
troduced in version 2 of the MPI standard. MPI’s one-sided com-
munication is unique in targeting extreme portability, even to non-
cache-coherent architectures. This design goal, however, has lead
to complexity in the model and semantic challenges that have been
an impediment to adoption [1].

In this work, we present the first implementation of GA’s low-
level ARMCI runtime system that utilizes MPI-RMA. By harness-
ing the portability of MPI, we have created a highly portable, high
performance runtime layer for GA that extends the usability of
GA and the NWChem computational chemistry suite to a wide
variety of systems, including systems where a native ARMCI im-
plementation is not available or has not been fully tuned. In ad-
dition, although GA and MPI are commonly used together, they
have separate runtime systems which leads to consumption of ex-
tra resources (e.g., duplicated pinned buffer management and asyn-
chronous progress engines). By enabling GA to share MPI’s run-
time system, we achieve a greater degree of interoperability that
increases the resources available to the application.

2. DESIGN OF ARMCI-MPI
We have created an intermediate global data management layer,

called MPI global memory regions (GMR), to align MPI’s RMA
window semantics with ARMCI’s PGAS model. GMR handles
the allocation of shared segments and provides translation between
ARMCI shared addresses and MPI windows. In addition, GMR
must manage the use of global memory in ARMCI operations and
direct local access in order to ensure MPI semantics are not vio-
lated. Direct load/store access to shared regions in MPI must be
protected with MPI_Win_lock/unlock operations. When a shared
buffer is provided as the local buffer for an ARMCI communica-
tion operation, GMR must perform appropriate locking and copy
operations in order to preserve multiple MPI semantics, including
the semantics that a window cannot be locked for more than one
target at any given time.

Multiple strategies are possible for supporting ARMCI’s strided
and I/O vector noncontiguous communication operations. We de-
scribe and evaluate a conservative approach which maintains all

 0

 5

 10

 15

 20

 25

 30

 35

 0 256 512 768 1024

C
C

S
D

 T
im

e
 (

m
in

)

Number of Nodes

Blue Gene/P

ARMCI-MPI CCSD
ARMCI-Native CCSD

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2048 4096 6144 8192 10240 12288

C
C

S
D

 T
im

e
 (

m
in

)

Number of Cores

Cray XT5

ARMCI-MPI CCSD
ARMCI-Native CCSD

 0

 3

 6

 9

 12

 15

 18

 744 1488 2232 2976 3720 4464 5208 5952
 0

 5

 10

 15

 20

 25

 30

C
C

S
D

 T
im

e
 (

m
in

)

(T
)

T
im

e
 (

m
in

)

Number of Cores

Cray XE6

ARMCI-MPI CCSD
ARMCI-Native CCSD

ARMCI-MPI (T)
ARMCI-Native (T)

Figure 1: NWChem CCSD and (T) execution time for native ARMCI and ARMCI-MPI.

MPI semantics as well as two more optimized approaches that lever-
age information about the data accessed to achieve better perfor-
mance. These methods perform batching of multiple communi-
cation operation in each passive mode epoch and generate MPI
datatypes which can be used in one sided operations to hand off the
operation to the MPI runtime which performs data packing. A low-
level evaluation reveals that the datatype generation method pro-
vides the best performance on many systems, however batched dis-
patch of operations can yield higher throughput on systems where
the data packing overhead is high (e.g. the Blue Gene/p).

ARMCI’s mutexes interface was implemented on top of MPI-
RMA using the algorithm of Latham et al. [2]. The implementation
of ARMCI’s atomic operations has exposed a significant gap in the
MPI-RMA interface and were implemented with an atomic opera-
tions mutex per allocation. We discuss this and other limitations of
the MPI 2.2 specification and how this work has driven the develop-
ment of new features in the MPI 3.0 MPI-RMA draft specification.

3. EXPERIMENTAL EVALUATION
We have evaluated our system on several platforms that cap-

ture a broad range of the high performance computing landscape.
We present here three of these systems: IBM Blue Gene/P, Cray
XT5, and Cray XE6. Each of these systems currently has a native
ARMCI implementation available and each represents an important
execution target for NWChem.

Performance evaluation was conducted with NWChem, on a wa-
ter cluster modeling problem using the CCSD(T) method and the
aug-cc-pVTZ basis set. Water clusters are the subject of intense sci-
entific interest and have been previously considered in performance-
oriented studies involving NWChem. The water pentamer has 50
electrons, which are represented using 460 atom-centered Gaussian
basis functions. Following convention, the 10 core electrons were
frozen, that is, they were not included in the CCSD(T) calculation.
Thus, no = 20 and nv = 435 in the O(n3

on
4
v) computational cost

of CCSD(T) using the spin-free formalism.
In Figure 1 we present a performance comparison between NW-

Chem running on GA using ARMCI-MPI and GA using native
ARMCI. We present CCSD computation timings for all platforms
and (T) timings for the XE6. For each system, we selected the best
strided method based on a microbenchmarking performance study:
batched on the Blue Gene and direct on Cray XT and XE.

On the Blue Gene/P, we see that ARMCI-MPI’s performance is
comparable to the performance of the native implementation for the
CCSD calculation and maintains good scaling. From the data we
have collected, we can see that performance is roughly 15%-20%
less for ARMCI-MPI. On the Cray XT, we demonstrate scaling to
12,288 processes with a similar performance trend for the CCSD
calculation. Finally, on Cray XE6 we see that ARMCI-MPI per-

 0

 0.5

 1

 1.5

 2

 2.5

2
0

2
5

2
10

2
15

2
20

2
25

B
a
n
d
w

id
th

 (
G

B
/S

e
c
)

Transfer Size (Bytes)

Cray XE

Get (MPI)
Put (MPI)
Acc (MPI)
Get (Nat.)
Put (Nat.)
Acc (Nat.)

Figure 2: Bandwidth achieved for contiguous ARMCI opera-
tions using ARMCI-MPI and native ARMCI on Cray XE6.

forms 30% better than the current native implementation on the
CCSD calculation. ARMCI-MPI also scales much better and con-
tinues to improve execution time of the expensive (T) calculation
on 5,952 processors while the native implementation’s performance
flattens for (T) and worsens for CCSD.

In Figure 2 we present a microbenchmark evaluation of ARMCI
contiguous communication bandwidth on the Cray XE6 that gives
insight into the poor performance of native ARMCI on this sys-
tem. From this data, we see that the communication performance
of the native implementation is significantly lower than that of the
MPI-RMA implementation. The performance of the MPI-RMA
implementation is greater because the native implementation of
ARMCI requires additional performance tuning. This demonstrates
ARMCI-MPI’s capability to enable early science on new platforms.

4. REFERENCES
[1] D. Bonachea and J. Duell. Problems with using MPI 1.1 and 2.0 as compilation

targets for parallel language implementations. Int. J. High Perform. Comput.
Netw., 1:91–99, August 2004.

[2] R. Latham, R. Ross, and R. Thakur. Implementing MPI-IO Atomic Mode and
Shared File Pointers Using MPI One-Sided Communication. Intl. J. High Perf.
Comp. Appl., 21(2):132–143, 2007.

[3] MPI Forum. MPI-2: Extensions to the message-passing interface. Technical
report, U. Tenn., Knoxville, 1996.

[4] J. Nieplocha and B. Carpenter. ARMCI: A portable remote memory copy
library for distributed array libraries and compiler run-time systems. Lecture
Notes in Computer Science, 1586, 1999.

[5] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Aprà.
Advances, applications and performance of the global arrays shared memory
programming toolkit. Int. J. High Perform. Comput. Appl., 20(2):203–231,
2006.

[6] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. Van
Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, and W.A. de Jong.
Nwchem: A comprehensive and scalable open-source solution for large scale
molecular simulations. Computer Physics Communications, 181(9):1477 –
1489, 2010.

	Overview
	Design of ARMCI-MPI
	Experimental Evaluation
	References

