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Abstract. Petascale machines with close to a million processors will
soon be available. Although MPI is the dominant programming model
today, some researchers and users wonder (and perhaps even doubt)
whether MPI will scale to such large processor counts. In this paper,
we examine this issue of how scalable is MPI. We first examine the MPI
specification itself and discuss areas with scalability concerns and how
they can be overcome. We then investigate issues that an MPI implemen-
tation must address to be scalable. We ran some experiments to measure
MPI memory consumption at scale on up to 131,072 processes or 80% of
the IBM Blue Gene/P system at Argonne National Laboratory. Based
on the results, we tuned the MPI implementation to reduce its memory
footprint. We also discuss issues in application algorithmic scalability to
large process counts and features of MPI that enable the use of other
techniques to overcome scalability limitations in applications.

1 Introduction

We are fast approaching an era where the largest supercomputers in the world
will have on the order of a million processor cores. MPI is the predominant
model for programming the largest parallel machines today. As these machines
scale to a million cores, many users and researchers are wondering whether MPI
(and applications written in MPI) will scale to that level. In reality, there are
multiple aspects to the scalability issue. First, is the MPI specification scalable,
or are there aspects of the interface that may have issues at large scale? Second,
is the MPI implementation scalable, and what do implementations need to ad-
dress to improve their scalability? Third, are the parallel algorithms that MPI
applications use themselves scalable to a million processes? We examine these
issues in this paper.

Factors affecting scalability include performance and memory consumption. A
nonscalable MPI function is one whose time or memory consumption per process
increases linearly (or worse) with the number of processes, all other things being
equal. For example, if the time taken by MPI Comm spawn increases linearly with
the number of processes being spawned, it indicates a nonscalable implemen-
tation of the function. Similarly, if the memory consumption of MPI Comm dup
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increases linearly with the number of processes, it is not scalable. Such examples
of nonscalability need to be identified and fixed, both in the MPI specification
and in implementations. A goal should be to use constructs that require only
constant space per process.

2 Scalability Issues in the MPI Specification

Although the developers of MPI may not have envisioned million-core systems
when MPI was first designed, it was nonetheless intended and designed with
scalability in mind. For example, MPI tries to maintain very little global state
per process. MPI also defines many operations as collective (called by a group
of processes), which enables them to be implemented scalably and efficiently.
Nonetheless, examination of the MPI specification reveals that some parts of it
may have issues at large scale, particularly with respect to memory consumption.

2.1 Irregular Collectives

Many collectives in MPI have an irregular (or “v”) version that allows users to
transfer unequal amounts of data among processes. These collectives take one
or more arguments that are arrays of size equal to the number of processes in
the communicator, e.g., arrays of counts and displacements in MPI Gatherv and
MPI Scatterv. An extreme case is MPI Alltoallw, which takes six such arrays
as arguments: counts, displacements, and datatypes for both sends and receives.
Using such parameters is nonscalable: on a million processes, each array will
consume 4 MB on each process.

Irregular collectives are often used in applications because MPI lacks any
other way to express communication within a sparse subset of processes in a
communicator. For example, in many applications that require nearest-neighbor
communication in a Cartesian grid, each process performs an MPI Alltoallv
on MPI COMM WORLD and specifies 0 bytes for all processes other than its neigh-
bors.1 The PETSc library [13], for example, uses MPI Alltoallv in this manner.
While most MPI implementations optimize this pattern by communicating only
with processes that have non-zero data, the MPI implementation must still scan
through the entire array of data sizes to know which processes have non-zero
data, and the user must allocate and initialize this array. On large numbers of
processes, the time to read the entire array itself can be large and may increase
linearly with system size, even though the number of neighbors a process com-
municates with remains fixed. Figure 1 shows this effect on an IBM Blue Gene/P
for calling MPI Alltoallv with zero-byte messages (no actual communication).

To avoid this problem, some computational libraries, such as PETSc, dis-
able MPI Alltoallv-based communication by default and instead perform direct
1 This communication cannot be done easily by using subcommunicators because each

process may belong to many subcommunicators and the collectives would have to
be carefully ordered to avoid deadlocks. Such a scheme would also serialize much of
the communication.
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Fig. 1. Zero-byte Alltoallv time on IBM Blue Gene/P (no actual communication)

point-to-point communication among nearest neighbors, which is not as efficient
as a concisely represented collective operation could be. The MPI Forum is work-
ing on fixing this issue in MPI-3. A proposal for sparse collectives has already
been put forth [8].

2.2 Graph Topology

One of the most nonscalable constructs in MPI (memory wise) is the general
graph topology. An MPI program can specify the communication pattern in the
program as a graph, with edges of the graph representing the communication
between nodes. This allows the MPI implementation to optimize communica-
tion by appropriate reordering or placement of processes. The problem with the
specification is that it requires the entire communication graph to be supplied
on each process. It therefore requires O(p + e) space per process where e is the
number of edges in the graph, and O(p2 + pe) in total (across all processes).
Other limitations of this interface are discussed in [20].

The MPI Forum is currently discussing alternatives in which the graph is
specified in a distributed form, requiring only O(d) space per process (where d
is the average degree of the communication graph) and O(p + e) space in total
across all processes [15]. It is then up to the MPI implementation to work in a
distributed fashion and not construct the whole graph for each process.

2.3 One-Sided Communication

Many applications have been shown to benefit from one-sided communication,
where a process directly accesses the memory of another process instead of send-
ing and receiving messages. For this reason, MPI-2 also defined an interface for
one-sided communication that uses put, get, and accumulate calls and three dif-
ferent synchronization methods. This interface, however, has not been widely
used for a number of reasons, the main being that its performance is often worse
than regular point-to-point communication. The culprit is often the synchro-
nization associated with one-sided communication. The fence synchronization is
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collective across the entire communicator associated with the window object,
even if only small subsets of processes communicate with each other. The post-
start-complete-wait method synchronizes over a smaller set, but it takes MPI
process groups as arguments, which are somewhat cumbersome to create. The
third method, lock-unlock, does not need synchronization with the target, but
the origin must lock-unlock each target separately and the target does not know
when the one-sided operation has completed. Other issues with this interface are
discussed in [3].

Solutions to this problem are being considered by the MPI Forum for inclusion
in MPI-3 as part of a new and better RMA interface for MPI [12].

2.4 All-to-All Communication

All-to-all communication is not a scalable communication pattern. Each process
has a unique data item to send to every other process, which leads to limited
opportunities for optimization compared with other collectives. This is not really
a problem with the MPI specification but is something applications should be
aware of and avoid as far as possible. Avoiding the use of all-to-all may require
new algorithms.

2.5 Representation of Process Ranks

One nonscalable aspect of MPI is the explicit representation of process ranks,
such as in the group routines MPI Group incl and MPI Group excl. While con-
cise representations of collections of processes are possible (for example, some
group routines support ranges), the MPI specification encourages the sort of
unstructured enumeration that is difficult to scale. Eliminating the explicit enu-
meration should be considered as an option for large scale.

2.6 Fault Tolerance

On systems with a million cores, the probability of failure or unrecoverable error
in some part of the system becomes very high. As a result, greater resilience
against failure is needed from all components of the software stack, from low-
level system software to libraries and applications. The MPI specification already
provides some support to enable users to write programs that are resilient to
failure, given appropriate support from the implementation [7]. For example,
when a process dies, an implementation, instead of aborting the whole job, can
return an error to any other process that tries to communicate with the failed
process. It is then up to the application to decide what to do at that point.

However, more support is need for true fault tolerance. For example, the cur-
rent set of error classes and codes need to be extended to indicate process failure
and other failure modes. The MPI Forum has a subgroup on fault tolerance that
is actively working on adding fault-tolerance capabilities to MPI-3 [11]. A num-
ber of research efforts in fault-tolerant MPI implementation also exist [4,6,9].
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3 MPI Implementation Scalability

In terms of scalability, MPI implementations must pay attention to two aspects
as the number of processes is increased: memory consumption of any function and
the performance of all collective functions (including functions such as MPI Init
and MPI Comm split).

3.1 Process Mappings

MPI communicators usually contain a mapping from MPI process ranks to pro-
cessor id’s. This mapping is usually implemented by an array of p entries (where
p is the number of processes in a communicator) for direct, constant-time lookup,
possibly with shortcuts for particular mappings. A number of other mappings
are often maintained, for instance, to enable fast navigation within and across
the nodes of an SMP cluster. Although convenient and very fast, this solution,
which requires linear space per process per communicator and quadratic space
over the system, is clearly not scalable. Instead, communicators with the same
process-to-processor mapping must share mappings. For example, if a commu-
nicator is dup’ed with MPI Comm dup, the new communicator must share the
mapping with the original communicator. (At least MPICH2 and vendor imple-
mentations derived from it do so.) However, for random communicators, such as
those created with MPI Comm split, mappings cannot be shared.

A solution to this problem is needed. Many mappings can be represented easily
by simple linear functions, ia + b mod p. The identity mapping is often all that
is needed for MPI COMM WORLD. Such linear representations, when possible, can
be easily detected and cover many common cases, e.g., subcommunicators that
form a consecutive segment from MPI COMM WORLD. However, this simple mapping
covers only a very small fraction of the order of p! possible communicators. More
systematic approaches to compact representations of permutations have recently
been explored in [2].

3.2 Memory Overheads in Communicator Creation

We ran some experiments on the IBM Blue Gene/P at Argonne to measure the
memory overheads of creating new communicators. Figure 2 shows the results of
a simple experiment to determine, for different numbers of processes, how many
communicators can be created by calling MPI Comm dup of MPI COMM WORLD in a
loop until it fails. Note that the maximum number of communicators supported
by the implementation by default is 8189 (independent of MPI Comm dup) because
of a limit on the number of available context ids.

With the default settings, the number of new communicators that can be
created drops sharply starting at about 2048 processes. For 128K processes,
the number drops to as low as 264. Although the MPI implementation does
not duplicate the process-to-processor mapping in MPI Comm dup, it allocates
some memory for optimizing collective communication. For example, it allocates
memory to store “metadata” (such as counts and offsets) needed to optimize
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Fig. 2. Maximum number of communicators that can be created with MPI Comm dup of
MPI COMM WORLD on IBM BG/P for different sizes of MPI COMM WORLD

MPI Alltoall and its variants. This memory is of size proportional to the num-
ber of processes in the communicator. Having such metadata per communicator
is useful as it allows different threads to perform collective operations on differ-
ent communicators in parallel. However, the per-communicator memory usage
increases with system size. Since the amount of memory per process is very
limited on the Blue Gene/P (512 MB), this optimization also limits the total
number of communicators that can be created with MPI Comm dup.

This scalability problem can be avoided in a number of ways. The sim-
plest way is to use an environment variable to disable collective optimizations
(DCMF COLLECTIVES=0), which eliminates the extra memory allocation. However,
it has the undesirable impact of reducing the performance of all collectives. An-
other approach is to use an environment variable (DCMF ALLTOALL PREMALLOC=N)
that delays the allocation of memory until the user actually calls MPI Alltoall
on the communicator. This approach helps only those applications that do not
perform MPI Alltoall. A third approach that we have implemented is to allocate
memory based on the amount of required parallelism rather than the number of
communicators. Since the per-communicator metadata buffers are intended to
enable different threads to perform collective operations on different communi-
cators in parallel, a fixed number of buffers equal to the maximum number of
threads allowed on a node of the Blue Gene/P (four) would be sufficient.

Figure 3 shows the memory consumption in all these cases after 32 calls to
MPI Comm dup. The fixed buffer pool enables all optimizations for all collectives
and takes up only a small amount of memory.

3.3 Scalability of MPI Init

Since the performance of MPI Init is rarely measured, implementations may
neglect scalability issues in MPI Init. On large numbers of processes, however,
a nonscalable implementation of MPI Init may result in MPI Init itself taking
several minutes. For example, on connection-oriented networks where a process
needs to establish a connection with another process before communication, it is
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Fig. 4. Duration of MPI Init with eager versus lazy connection establishment. Results
are from an eight-core per node cluster using TCP/IP as the communication protocol.

tempting for an MPI implementation to set up all-to-all connections in MPI Init
itself. This is however an O(p2) operation and hence inherently nonscalable. A
better approach is to establish no connections in MPI Init and instead establish
a connection when a process needs to communicate with another. This method
does make the first communication more expensive, but only those connections
that are really needed are set up. It also minimizes the number of connections as
applications written for scalability are not likely to have communication patterns
where all processes directly communicate with all other processes.

Figure 4 shows the time taken by MPI Init on a Linux cluster with TCP
when all connections are set up eagerly in MPI Init and when they are set up
lazily. The eager method is clearly not scalable.

3.4 Scalable Algorithms for Collective Communication

MPI libraries typically use O(log p) algorithms (such as a binomial tree) for
short-message collectives and O(m) algorithms, where m is the total message
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size, for large-message collectives (e.g., a broadcast implemented as a scatter
followed by an allgather) [19]. On a million-processor system, we can continue to
use O(log p) algorithms for short messages. For large messages, however, an O(m)
broadcast algorithm may not scale, as the message size in the allgather phase
will be very small. For example, for a 1 MB broadcast on one million processes,
the allgather phase may involve one byte messages. Hybrid algorithms [21] can
first do a logarithmic broadcast to a subset of nodes and then a scatter/allgather
on many subsets at the same time. Since a million-processor system will likely
have several large multicore nodes connected by a direct or switched network,
a hybrid collective that first does a network broadcast on the different nodes
followed by an intranode broadcast may be a more scalable solution depending
on the scalability of the memory hierarchy within a multicore node.

Topology-specific optimizations may also be useful. For easy assembly, most
interconnects have smaller diameters than the size of the network (O(log p) on
switched networks and O( 3

√
p) on 3D torus networks). A pipelined algorithm that

streams data on a spanning tree embedded in the network topology will provide
more scalable performance because the throughput of the collective is determined
by message size

diameter . For example, on the BG/P, the six-color torus algorithm can
keep 95% of all the links busy during an 8 MB broadcast operation [10].

Global collective acceleration supported by many networks such as Quadrics,
InfiniBand, and Blue Gene may be another solution for collectives on
MPI COMM WORLD. On the Blue Gene/P, for example, broadcast, reduce, allre-
duce, scatter, scatterv, and allgather collectives take advantage of the combine
and broadcast features of the tree network.

4 Enabling Application Scalability

As emerging hardware architectures make greater degrees of parallelism avail-
able, even necessary, existing applications are facing the problem of scaling up.
The complexity of solving this problem depends entirely on the basic algorithms
used by the application, and so no completely general approach will do. In this
section, we describe some ways in which features of MPI, perhaps not being used
in the current version of a particular application, can play an important role in
enabling that application to run effectively on more processors. In many cases,
it may be possible to retain most of the existing application code, which is of
course extremely desirable from the application’s point of view.

4.1 Higher-Dimensional Decompositions with MPI

One relatively straightforward case occurs when the application consists of calcu-
lations carried out on a rectangular two- or three-dimensional mesh with nearest-
neighbor communication, but the application has parallelized the computation
with a one-dimensional decomposition of the mesh. This approach results in con-
tiguous buffers for the MPI sends and receives, which simplifies the application.
Straightforward arithmetic shows that as the number of processors and mesh
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cells scales up, it becomes more efficient to use a two- or three-dimensional de-
composition of the mesh. This results in noncontiguous communication buffers
for sending and receiving edge or face data. MPI can help by providing the func-
tions for assembling MPI datatypes that describe these noncontiguous areas of
memory. Modern MPI implementations then use particularly efficient algorithms
for communicating these areas [18].

4.2 Use of Threads with MPI

In the earlier parts of this paper, we have been treating “MPI on a million pro-
cessors” as if it meant that the application would see one million separate MPI
ranks. This is unlikely to be the case in practice. As the amount of memory
per core decreases, applications will be increasingly motivated to use a shared-
memory programming model on multicore nodes, while continuing to use MPI
for communication among address spaces. MPI supports this transition by hav-
ing clear semantics for interoperation with threads, based on four levels of thread
safety that can be required by an application and provided by an MPI implemen-
tation. Although no particular thread system is mentioned in the MPI standard,
the MPI specification of levels of thread safety meshes particularly well with
the OpenMP standard. This feature has made OpenMP+MPI the current most
widely used hybrid programming method [5,16,17].

4.3 Use of MPI-Based Libraries to Hide Complexity

We describe an example of how MPI enables the development of libraries that
make it easier to write applications.

One of the most obviously nonscalable approaches to parallel programming
is the “manager-worker” algorithm, which achieves good load balancing at the
expense of having a single manager process to coordinate the dispensing of work
to the worker processes, collection of results, and perhaps addition of new work
to the work queue. We recently worked with a Monte Carlo application in nu-
clear physics [14], which used a variation of this approach and was stuck at
about 2000 processors, with the ambition of going to tens of thousands. MPI
helped solve this problem by enabling the construction of a general-purpose li-
brary called ADLB (Asynchronous Dynamic Load Balancing) [1] that eliminated
the single manager as a bottleneck by providing a simple put/get interface to
a distributed work queue. The application actually became simpler than be-
fore as the MPI communication disappeared; any application process simply
puts new work to the queue or retrieves work from it. The ADLB implemen-
tation, however, is relatively complex and for scalability and efficiency requires
a full range of MPI features, including thread safety, multiple communicators,
derived datatypes, asynchronous sends and receives, the “ready” send opera-
tion, and other features, all of which are hidden from the application. In this
way, MPI supports application scalability while actually simplifying application
code.
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5 Conclusions

MPI is ready for scaling to a million processors barring a few issues that can
be (and are being) fixed. Nonscalable parts of the MPI standard include irregu-
lar collectives and virtual graph topology. There is also a need for investigating
systematic approaches to compact, adaptive representations of process groups.
MPI implementations must pay careful attention to the memory requirements of
functions and systematically root out data structures whose size grows linearly
with the number of processes. To obtain scalable performance for collective com-
munication, MPI implementations may need to become more topology aware or
rely on global collective acceleration support. MPI also provides other features,
such as support for building complex libraries and clear semantics for interop-
eration with threads, that enable applications to use other techniques to scale
when limited by memory or data-size constraints.
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20. Träff, J.L.: SMP-aware message passing programming. In: Proc. of 8th Int’l Work-
shop on High-level Parallel Programming Models and Supportive Environments at
IPDPS 2003, pp. 56–65 (2003)
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