
J Supercomput
DOI 10.1007/s11227-011-0699-9

Designing energy efficient communication runtime
systems: a view from PGAS models

Abhinav Vishnu · Shuaiwen Song ·
Andres Marquez · Kevin Barker ·
Darren Kerbyson · Kirk Cameron · Pavan Balaji

© Springer Science+Business Media, LLC 2011

Abstract As the march to the exascale computing gains momentum, energy con-
sumption of supercomputers has emerged to be the critical roadblock. While archi-
tectural innovations are imperative in achieving computing of this scale, it is largely
dependent on the systems software to leverage the architectural innovations. Paral-
lel applications in many computationally intensive domains have been designed to
leverage these supercomputers, with legacy two-sided communication semantics us-
ing Message Passing Interface. At the same time, Partitioned Global Address Space
Models are being designed which provide global address space abstractions and one-
sided communication for exploiting data locality and communication optimizations.

A. Vishnu (�) · A. Marquez · K. Barker · D. Kerbyson
High Performance Computing Group, Pacific Northwest National Lab, Richland, WA, USA
e-mail: abhinav.vishnu@pnl.gov

A. Marquez
e-mail: andres.marquez@pnl.gov

K. Barker
e-mail: kevin.barker@pnl.gov

D. Kerbyson
e-mail: darren.kerbyson@pnl.gov

S. Song · K. Cameron
Scalable Computing Lab, Virginia Polytechnic Institute, Blackburg, VA, USA

S. Song
e-mail: s562673@cs.vt.edu

K. Cameron
e-mail: cameron@cs.vt.edu

P. Balaji
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
e-mail: balaji@mcs.anl.gov

mailto:abhinav.vishnu@pnl.gov
mailto:andres.marquez@pnl.gov
mailto:kevin.barker@pnl.gov
mailto:darren.kerbyson@pnl.gov
mailto:s562673@cs.vt.edu
mailto:cameron@cs.vt.edu
mailto:balaji@mcs.anl.gov


A. Vishnu et al.

PGAS models rely on one-sided communication runtime systems for leveraging high-
speed networks to achieve best possible performance.

In this paper, we present a design for Power Aware One-Sided Communication
Llibrary – PASCoL. The proposed design detects communication slack, leverages
Dynamic Voltage and Frequency Scaling (DVFS), and Interrupt driven execution to
exploit the detected slack for energy efficiency. We implement our design and evalu-
ate it using synthetic benchmarks for one-sided communication primitives, Put, Get,
and Accumulate and uniformly noncontiguous data transfers. Our performance evalu-
ation indicates that we can achieve significant reduction in energy consumption with-
out performance loss on multiple one-sided communication primitives. The achieved
results are close to the theoretical peak available with the experimental test bed.

Keywords Communication runtime system · DVFS · Energy efficiency · InfiniBand

1 Introduction

As we move forward to the next step of exascale computing, energy consumption
of systems is expected to be a significant hindrance in naively increasing the com-
putational power by three orders of magnitude from current petascale systems. For
example, the US Department of Energy estimates that in order to be able to sustain an
exaflop machine, its power consumption cannot be more than ten-fold that of current
petaflop machines [1]. That is, we need to achieve a thousand-fold increase in per-
formance, while allowing the power consumption to increase by only ten-fold, and
hence energy efficiency must improve by hundred-fold.

Parallel applications in a wide range of scientific domains are being designed to
use the proposed exascale systems. Message Passing Interface [2, 3] has become the
de facto standard for writing these applications. However, several of these scientific
domains are a natural fit for Partitioned Global Address Space (PGAS) models [4–7].
These models provide abstractions for distributed data structures (Arrays, Trees, etc.)
and primitives for one-sided data transfer to provide load balancing with different
execution paradigms. PGAS models use one-sided communication runtime systems
to achieve scalability and high performance, while providing abstractions from vari-
ability of networks.

As the runtime systems continue to evolve, many architectural innovations for en-
ergy efficient computing are being proposed in the literature and becoming available
with commodity architectures. User-space abstractions such as Dynamic Voltage and
Frequency Scaling (DVFS) have become available, which allow a user process to
dynamically change the frequency and voltage of processing elements. High-speed
networks such as InfiniBand [8], BlueGene [9], and Quadrics [10] provide methods
for interrupt based notification of data transfer—a powerful mechanism which may
be used to exploit communication slack.

In this paper, we design a Power Aware One-Sided Communication Library
(PASCoL) using Aggregate Remote Memory Copy Interface (ARMCI) [11], which
leverages the architectural and network abstractions to exploit the communication



Designing energy efficient communication runtime systems

slack and achieve energy efficiency. We lay down the design issues of various one-
sided communication primitives and associated communication protocols for dif-
ferent datatypes, specifically focusing on contiguous and uniformly noncontiguous
datatypes as a use case from many scientific applications. We implement our design
and evaluate it using synthetic benchmarks on an InfiniBand Cluster. Our perfor-
mance evaluation with benchmarks using various one-sided communication primi-
tives shows that we can achieve significant energy efficiency with negligible perfor-
mance degradation. The observed energy efficiency is close to the theoretical peak
provided by the experimental test bed.

The rest of the article is organized as follows. In Sect. 2, we present the background
of our work. In Sect. 3, we present the design of energy efficient communication run-
time system—PASCoL using ARMCI. In Sect. 4, we present the performance eval-
uation of PASCoL using synthetic benchmarks on an InfiniBand cluster. We present
the related work in Sect. 5. We conclude and present our future directions in Sect. 6.

2 Background

2.1 One-sided communication runtime systems

Many one-sided communication runtime systems have emerged to serve the re-
quirements of programming models. MPI-Remote Memory Access, Global Ad-
dress Space Network (GASNet) [4], Aggregate Remote Memory Copy Interface
(ARMCI) [11], Low Level API (LAPI) [12], and Deep Computing Messaging Frame-
work (DCMF) [13], are examples of one-sided communication runtime systems,
which provide put, get, and accumulate communication primitives. We specifically
focus on ARMCI [11] in this paper.

The ARMCI [11] communication runtime system provides a general-purpose, ef-
ficient, and widely portable one-sided communication operations optimized for con-
tiguous and noncontiguous (strided, scatter/gather, I/O vector) data transfers. In addi-
tion, ARMCI includes a set of atomic and mutual exclusion operations. ARMCI ex-
ploits native network communication interfaces and system resources (such as shared
memory) to achieve the best possible performance of the remote memory access/one-
sided communication. Optimized implementations of ARMCI are available for the
Cray Portals, Myrinet (GM and MX) [14], Quadrics [10], Giganet (VIA), and Infini-
Band (using OpenFabrics and Mellanox Verbs API) [8, 15–18]. It is also available
for leadership class machines including Cray XT4, XT5, XE6, and BlueGene/P [13].

Figure 1 shows the communication structure in ARMCI. The terminology between
processes on the same node is differentiated to facilitate the implementation of one-
sided communication primitives. The process with lowest rank on a node is called
master and the rest of the processes on the node are called clients. The master process
creates a thread, data server, which is used as an agent for remote asynchronous
progress.

A request for global memory allocation is served by a shared memory segment vis-
ible to all processes on a node. One-sided communication occurs only between global
address space data, precluding the requirement of client–client communication. The



A. Vishnu et al.

Fig. 1 Communication
Structure in ARMCI

data server is used in designing protocols which may be efficiently implemented us-
ing copy based approach. Efficient protocols which require bulk atomic updates (such
as accumulates) may also be designed using the data server. Depending on the work-
load, the network and the communication protocol, the data server may or may not
need to be active all the time.

2.2 Overview of power conservation approaches for high performance systems

Multiple researchers are exploring smart utilization of power and energy for large
scale high performance clusters with parallel applications. Some researchers have
applied power efficient strategies at the architectural level to the supercomputer. IBM
Blue Gene series [19] and Green Destiny [20] use low frequency processors to build
energy efficient systems. However, this approach requires a large amount of low
power processors to achieve better energy consumption (as an example, Blue Gene/P
consists of 73,728 quad core processors and consumes 2.3 MW of power [19]). For
higher energy efficiency, Power Modes [21] techniques using integrated power-aware
components have been provided for fine-grained control of high performance sys-
tems; these include low-power settings for network cards, spinning down disk drives
when they are not in use, making systems sleep or remotely shut down components by
smart external power devices like PDUs, etc. The challenge is to balance performance
decreases and various low-power operations. While we explore power reduction ap-
proaches, high performance is of utmost priority to the HPC community, and we
design PASCoL to minimize the performance penalty, while maximizing the energy
efficiency.

Using software to dynamically control the power states of system level compo-
nents has become one of the most popular techniques for power-aware computing.
Dynamic voltage/frequency scaling (DVFS) is being widely used for reducing sys-
tem power consumption during specific phases of parallel applications. Studies like
[22–26] have applied DVFS to reduce CPU power consumption and discussed the
tradeoffs between performance and energy efficiency. At node level, DVFS enables
several levels (P-states) of frequencies that can be switched during runtime. Low and
high power states are corresponding to low and high CPU performance utilization.

However, most of these studies have focused on achieving energy efficiency for
two-sided communication. One-sided communication exhibits different properties
and requires an asynchronous agent for communication. PASCoL, the focus of our



Designing energy efficient communication runtime systems

work relies on uniformly non-contiguous communication with support from asyn-
chronous agent heavily for progress. PASCoL combines DVFS methodology and in-
terrupt driven execution to achieve energy efficiency for one-sided communication
primitives.

3 Overall design of an energy efficient communication runtime system

In this section, we present the overall design of an energy efficient one-sided com-
munication runtime system. We explore the alternatives for energy efficiency—DVFS
and Interrupt driven execution and use them to design energy efficient protocols for
one-sided communication primitives.

3.1 Mechanisms for energy efficiency

There are multiple mechanisms available for designing energy efficient one-sided
communication protocols which are complementary. A combination of these proto-
cols may be used as follows:

– Interrupt based execution allows multiple stages of communication protocols to
transition using event driven mechanisms. As an alternative to polling—typically
used in high performance computing applications, this method allows much lower
CPU utilization to save energy, particularly if enough communication slack is
available to be exploited.

– DVFS can improve energy efficiency by reducing the frequency and voltage of
processors, typically on a per-core basis (frequency) and on a per-socket basis
(voltage). Different communication protocols require varying CPU utilization dur-
ing different phases. Energy efficiency can be achieved using DVFS, if the com-
munication slack is much higher than the overhead of transitioning between fre-
quency/voltage states.

The use of interrupt based execution and DVFS is shown in Fig. 2 using an exam-
ple of a one-sided get operation. After the operation is executed, the data becomes
available at a later point as shown on the time-line. The default case uses neither the
interrupt nor DVFS mechanisms. Polling in this case is indicated by regular activities
along the time-line between the get primitive and arrival of data (upper-left in the fig-
ure). Combining DVFS and polling (upper-right), the frequency of polling is reduced
due to reduced processor frequency but at an expense of transitions between DVFS
states. Polling is completely reduced by using interrupts but can increase in latency
results due to interrupt handling.

Fig. 2 Mechanisms for energy
optimizations



A. Vishnu et al.

Keeping the mechanisms discussed above in mind, we design and implement an
energy efficient one-sided communication runtime system. While our framework al-
lows full DVFS scaling due to the limitations of our experimental setup, we are able
to use frequency scaling only.

3.2 Energy efficient communication protocols for one-sided communication

In this section, we discuss the energy efficient communication protocols for one-sided
communication primitives. The protocols are classified using datatypes—contiguous
and noncontiguous.

3.3 Energy efficient protocols for contiguous data transfer

One-sided communication of contiguous data transfer is the primary case for using
the Remote Direct Memory Access (RDMA) mechanism provided by most Intercon-
nects such as InfiniBand [8], Quadrics [10], BlueGene [13], Cray Gemini. RDMA
mechanism requires the source and target buffer to be registered for most networks.

Let source and target represent the source and the target buffers respectively used
for the one-sided communication primitive. Let registered be the function which
checks whether a buffer has been registered. The following algorithm is executed
at the client process:

if registered(source) && registered(target) then
Use RDMA method

else
Copy Data in Intermediate Tranmission Buffer
Send Data

end if

When the source and target buffers are registered, the overall communication slack
is entirely the network data transfer. A combination of Interrupt based execution and
DVFS is used depending on the expected communication slack. Section 4 helps us
define the thresholds for using these mechanisms.

In the above algorithm, if either of the source or the target buffer is not registered,
a copy-based communication protocol is used. Since data copy is compute intensive,
the DVFS mechanism is used after the copy operation is complete. The interrupt
driven execution is used after the data transfer request is completed.

3.4 Handling noncontiguous data transfer

Handling noncontiguous data types for energy efficiency is of critical importance to
many application domains. Some of these domains use distributed arrays and per-
form communication on cartesian blocks of data. This results in uniformly noncon-
tiguous (strided) data transfer. Energy efficient communication protocols for strided
data transfer is pivotal for these applications.

Many communication protocols have been proposed for handling strided data
communication. Some high-speed networks support strided communication natively



Designing energy efficient communication runtime systems

by using scatter/gather mechanisms [8]. However, these mechanisms result in high
context memory utilization. Networks which provide high concurrency may also use
pipelined data transfer. However, when individual data size is small, such a protocol
results in significant overhead.

Let flatten be a utility which converts a strided data to a contiguous data by copying
it in Intermediate Transmission Buffers. A simplified protocol which is applicable to
a wide variety of strided communication primitives is presented below:

Flatten the strided buffer
Copy Data in Intermediate Tranmission Buffer
Send Data

The algorithm for flattening the strided buffer is a recursive operation, resulting
in pipelined data transfer. The interrupt driven execution may be used in conjunc-
tion with DVFS if the pipelined buffer size is above a particular threshold to exploit
communication slack.

3.5 Energy efficient asynchronous agent

To provide asynchronous progress of one-sided communication operations on remote
node(s), each node uses an asynchronous agent, such as the data server thread in
ARMCI [11]. The asynchronous agent is not involved when RDMA is used for data
transfer between user-level buffers. The asynchronous agent is active when a copy
based protocol is used for data transfer. Hence, the agent may be active only during
these phases of communication. In the PASCoL design, we use a combination of
interrupt driven execution and DVFS for the asynchronous agent. The frequency is
scaled up after an interrupt has been received and scaled down just before blocking
on the interrupt based execution.

3.6 Discussion

In this section, we discuss the issues currently not considered in PASCoL. We specif-
ically focus on atomic memory operations and synchronization methods:

Atomic memory operations Atomic memory operations are widely used in many
applications for load balancing, enabling passive synchronization etc. In PASCoL,
we have not considered optimizing atomic operations except accumulate operations,
which are typically performed on a large data block. Word-based atomic operations
are latency sensitive and using DVFS/interrupt based execution may result in sig-
nificant overhead. We plan to address this limitation in the future that may provide
guidelines for leveraging the interrupt based execution with DVFS.

Synchronization methods One-sided communication runtime systems provide ac-
tive and passive modes of synchronization. With active synchronization, origin and
target processes are involved in the synchronization. With passive synchronization,
only the origin process is involved. ARMCI supports only active mode of synchro-
nization. The synchronization operation may be optimized by possibly time-stamping



A. Vishnu et al.

the outstanding requests, providing an estimate of the communication slack. Inter-
rupt based execution with DVFS may be used if the expected communication slack is
above a threshold. Currently, PASCoL does not handle energy efficient synchroniza-
tion. We plan to address this limitation in the near future.

4 Power and performance evaluation of PASCoL

In this section, we present a performance evaluation of PASCoL using synthetic
benchmarks designed with ARMCI communication primitives. For one-sided com-
munication primitives—put, get, accumulate, and put strided, we present the relative
latency, relative energy consumption per megabyte of transfer, and relative power
consumption of a combination of DVFS and Interrupt/polling methodologies. We be-
gin with a description of the Experimental Test bed.

4.1 Experimental test bed

We use the Northwest ICE (NW-ICE) test bed at Pacific Northwest National Lab
for power and performance evaluation. The NW-ICE cluster has 192 compute nodes,
inter-connected with DDR InfiniBand network adapters and switches. Each NW-ICE
node is an Intel Xeon E5345 dual socket quad core CPU with 2.33 GHz frequency.
Each node has 16 GBytes of main memory with each core having a 32 kB cache size.
Using DVFS, NW-ICE allows frequencies of 2.33 GHz and 1.9 GHz. By default all
processes execute at 2.33 GHz frequency. The interface for changing the frequencies
is through a memory resident file system.

4.1.1 ESDC monitoring

Real-time data center energy efficiency depends on real-time data streaming from
all the power consuming hardware in a data center, as well as data acquisition and
reduction software. PNNL has developed a real-time software tool, FRED (Funda-
mental Research in Energy Efficient Data Centers), to monitor, analyze, and store
data from the ESDC-TB facility instrumentation. FRED’s underlying technology is
derived from PNNL’s experience in developing power plant, distribution, and facil-
ity monitoring and diagnostic systems for applications ranging from nuclear power
generation to building management. We use the real-time software tool of FRED to
analyze the energy consumption for various synthetic benchmarks.

FRED consists of the ESDC-TB monitoring system, the Environmental and
Molecular Science (EMSL) facility monitoring system, a data collector, a central
database, and a web-based graphical user interface (GUI) client. The ESDC-TB mon-
itoring system derives from PNNL’s Decision Support for Operations and Mainte-
nance (DSOM) software (R&D100Award), an advanced, flexible diagnostic moni-
toring application for energy supply and demand systems. The ESDC-TB monitoring
system interfaces to auxiliary data acquisition systems that collect data specific to
NW-ICE.



Designing energy efficient communication runtime systems

4.2 Performance evaluation methodology

In this section, we present the performance methodology for evaluating the power
and performance of PASCoL. We design pure communication benchmarks using the
one-sided communication primitives—put, get, accumulate, and put strided.

To study the impact of approaches proposed in Sect. 3, we design a shift com-
munication pattern benchmark using each of these communication primitives [27].
Unlike MPI based communication benchmark—which implicitly synchronizes the
communicating processes, the shift benchmark designed with one-sided communi-
cation primitives synchronizes the memory associated with communication. The fol-
lowing algorithm presents an example of designing the shift benchmark using put
primitive:

start timer
for j = 0 to iterations do

for i = 0 to numprocs do
dest ← myid + i

put(data) to dest
fence to dest

end for
end for
end timer

Similarly, the shift benchmark is designed by replacing the corresponding put
primitive with get, accumulate, and put strided primitives. A total of four combi-
nations are used for comparison—polling, polling + DVFS, Interrupt, and Interrupt
+ DVFS. These combinations are used to compare the performance of evaluation
metrics discussed below.

4.2.1 Evaluation metrics

There are three evaluation metrics which are used for evaluation of PASCoL and
comparing the performance of various approaches presented above. The fundamental
metric is the latency observed by each of the approaches. Another metric of interest is
the power consumption of the approaches. However, each of the above metrics may
not be individually sufficient. We propose a derived metric—Energy consumed rela-
tive to volume of data transfer (Energy/MByte). We specifically focus on the thresh-
olds beyond which the power and energy/mbyte may be improved without an increase
in latency.

4.3 Results

In this section, we present the evaluation of PASCoL for each of the communication
primitives using the metrics presented above, while comparing the performance of
the approaches—Polling, Polling + DVFS, Interrupt, Interrupt + DVFS. The perfor-
mance results are normalized with the polling approach—the default methodology
for most one-sided communication runtime systems.



A. Vishnu et al.

Fig. 3 ARMCI put
performance, latency

Fig. 4 ARMCI put
performance, normalized power
consumption

Figures 3, 4, and 5 show the normalized latency, power consumption and En-
ergy/Mbyte for the shift communication benchmark using the put one-sided primitive
on 64 processes, respectively. The polling approach outperforms other approaches for
small and medium size messages, due to their sensitivity to latency and significant
overhead of using the Interrupt and DVFS mechanisms. We observe spikes for Inter-
rupt and DVFS based approaches, due to the limitations of our current test bed, as the
sampling is available once every 5 seconds.

With increasing message size, the latency for multiple approaches converges sig-
nificantly (less than 5% difference). At 16 KBytes message size, we observe that the
latency for all approaches (with a slight exception to Polling + DVFS), converges.
A similar trend is observed in the relative power consumption of these approaches.
For messages at 256 KBytes, the Interrupt + DVFS approach provides an improve-
ment of 12% in power consumption in comparison to the polling approach. Smaller
improvements are also observed in the power consumption of other approaches.

At the same time, Energy/Mbyte consumption for the Interrupts + DVFS approach
improves significantly compared to the other approaches. Overall, we observe an im-
provement of 8% in the Energy/Mbytes using Interrupts with DVFS compared to the



Designing energy efficient communication runtime systems

Fig. 5 ARMCI put
performance, energy/MBytes

Fig. 6 ARMCI get
performance, latency

default polling case, while an improvement of 5% is observed compared to the Inter-
rupts scheme. For large messages, the overhead incurred by interrupts is amortized
by the overall time of data transfer. We observe that a threshold of 16 KBytes can be
used for using Interrupts with DVFS without significant performance degradation.

Figures 6, 7, and 8 show the normalized latency, Power consumption and En-
ergy/Mbyte for the shift communication benchmark using the get one-sided prim-
itive on 64 processes, respectively. We observe the trends in the performance sim-
ilar to the shift communication benchmark designed using the put communication
primitive. The polling approach outperforms other approaches for all the evaluation
metrics and small messages. The limitations of sampling rate produces spikes, which
are prominent for smaller messages and less for the larger messages. An improve-
ment of about 11% is observed in the relative power consumption by Interrupt +
DVFS approach, while much lesser improvements are observed for Interrupt and
DVFS only approaches. The Interrupt approach produces an out-liar at 4 KBytes mes-
sage, which is still under observation. Similar trends are observed for energy/mbytes
metric, where interrupts + DVFS approach outperforms other approaches for larger
messages, but incurs significant overhead for small messages.



A. Vishnu et al.

Fig. 7 ARMCI get
performance, normalized power
consumption

Fig. 8 ARMCI get
performance, energy/MBytes

Figures 9, 10, and 11 show the normalized latency, Power consumption and En-
ergy/Mbyte for the shift communication benchmark using the accumulate one-sided
primitive on 64 processes, respectively. The shift communication benchmarks using
put, and get primitives use RDMA and the associated communication protocol does
not involve the asynchronous agent. The accumulate one-sided communication prim-
itive uses the pipelined data transfer, and involves the asynchronous agent for remote
progress.

As presented in Sect. 3, the pipelined communication protocol flattens the buffer
and uses the copy based approach. The copy phase and the atomic update phases of
the protocol are CPU intensive. Hence, we do not use DVFS during this phase. As a
result, the overall improvement in relative power consumption and energy/mbyte is
reduced in comparison to the contiguous data transfer. The improvement in relative
power consumption is 8%, while the improvement in Energy/Mbyte is about 6%.

Figures 12, 13, and 14 show the normalized latency, power consumption and en-
ergy/Mbyte for the shift communication benchmark using the put strided one-sided
primitive on 64 processes, respectively. The strided communication primitives use
copy based approach for data transfer. Similar to the shift communication bench-



Designing energy efficient communication runtime systems

Fig. 9 ARMCI accumulate
performance, latency

Fig. 10 ARMCI accumulate
performance, normalized power
consumption

Fig. 11 ARMCI accumulate
performance, energy/MBytes

mark using accumulate primitive, the relative latencies converge for messages be-
yond 32 Kbytes and significant improvements in the relative power consumption and
energy/mbyte are also observed.



A. Vishnu et al.

Fig. 12 ARMCI put strided
performance, latency

Fig. 13 ARMCI put strided
performance, normalized power
consumption

Fig. 14 ARMCI put strided
performance, energy/MBytes



Designing energy efficient communication runtime systems

Table 1 Energy efficiency advantages for different communication semantics

Primitive Min message size (KB) Increase in latency (%) Decrease in energy (%)

Get 32 5 6

Put 16 5 6

Accumulate 16 3 5

Strided Put 16 2 6

4.4 Discussion

As presented in the previous section, a combination of interrupt based execution and
DVFS mechanisms provides the maximum energy efficiency for large messages with
each of the communication primitives. A summary of the results is presented in the
Table 1 for each of the put, get, accumulate, and strided put primitives. In this ta-
ble, we also indicate the increase in latency resulting from the DVFS transitions and
the interrupt handling, and also the overall decrease in energy consumption. These
metrics are presented relative to the default case of no DVFS and use of polling.
Also listed in Table 1 is the message size at which increased energy efficiency is
observed.

As we described in the previous section, the NW-ICE test bed used for the ex-
perimentation has its limitations. In particular, there are only two processor-core fre-
quency levels available—1.9 GHz and 2.33 GHz. This limits the potential energy
efficiency that may be observed. Assuming that the processor core power consump-
tion is directly proportional to the frequency then the difference in these two states
represents a power difference of 22% and affects just the power used by the pro-
cessors. Measurements made on NW-ICE on a rack basis indicate that an idle rack
consumes 7.8 kW, and a rack containing all processor-cores performing the all-to-all
benchmark consumes 9.4 kW resulting in a 16% difference. These two observations
are inline with each other as the rack-based measurements include everything in the
rack and not just the processors.

The energy improvements observed, as listed in Table 1 shows that a significant
portion of the 16% maximum savings is being realized when using the Interrupt and
DVFS energy saving mechanisms. Current state of the art processors including the
Intel Nehalem series, and the AMD Magny-Cours have a greater number of DVFS
states in comparison to our experimental test bed. In addition, the overhead of tran-
sitioning between DVFS states is expected to reduce in future processor generations.
These two factors impact expected energy savings in two ways:

– The greater number of DVFS states has a greater potential for energy savings for
large-messages when using the combination of Interrupt and DVFS mechanisms
for one-sided communications.

– The decrease in transition overheads should reduce the message size at which en-
ergy savings will occur.



A. Vishnu et al.

5 Related work

Multiple researchers have focused on exploring accurate component and system level
power/energy profiling approaches. Other researchers have designed and developed
techniques to efficiently reduce the total power consumption without incurring per-
formance penalty. State of the art methodologies focus on measuring the aggregate
power consumption of entire system or building level power [28] through proprietary
hardware [29], power panels, or empirical estimations by rules-of-thumb [30]. Many
studies, including both simulations and empirical analysis, have also explored eval-
uation of individual system components such as processor [31, 32], memory [31],
disk [33–35], motherboard [36], CPU and system fan control [37], and intercon-
nection networks [38]. Due to a high demand for fine-grained system-wide com-
ponent level power/energy profiling tools, Ge et al., have designed and developed a
power/energy/performance profiling infrastructure—PowerPack [36] to evaluate en-
ergy efficiency and power-aware techniques for parallel applications. Song et al. have
used PowerPack to study the power characteristics of multiple suites in HPCC bench-
mark [39] at a high granularity [40]. Most of the studies mentioned above have con-
sidered evaluation of workloads in context of single node, considering mechanisms
such as DVFS. Recently, Kandalla et al., have presented a design for power efficient
collective communication algorithms [41]. However, the design is not applicable for
one-sided communication primitives which do not exhibit regular communication
structure as collective communication primitives. To facilitate this, we have designed
and implemented PASCoL, which serves this purpose.

Multiple researchers have also focused on reducing total power consumption dur-
ing runtime without incurring performance penalty. One of the most common ap-
proaches to achieve this is to save CPU power during communication phases by
applying Dynamic Voltage/Frequency Scaling (DVFS), since CPU consumes most
power in system-wide for most current architectures [36, 40]. Many researchers have
discussed the tradeoff between performance and energy consumption for scientific
applications such as NAS Parallel Benchmark [23, 42–45]. They have pointed out the
importance of efficient detection of communication regions during runtime [42, 44].
In [44], researchers also combine DVFS with concurrency throttling technique on
multicore systems to explore the right combination of “switches” (frequency level
and number of cores being utilized) for saving power. Instead of locating communi-
cation phases, work such as [46] monitors system performance counters to estimate
workload in order to predict the proper frequency for next time interval on a single
node. Researchers in [47] and [41] propose energy saving approaches using DVFS
and CPU throttling for collective communication primitives. Liu et al. have provided
a detailed empirical study of the benefits of power efficiency of RDMA compared
to the traditional communication protocols such as TCP/IP [48]. However, this work
has been done using verbs level interface, and does not provide guidance for higher
level communication protocols for implementation.

None of the studies mentioned above have explored design challenges for one-
sided communication runtime systems, while recent work has focused on designing
energy efficient collective communication primitives. To address this limitation of
state of the art research, we present PASCoL, which provide power efficient and high
performance communication runtime system for one-sided primitives.



Designing energy efficient communication runtime systems

6 Conclusions and future work

In this paper, we have designed a Power Aware One-Sided Communication Library
(PASCoL) using Aggregate Remote Memory Copy Interface (ARMCI) [11], which
leverages the architectural and network abstractions to exploit the communication
slack for energy efficiency. We have laid down the issues involving various one-
sided communication primitives and associated communication protocols for dif-
ferent datatypes, specifically focusing on contiguous and uniformly noncontiguous
datatypes as a use case from many scientific applications. We have implemented our
design and evaluated it using synthetic benchmarks on an InfiniBand Cluster. Our
performance evaluation with benchmarks using various one-sided communication
primitives has demonstrated that we can achieve significant energy efficiency with
negligible performance degradation. The observed energy efficiency is close to the
theoretical peak provided by the experimental test bed.

We plan to continue design and development of energy efficient one-sided com-
munication protocols for different platform and high speed communication networks.
We also plan to evaluate the efficacy of these designs on large scale systems using
scientific applications such as NWChem [49] and Subsurface Transport over Multiple
Phases (STOMP) [50].

Acknowledgements This work was supported in part by the National Science Foundation Grant
#0702182 and by Office of Advanced Scientific Computing Research, Office of Science, US Department
of Energy, under Contract DE-AC02-06CH11357.

References

1. Crosscutting Technologies for Computing at the Exascale. http://extremecomputing.labworks.org
(2010)

2. Gropp W, Lusk E, Doss N, Skjellum A (1996) A high-performance, portable implementation of the
MPI message passing interface standard. Parallel Comput 22(6):789–828

3. Geist A, Gropp W, Huss-Lederman S, Lumsdaine A, Lusk EL, Saphir W, Skjellum T, Snir M (1996)
MPI-2: Extending the message-passing interface. In: Euro-Par, vol I, pp 128–135

4. Husbands P, Iancu C, Yelick KA (2003) A performance analysis of the Berkeley UPC compiler. In:
International conference on supercomputing, pp 63–73

5. Nieplocha J, Harrison RJ, Littlefield RJ (1996) Global arrays: a nonuniform memory access program-
ming model for high-performance computers. J Supercomput 10(2):169–189

6. Charles P, Grothoff C, Saraswat V, Donawa C, Kielstra A, Ebcioglu K, von Praun C, Sarkar V (2005)
X10: an object-oriented approach to non-uniform cluster computing. In: OOPSLA ’05: Proceedings
of the 20th annual ACM SIGPLAN conference on object-oriented programming, systems, languages,
and applications. ACM, New York, pp 519–538

7. Chamberlain BL, Callahan D, Zima HP (2007) Parallel programmability and the Chapel language. Int
J High Perform Comput Appl 21(3):291–312

8. InfiniBand Trade Association (2004) InfiniBand Architecture Specification, Release 1.2, October
2004

9. Yu H, Chung I-H, Moreira J (2006) Blue gene system software—topology mapping for blue gene/l su-
percomputer. In: SC ’06: Proceedings of the 2006 ACM/IEEE conference on supercomputing. ACM,
New York, p 116

10. Petrini F, Feng W, Hoisie A, Coll S, Frachtenberg E (2002) The quadrics network: high-performance
clustering technology. IEEE MICRO 22(1):46–57

11. Krishnan M, Vishnu A, Palmer B (2010) Aggregate remote memory copy interface

http://extremecomputing.labworks.org


A. Vishnu et al.

12. Shah G, Nieplocha J, Mirza JH, Kim C, Harrison RJ, Govindaraju R, Gildea KJ, DiNicola P, Bender
CA (1998) Performance and experience with LAPI—a new high-performance communication library
for the IBM RS/6000 SP. In: IPPS/SPDP, pp 260–266

13. Kumar S, Dozsa G, Almasi G, Heidelberger P, Chen D, Giampapa ME, Blocksome M, Faraj A, Parker
J, Ratterman J, Smith B, Archer CJ (2008) The deep computing messaging framework: generalized
scalable message passing on the Blue Gene/P supercomputer. In: ICS ’08: Proceedings of the 22nd
annual international conference on supercomputing, pp 94–103

14. Boden NJ, Cohen D, Felderman RE, Kulawik AE, Seitz CL, Seizovic JN, Su W (1995) Myrinet: a
gigabit-per-second local area network. IEEE MICRO 15(1):29–36

15. Vishnu A, Mamidala A, Narravula S, Panda DK (2007) Automatic path migration over InfiniBand:
early experiences. In: Proceedings of third international workshop on system management techniques,
processes, and services, held in conjunction with IPDPS’07, March 2007

16. Vishnu A, Mamidala AR, Jin H-W, Panda DK (2005) Performance modeling of subnet management
on fat tree InfiniBand networks using OpenSM. In: Proceedings of first international workshop on
system management techniques, processes, and services, held in conjunction with IPDPS’07

17. Narravula S, Marnidala A, Vishnu A, Vaidyanathan K, Panda DK (2007) High performance dis-
tributed lock management services using network-based remote atomic operations. In: CCGRID, pp
583–590

18. Narravula S, Mamidala A, Vishnu A, Santhanaraman G, Panda DK (2007) High performance MPI
over iWARP: early experiences. In: International conference on parallel processing

19. IBM BlueGene Team (2008) Overview of the IBM Blue Gene/P project. IBM J Res Dev 52(1/2):199–
220

20. Feng W, Warren M, Weigle E (2002) The bladed beowulf: A cost-effective alternative to traditional
beowulfs. In: IEEE international conference on cluster computing, p 245

21. Cameron KW, Ge R, Feng X (2005) High-performance, power-aware distributed computing for sci-
entific applications. Computer 38(11):40–47

22. Rountree B, Lowenthal DK, Funk S, Freeh VW, de Supinski BR, Schulz M (2007) Bounding energy
consumption in large-scale mpi programs. In: SC ’07: Proceedings of the ACM/IEEE conference on
supercomputing. ACM, New York, pp 1–9

23. Feng X, Ge R, Cameron KW (2005) Power and energy profiling of scientific applications on dis-
tributed systems. In: IPDPS ’05: Proceedings of the 19th IEEE international parallel and distributed
processing symposium (IPDPS’05)—papers. IEEE Computer Society, Washington, p 34

24. Hsu C-H, Kremer U, Hsiao M (2001) Compiler-directed dynamic voltage/frequency scheduling for
energy reduction in microprocessors. In: ISLPED ’01: Proceedings of the international symposium
on low power electronics and design. ACM, New York, pp 275–278

25. Burd TD, Brodersen RW (2000) Design issues for dynamic voltage scaling. In: ISLPED ’00: Pro-
ceedings of the 2000 international symposium on low power electronics and design. ACM, New York,
pp 9–14

26. Benini L, de Micheli G (2000) System-level power optimization: techniques and tools. ACM Trans
Des Autom Electron Syst 5(2):115–192

27. Vishnu A, Koop MJ, Moody A, Mamidala AR, Narravula S, Panda DK (2007) Hot-spot avoidance
with multi-pathing over InfiniBand: an MPI perspective. In: Cluster computing and grid, pp 479–486

28. LBNL (2003) Data Center Energy Benchmarking Case Study: Data Center Facility 5
29. IBM (2007) PowerExecutive
30. Bailey AM (2002) Accelerated strategic computing initiative (asci): Driving the need for the terascale

simulation facility (tsf). In: Energy 2002 workshop and exposition. IEEE Computer Society, Los
Alamitos

31. Ye W, Vijaykrishnan N, Kandemir M, Irwin MJ (2000) The design and use of simple power: A cycle-
accurate energy estimation tool, pp 340–345

32. Brooks D, Tiwari V, Martonosi M (2000) Wattch: a framework for architectural-level power anal-
ysis and optimizations. In: ISCA ’00: proceedings of the 27th annual international symposium on
computer architecture. ACM, New York, pp 83–94

33. Zedlewski J, Sobti S, Garg N, Zheng F, Krishnamurthy A, Wang R (2003) Modeling hard-disk power
consumption. In: FAST ’03: proceedings of the 2nd USENIX conference on file and storage technolo-
gies. USENIX Association, Berkeley, pp 217–230

34. Helmbold DP, Long DDE, Sherrod B (1996) A dynamic disk spin-down technique for mobile comput-
ing. In: MobiCom ’96: Proceedings of the 2nd annual international conference on mobile computing
and networking. ACM, New York, pp 130–142



Designing energy efficient communication runtime systems

35. Douglis F, Krishnan P, Bershad BN (1995) Adaptive disk spin-down policies for mobile computers.
In: MLICS ’95: Proceedings of the 2nd symposium on mobile and location-independent computing.
USENIX Association, Berkeley, pp 121–137

36. Ge R, Feng X, Song S, Chang H-C, Li D, Cameron KW (2009) Powerpack: Energy profiling and
analysis of high-performance systems and applications. IEEE Trans Parallel Distrib Syst 99:658–671

37. Moore J, Chase J, Ranganathan P, Sharma R (2005) Making scheduling “cool”: temperature-aware
workload placement in data centers. In: ATEC ’05: Proceedings of the annual conference on USENIX
annual technical conference, USENIX Association, Berkeley, p 5

38. Xinping H-SW, Wang HS, Zhu X, Peh LS, Malik S (2002) Orion: A power-performance simulator
for interconnection networks, pp 294–305

39. Luszczek PR, Bailey DH, Dongarra JJ, Kepner J, Lucas RF, Rabenseifner R, Takahashi D (2006) The
hpc challenge (hpcc) benchmark suite. In: SC ’06: Proceedings of the 2006 ACM/IEEE conference
on supercomputing. ACM, New York, p 213

40. Song S, Ge R, Feng X, Cameron KW (2009) Energy profiling and analysis of the hpc challenge
benchmarks. Int J High Perform Comput Appl 23(3):265–276

41. Kandalla SSK, Mancini EP, Panda DK (2010) Designing power-aware collective communication al-
gorithms for InfiniBand clusters. Technical Report, June 2010

42. Freeh VW, Lowenthal DK, Pan F, Kappiah N, Springer R, Rountree BL, Femal ME (2007) Analyzing
the energy-time trade-off in high-performance computing applications. IEEE Trans Parallel Distrib
Syst 18(6):835–848

43. Freeh VW, Pan F, Kappiah N, Lowenthal DK, Springer R (2005) Exploring the energy-time tradeoff
in mpi programs on a power-scalable cluster. In: IPDPS ’05: Proceedings of the 19th IEEE interna-
tional parallel and distributed processing symposium (IPDPS’05)—papers. IEEE Computer Society,
Washington, DC, p 4.1

44. Curtis-Maury M, Shah A, Blagojevic F, Nikolopoulos DS, de Supinski BR, Schulz M (2008) Pre-
diction models for multi-dimensional power-performance optimization on many cores. In: PACT ’08:
Proceedings of the 17th international conference on parallel architectures and compilation techniques.
ACM, New York, pp 250–259

45. NAS (2010) NAS Parallel Benchmark
46. Ge R, Feng X, Feng W-C, Cameron KW (2007) Cpu miser: A performance-directed, run-time system

for power-aware clusters. In: ICPP ’07: Proceedings of the 2007 international conference on parallel
processing. IEEE Computer Society, Washington, DC, p 18

47. Zamani R, Afsahi A, Qian Y, Hamacher C (2007) A feasibility analysis of power-awareness and
energy minimization in modern interconnects for high-performance computing. In: CLUSTER ’07:
Proceedings of the 2007 IEEE international conference on cluster computing. IEEE Computer Society,
Washington, DC, pp 118–128

48. Liu J, Poff D, Abali B (2009) Evaluating high performance communication: a power perspective.
In: ICS ’09: Proceedings of the 23rd international conference on supercomputing. ACM, New York,
pp 326–337

49. Kendall RA, Aprà E, Bernholdt DE, Bylaska EJ, Dupuis M, Fann GI, Harrison RJ, Ju J, Nichols JA,
Nieplocha J, Straatsma TP, Windus TL, Wong AT (2000) High performance computational chemistry:
an overview of NWChem, a distributed parallel application. Comput Phys Commun 128(1–2):260–
283

50. Subsurface Transport over Multiple Phases. STOMP. http://stomp.pnl.gov/

http://stomp.pnl.gov/

	Designing energy efficient communication runtime systems: a view from PGAS models
	Abstract
	Introduction
	Background
	One-sided communication runtime systems
	Overview of power conservation approaches for high performance systems

	Overall design of an energy efficient communication runtime system
	Mechanisms for energy efficiency
	Energy efficient communication protocols for one-sided communication
	Energy efficient protocols for contiguous data transfer
	Handling noncontiguous data transfer
	Energy efficient asynchronous agent
	Discussion
	Atomic memory operations
	Synchronization methods


	Power and performance evaluation of PASCoL
	Experimental test bed
	ESDC monitoring

	Performance evaluation methodology
	Evaluation metrics

	Results
	Discussion

	Related work
	Conclusions and future work
	Acknowledgements
	References


