
Comput Sci Res Dev (2011) 26: 247–256
DOI 10.1007/s00450-011-0168-y

S P E C I A L I S S U E PA P E R

Mapping communication layouts to network hardware
characteristics on massive-scale blue gene systems

Pavan Balaji · Rinku Gupta · Abhinav Vishnu ·
Pete Beckman

Published online: 6 April 2011
© Argonne National Laboratory 2011

Abstract For parallel applications running on high-end
computing systems, which processes of an application get
launched on which processing cores is typically determined
at application launch time without any information about
the application characteristics. As high-end computing sys-
tems continue to grow in scale, however, this approach is
becoming increasingly infeasible for achieving the best per-
formance. For example, for systems such as IBM Blue Gene
and Cray XT that rely on flat 3D torus networks, process
communication often involves network sharing, even for
highly scalable applications. This causes the overall appli-
cation performance to depend heavily on how processes are
mapped on the network. In this paper, we first analyze the
impact of different process mappings on application perfor-
mance on a massive Blue Gene/P system. Then, we match
this analysis with application communication patterns that

This work was supported in part by the National Science Foundation
Grant #0702182 and by Office of Advanced Scientific Computing
Research, Office of Science, US Department of Energy, under
Contract DE-AC02-06CH11357.

P. Balaji (�) · R. Gupta
Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
e-mail: balaji@mcs.anl.gov

R. Gupta
e-mail: rgupta@mcs.anl.gov

A. Vishnu
High Performance Computing Group, Pacific Northwest National
Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
e-mail: abhinav.vishnu@pnl.gov

P. Beckman
Argonne Leadership Computing Facility, Argonne National
Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
e-mail: beckman@mcs.anl.gov

we allow applications to describe prior to being launched.
The underlying process management system can use this
combined information in conjunction with the hardware
characteristics of the system to determine the best mapping
for the application. Our experiments study the performance
of different communication patterns, including 2D and 3D
nearest-neighbor communication and structured Cartesian
grid communication. Our studies, that scale up to 131,072
cores of the largest BG/P system in the United States (us-
ing 80% of the total system size), demonstrate that different
process mappings can show significant difference in overall
performance, especially on scale. For example, we show that
this difference can be as much as 30% for P3DFFT and up to
twofold for HALO. Through our proposed model, however,
such differences in performance can be avoided so that the
best possible performance is always achieved.

Keywords Process mapping · Blue gene · Torus networks

1 Introduction

The massive-scale systems being deployed throughout the
world will utilize a large amount of shared hardware in-
cluding shared caches, memory, and network infrastructure.
For example, systems such as the IBM Blue Gene (BG) [1]
and Cray XT [2] have started utilizing flat 3D torus net-
works where each node connects directly to its six neigh-
bors. Therefore, unless each node communicates with only
its physically nearest neighbors, it will be forced to share
network links with other communication. Unless the physi-
cal placement of application processes matches the commu-
nication characteristics of the application, such sharing can
result in significant communication contention and perfor-
mance loss.

mailto:balaji@mcs.anl.gov
mailto:rgupta@mcs.anl.gov
mailto:abhinav.vishnu@pnl.gov
mailto:beckman@mcs.anl.gov

248 P. Balaji et al.

Communication libraries such as the Message Passing In-
terface (MPI) optimize application communication and pro-
cess mapping at runtime using virtual topology functionality
(such as Cartesian topologies or graph topologies). The idea
of such functionality is that the application can specify the
layout of the data it wants to process, and the runtime system
can reorder process ranks while matching the data layout to
the network hardware topology. A number of applications
do not take full advantage of such functionality, however,
mainly because it is not descriptive enough. That is, it does
not allow the application to specify its exact communication
pattern within the data layout.

For example, computational kernels such as partial dif-
ferential equation solvers [3], molecular dynamics simu-
lations [4], climate/ocean-modeling systems [5], and ray-
tracing applications with domain-based parallelism [6] all
use Cartesian grids of different dimensions and structure
(2D, 3D, unstructured). Depending on the application and
what it is trying to solve, however, the communication pat-
tern might be completely different. For instance, partial dif-
ferential equation solvers and climate/ocean-modeling sys-
tems perform nearest-neighbor communication along the
edges or diagonals or both. Fast Fourier transforms (FFTs),
on the other hand, communicate with all processes in each
dimension. Ray-tracing applications with domain-based par-
allelism communicate with processes along their diagonals.
With the current model of communication libraries, the ap-
plication can specify that it want its processes to be laid out
as a 2D or 3D Cartesian grid, but it cannot specify that it will
communicate with its neighbors along the edges, or neigh-
bors along the diagonals, or all processes in its row/column,
or any other communication pattern.

Thus, in practice, many applications try to manually map
processes to the network topology. While this is a reason-
able approach for small to medium scale topologies, it is
not a feasible solution for massive-scale systems with hun-
dreds of thousands of processors. The important aspect is
that application developers know their applications commu-
nication pattern while the application is being launched. But,
there currently exists no good way to provide this informa-
tion to the process management system in order to optimize
the process layout while taking network hardware character-
istics into account.

In previous work [7, 8], we noticed the variance of
communication performance with process mapping, and we
studied the network congestion characteristics of flat torus
networks that cause this behavior. In this paper, we extend
that research by first performing a detailed analysis of the
mapping of logical process layouts on the physical network
topology. Then, we take advantage of this analysis to al-
low the application to describe its communication pattern,
estimate the expected network contention through a sim-
ple first-order approximation model, and use this estimate

to identify the right mapping to use. Moreover, we study
the performance benefits such a model would provide, using
evaluations with various micro-benchmarks and real appli-
cation kernels including P3DFFT [9] and the HALO ocean-
modeling kernel [10]. Our experiments, which scale up to
131,072 cores of the largest BG/P system in the United
States (using 80% of the total system size), demonstrate that
different process mappings can show significant difference
in overall performance, especially on large-scale systems.
For example, we show that this difference can be as much as
30% for P3DFFT and up to twofold for HALO. Through our
proposed model, however, such differences in performance
can be avoided, so that the best possible performance is al-
ways achieved.

2 Complexity in process mapping

In this section, we describe the complexity of process map-
ping on large-scale systems. Specifically, in Sect. 2.1, we
describe the application viewpoint of application processes
and their logical layout. In Sect. 2.2, we tie such logical
mapping to the physical system topology for 3D torus-based
systems.

2.1 Application logical process layout

Most communication libraries, including MPI, do not ex-
pose the physical layout of the underlying system to the
application in order to improve portability across different
systems. Thus, applications form logical topologies of the
processes available to match the problem they are trying
to solve (often depending on the data layout correspond-
ing to the application science). For example, if we consider
ocean/climate modeling and other computational fluid dy-
namics applications, the data representation is often a 2D
plane, 3D volume, or even a multidimensional unstructured
grid [11]. Thus, these applications form logical grids of the
available processes, with each process having a part of the
overall data. The computation on the local data, however,
depends on the partially evaluated results from neighboring
processes on the logical process grid formed by the applica-
tion.

In other computational kernels such as FFTs [9, 12], the
interaction is based on the Cartesian dimension. Processes
are divided into a logical multidimensional grid (e.g., 2D
grid). Each process initially has data corresponding to one
dimension of the data grid. Once all processes are done com-
puting their parts, the entire data grid is transposed, resulting
in each process locally getting a different dimension of the
data grid. Thus, a process interacts only with other processes
in each dimension it is a part of. For example, in a 2D grid,
each process interacts only with

√
N processes in each of

the two dimensions.

Mapping communication layouts to network hardware characteristics on massive-scale blue gene systems 249

Fig. 1 2D mapping for nearest-neighbor communication: (a) Logical mapping, (b) XYZ physical mapping, (c) YXZ physical mapping

Similarly, in ray-tracing applications with domain-based
parallelism [6], while working on one particular ray, each
process interacts only with other processes that share data
corresponding to that ray. This is several times a diagonal
group of processes in a 2D logical grid.

The common aspect in these and many other applications
is that all of them rely on a logical layout of the processes
without any information about the physical placement or
mapping of the actual processes.

2.2 Process mapping for BG/P

Optimal mapping of logical communication patterns onto
the actual physical topology of the system is an intricate
task. As the complexity of the communication patterns and
system topology increases, this task becomes even more
challenging. This section describes the mapping complex-
ity for applications with different logical process layouts
while being mapped onto a 3D physical system grid. The
complexity is similar for other layouts such as Cartesian
dimension-based communication and diagonal communica-
tion patterns, but these are not discussed here.

One-dimensional communication is one of the simpler
patterns among nearest-neighbor communication patterns—
every process communicates with its two logically neighbor-
ing processes. Consider mapping such an application hav-
ing 512 processes onto 512 nodes connected in a 8 × 8 × 8
3D physical grid topology. Such a grid will have 8 nodes
along each of the X, Y , and Z axes. The process manage-
ment framework on BG/P allows application processes to
be mapped onto the system in different ways, as represented
by the mapping string; for example, with an XYZ mapping,
processes are mapped to nodes along X-axis first, followed
by Y -axis and Z-axis respectively. Thus, for a 1D logical
nearest-neighbor communication, most of the application

processes will get mapped next to each other in a sequen-
tial order.

Two-dimensional and three-dimensional communication
patterns are more challenging to map optimally. Every pro-
cess communicates with up to 8 (in 2D mapping) and
26 (in 3D mapping) logically neighboring processes.1 Fig-
ure 1 illustrates such process mapping for 2D nearest-
neighbor communication, while Fig. 2 shows 3D mapping.
Figure 2(a) shows a portion of the 3D logical grid as viewed
by the application. Figures 2(b) and 2(c) show the process
mapping of this logical grid on to a 8 × 16 × 8 physical grid
with XYZ and XZY mappings, respectively. As can be seen
from these figures, communicating groups of processes can
get dispersed throughout the physical network, resulting in
increased communication overlap between process groups
and performance degradation. More important, the disper-
sal of processes depends heavily on the process mapping
(e.g., an XYZ mapping in these figures shows a different,
and slightly smaller, dispersal as compared with the YXZ

mapping), which causes different mappings to have differ-
ent performance characteristics.

Based on these observations, from the system perspective
we can conclude that the physical layout of the application
processes (and thus the communication overhead) is highly
dependent on the mapping type and the dimensions of the
physical grid/torus.

While in theory any mapping of processes to cores is pos-
sible, different systems have different restrictions on what
mappings they allow. For example, the IBM Blue Gene/P
system allows different combinations of process mappings
along the X, Y , Z dimensions of the 3D torus. We note that

1Some applications treat diagonally intersecting processes as neigh-
bors as well (star stencils), while some applications treat only processes
intersecting along the edges as neighbors (box stencils).

250 P. Balaji et al.

Fig. 2 3D mapping: (a) Logical mapping, (b) XYZ physical mapping, (c) XZY physical mapping

Table 1 Argonne BG/P system torus dimensions

Nodes Dimensions

512 8 × 8 × 8

1024 8 × 8 × 16

2048 8 × 8 × 32

4096 8 × 16 × 32

8192 8 × 32 × 32

16384 16 × 32 × 32

32768 32 × 32 × 32

for simplicity of description we have discussed process map-
pings only along the X, Y , Z dimensions of the 3D torus.
However, BG/P systems consist of four cores per compute
node, which can be considered to be a fourth dimension rep-
resented as “T .” Thus, an application can be mapped by us-
ing various mappings such as T XYZ, XYZT , and T YXZ.2

Other mappings that do not form a symmetric ordering of
ranks in one of these orders are not supported. Thus, the
“best performance” we can achieve is artificially restricted
by this requirement.

Further complicating this issue, applications on the BG/P
system run on a subset of nodes defined by a “partition.” Two
different partitions can have the same number of cores while
having completely different dimension sizes. For example,
partitions of both 8 × 16 × 32 and 16 × 16 × 16 dimensions
can be used for a 4,096-process job. The dimensions of dif-
ferent partition sizes of the torus on the BG/P system can
be configured by the system administrator and would de-
termine how much network sharing, and consequently con-

2T XYZ indicates that Message Passing Interface processes are or-
dered with priority given first to cores of a node, followed by nodes
on the X-axis, Y -axis, and Z-axis, respectively.

tention, each mapping would cause for any given partition
shape. Table 1 shows the dimensions of the torus for vary-
ing system sizes for the Argonne BG/P system.

3 Communication contention model

In this section, we describe our methodology for analyzing
different communication patterns of applications and map-
ping them optimally.

The basic idea of our approach is to (1) understand the
communication pattern of the application by allowing the
application to describe it, (2) understand the physical plat-
form network topology and the routing algorithm behavior
on the platform, and (3) map these two categories of infor-
mation to calculate the network contention for the given ap-
plication pattern on the available network. The contention
analysis model, as its output, predicts an optimal mapping
that would give the best performance for a given application
on a given platform. We have chosen the IBM BG/P sys-
tem as an example platform for this paper. This information,
consisting of application pattern and its optimal mapping,
can then be integrated in the IBM BG/P job launching sys-
tem. Applications can then specify their application pattern
during job submission time, and the optimal mapping can
be automatically and transparently picked up by the runtime
system while launching the application.

Our current analysis is specific to symmetric communi-
cation patterns where all processes are involved in similar
communication. Instances of such symmetric communica-
tion include 1D, 2D, and 3D nearest-neighbor communica-
tion patterns, which we analyze in this section.

Mapping communication layouts to network hardware characteristics on massive-scale blue gene systems 251

3.1 Routing on Blue Gene/P

Our contention analysis model relies on the routing algo-
rithm used by BG/P. Specifically, for small messages, BG/P
uses a static routing algorithm in a dimension-wise order
(e.g., first along the X-axis, then the Y -axis, and finally the
Z-axis). For large messages, BG/P uses a destination-based
adaptive routing algorithm. To avoid livelocks, however, it
always picks one of the minimum distance routes. In other
words, at each hop, the adaptive routing algorithm considers
only the outgoing links that reduce the hop count to the des-
tination node. Among the outgoing links being considered,
it selects the one with the least amount of other ongoing traf-
fic.

As a first-order approximation, we assume that the data
packets in a large message are split equally on all possible
paths at each hop. This approximation allows us to estimate
the amount of data traffic on each hop caused by the com-
munication between any pair of processes.

We, currently, consider only symmetric communication
patterns in our research. We note that every partition on
the BG/P is fully symmetric and forms a torus on all di-
mensions. This symmetry allows us to model the contention
caused by a single process for its communication with all its
peers, and simply extend it to all the processes in the entire
system.

3.2 Example contention analysis

To analyze the optimal topology for a given physical parti-
tion layout and application, our model needs to understand
the contention that may arise because of shared network
links during the application communication. We explain the
logic used in our model through an example.

Consider a 128×128 2D process grid (16,384 cores). On
BG/P, this will require 4,096 quad-core nodes. The partition
dimensions for 4,096 nodes on the Argonne BG/P are 8 ×
16 × 32 along the X-, Y -, and Z-axis, respectively.

Let us analyze the T XYZ mapping of processes, with
a row-major mapping of the 2D 128 × 128 processor log-
ical grid. Each row of 128 processors of the logical grid
will occupy the four rows of the X-axis (8 nodes; i.e., 32
cores lie along the X-axis). Now consider a node commu-
nicating with its eight nearest neighbors. Its neighbors on
either side of it, on the same row, will lie either on the same
physical node or on a neighboring node (since all cores of
a node are allocated before the next node), thereby incur-
ring minimal communication overhead (no link contention).
The three neighbors on the row above it will lie on nodes
on the same X-axis at a distance of four hops (since one
row of the 2D grid spans four rows of the physical torus)
from its node. Thus, each link along these four hops will be
used three times by this communicating center node. Each

of these links along the four hops will be used by other sets
of nearest-neighbor communicating nodes as well, in both
directions bringing its average contention count to 24.3

In a T ZXY mapping, on the other hand, the Z-axis has
32 nodes (i.e., 128 processors along its axis). Thus, a single
row of the 2D grid can map along a single Z-axis plane.
Analyzing this reveals that for every node, the neighbors
above or below a process are mapped to a single node, one
hop away. On average, the bidirectional contention count for
every link is 6. Similarly an XYZT mapping would have
an average bidirectional contention count for every link of
about 10.5. Thus, contention seen by the T ZXY mapping is
the least, while that seen by T XYZ is the highest. This anal-
ysis is substantiated by the results presented in Sect. 4. Note
that for completely symmetric communication patterns such
as nearest neighbor, it is sufficient to evaluate the contention
caused by one process.

We performed similar analyses for other communication
patterns such as dimension-wise communication (used by
3DFFT libraries) and diagonal communication (used by ray-
tracing applications). However, descriptions for those have
been omitted because of space restrictions.

Contention counts will vary with the type of mapping,
type of communication, partition size of the system, logical
grid size of the application and order (row major, column
major, etc.) in which logical grid rows are mapped onto the
partition cores. In the rest of the paper, because of lack of
space, we do not analyze contention count further. Rather,
we demonstrate the results obtained from our experiments
on the BG/P system.

4 Experiments and analysis

In this section, we discuss the impact of various mappings
on different micro-benchmarks and applications. Our exper-
iments also demonstrate the performance achieved by the
model described in Sect. 3 (called ‘Contention Detection
Model’ and represented by “CDL” in the charts), which is
automatically and transparently picked by the runtime sys-
tem when launching the application.

4.1 Microbenchmark-based evaluation

We first evaluate 2D and 3D logical nearest-neighbor com-
munication. Both experiments use star stencils, so each pro-
cess has (3d − 1) neighbors, where d is the logical process
grid dimensionality.

3“Contention count” can be considered to be an indication of how
many communication streams are going over a link at the same time.

252 P. Balaji et al.

Fig. 3 2D communication benchmark performance: (a) 16 K cores, (b) 64 K cores

Fig. 4 3D communication benchmark performance: (a) 16 K cores, (b) 64 K cores

2D nearest-neighbor communication In this experiment,
each process does point-to-point communication exchang-
ing some data with its logical neighbors. In real applica-
tion kernels, this data would typically correspond to the
ghost cells that form the bordering data points between the
two processes. Figure 3(a) shows the communication perfor-
mance for a system size of 16,384 processes, and Fig. 3(b)
shows the same for a system size of 65,536 processes.

From the figure, we see that the difference in perfor-
mance between the various mappings increases with both
message size (as shown in each subfigure) and system size
(comparing the two subfigures). In fact, for a system size
of 65,536 cores and a message size of 1 MB, we notice
almost a sevenfold difference in performance between the
different mappings. This behavior is expected; as the mes-
sage size increases, each network link is used for longer pe-
riods of time, increasing the possibility of congestion and
performance degradation. Similarly, as the system size in-
creases, the number of communication flows increases pro-
portionally with the number of pairs of processes available,
that is, O(N2), where N is the number of processes in the
system. But the number of network links increases only as
O(N); this situation leads to more congestion and perfor-
mance degradation. The results in Fig. 3(a) also show that
CDL model can determine which layout has the least con-

tention (in this case T ZXY) and automatically pick that for
the user. These results are similar to those reported in Sect. 3.

3D nearest-neighbor communication This experiment is
similar to the 2D nearest-neighbor experiment except that
processes are logically laid out in three dimensions. Thus,
each process has 26 logically nearest neighbors with which
it performs point-to-point communication. Because of space
restrictions, we simply point out, as can be seen in Figs. 4(a)
and (b), that the overall trend is similar to that of the 2D
nearest-neighbor benchmark: (1) there is a significant per-
formance difference between different mappings, (2) the
performance difference increases with message size and sys-
tem size, and (3) the CDL model allows the system to au-
tomatically pick the best mapping. In fact, for 65,536 pro-
cesses and a message size of 1 MB, we notice an order-of-
magnitude difference in performance.

4.2 Evaluation of application kernels

Next, we use two application kernels, P3DFFT and Halo,
to analyze the impact of process mapping on overall perfor-
mance.

P3DFFT library FFT [13] is an efficient algorithm to com-
pute the discrete Fourier transform (DFT) and its inverse.

Mapping communication layouts to network hardware characteristics on massive-scale blue gene systems 253

Fig. 5 P3DFFT performance: (a) 512 to 8 K cores, (b) greater than 8 K cores

Fig. 6 Halo application on (a) 32 K cores, (b) 128 K cores

FFT, as applied to a three-dimensional volume of space, is
typically referred to as 3DFFT. The goal of 3DFFT is essen-
tially to perform 1D Fourier transform on each of the three
dimensions of the 3D data mesh. Most parallel 3DFFT im-
plementations rely on a sequential version of 1DFFT (that
performs the transform on one dimension at a time) and
then transpose the data grid when needed. Multiple imple-
mentations of parallel 3D FFT are available today. P3DFFT
[14, 15] is a popular implementation of 3DFFT used in vari-
ous application domains, including digital speech and signal
processing, solving partial differential equations, molecular
dynamics simulations, and Monte Carlo simulations.

Figure 5 shows the performance of P3DFFT with increas-
ing system size for different process mappings. For viewa-
bility, we split the data into two graphs—Fig. 5(a) shows
the performance for small system sizes (up to 8,192 cores),
while Fig. 5(b) shows the performance for large system
sizes (more than 8,192 cores). As shown in the figures, for
small systems, process mapping has no significant impact.
When the system size increases beyond 8,192 cores, how-
ever, we do notice a performance difference between the dif-
ferent mappings. In fact, this difference is as high as 25%
for 65,536 cores, which makes the Contention Detection
Model’s (CDL) benefits substantial for large-scale systems.

The Halo application kernel The NRL Layered Ocean
Model (NLOM) [16] simulates semi-enclosed seas, major
ocean basins, and global ocean. The current implementation
of the model uses a tiled data-parallel programming style. Its
general nature allows implementations in various program-
ming models including MPI, OpenMP, Co-Array Fortran,
and shared memory. This makes NLOM a good candidate
for benchmarking both hardware and the associated com-
munication software. The Halo benchmark [10] simulates an
NLOM 2-D exchange for an N × N subdomain for differ-
ent values of N . In other words it performs nearest-neighbor
exchanges from a 2D array. Each of these exchanges is per-
formed by using several algorithms, different for each pro-
gramming technique. When Halo is used on a smaller num-
ber of nodes, the performance is affected predominantly by
the system latency, whereas for larger node counts the band-
width becomes a dominating factor [10].

Figure 6 shows the performance of Halo with varying
message size, for different process mappings (system sizes
of 32,768 cores and 131,072 cores). Again, we notice a sig-
nificant improvement in overall performance for the CDL
model, depending on the mapping. For 131,072 cores, we
notice more than twofold difference in performance. Fig-
ure 7 shows the performance of Halo with varying system

254 P. Balaji et al.

Fig. 7 Halo application trends on varying system size: (a) 8 KB message size, (b) 1 MB message size

sizes (message sizes of 8 KB and 1 MB). We notice three
trends: (1) no single mapping performs the best in all cases,
which is also true for all other results shown in the pa-
per; (2) the overall performance difference between the best
mapping and the worst mapping generally increases with
system scale; and (3) the CDL model picks the best map-
ping in all cases.

5 Related work

In the past few years, a lot of research has been devoted
to studying techniques for mapping application topology
(tasks) onto the system’s actual physical topology [17–
20] and to optimizing these techniques [21–23]. Research
[24–27] provides different methods for optimizing problem
layout on BG/L. All this research assumes that applications
can describe their communication patterns effectively to the
runtime system; however, this is not currently the case. Most
mapping techniques assume a possible communication pat-
tern based on the data layout and optimize the process layout
accordingly.

The NAS Parallel Benchmarks [28] were evaluated with
different mappings such as Gray codes and permutations of
the X, Y , Z coordinates on the BG/L systems spanning up
to 256 processors. While that work is similar to a subset of
research proposed here, it was done only with microbench-
marks and on very small system size. None of the prior work
has shown these effects at the scales we have shown. Our ex-
periments are done on a scale nearly 100 times larger than
the previous papers (80% of the largest BG/P system in the
United States). Since network sharing is going to increase in
future exascale systems, scale of the applications is key to
understanding network saturation behavior.

Work also has been done in the context of STAR-MPI,
which focuses on adaptive techniques for various collec-
tive operations and utilizes the most optimal communica-
tion algorithm [29]. While such tools can help choose the

best communication algorithm for a given system process
mapping, they do not explicitly try to understand the net-
work congestion behavior caused by different mappings;
thus, they are mostly complementary to the work done in
this paper.

6 Concluding remarks

We analyzed the impact of different process mappings on
application performance on a massive BG/P system. Us-
ing this analysis, we propose a communication description
model/language (CDL) that applications can use to specify
their communication patterns prior to being launched. We
demonstrated the performance benefits the CDL model can
provide, using microbenchmarks and real application ker-
nels including P3DFFT and the Halo ocean-modeling ker-
nel. Our experiments, which scaled up to 131,072 cores
of the Blue Gene/P system indicate that different process
mappings can show significant difference in overall perfor-
mance, especially on large-scale systems. Through our CDL
model, however, one can avoid these differences in perfor-
mance, thereby obtaining the best possible performance.

References

1. IBM Blue Gene Team (2008) Overview of the IBM Blue Gene/P
project. IBM J Res Dev 52(1–2):199–220

2. Cray Research, Inc (1993) Cray T3D system architecture
overview

3. Argonne National Laboratory. PETSc. http://www.mcs.anl.gov/
petsc

4. Kumar S, Huang C, Almasi G, Kale LV (2007) Achieving strong
scaling with NAMD on Blue Gene/L. In: IEEE international par-
allel and distributed processing symposium

5. Naval Research Laboratory. Naval research laboratory lay-
ered ocean model (NLOM). http://www.navo.hpc.mil/Navigator/
Fall99_Feature.html

6. Rabiti C, Smith MA, Kaushik D, Yang WS, Palmiotti G (2008)
Parallel method of characteristics on unstructured meshes for the
UNIC code. In: PHYSOR, Interlaken, Switzerland, 14–19 Sept
2008

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.navo.hpc.mil/Navigator/Fall99_Feature.html
http://www.navo.hpc.mil/Navigator/Fall99_Feature.html

Mapping communication layouts to network hardware characteristics on massive-scale blue gene systems 255

7. Balaji P, Chan A, Thakur R, Gropp W, Lusk E (2009) Toward
message passing for a million processes: characterizing MPI on a
massive scale blue gene/P. J Comput Sci Res Devel Special edn
(presented at the International supercomputing conference (ISC));
Best Paper Award

8. Balaji P, Naik H, Desai N (2009) Understanding network satura-
tion behavior on large-scale blue gene/P systems. In: Proceedings
of the international conference on parallel and distributed systems
(ICPADS), Shenzhen, China, 8–11 Dec 2009

9. Pekurovsky D (2009) P3DFFT webpage, Feb 2009. http://www.
sdsc.edu/us/resources/p3dfft/index.php

10. Wallcraft AJ (1999) The Halo benchmark. http://www.navo.
hpc.mil/Navigator/PDFS/Fall1999.pdf

11. Fischer P, Lottes J, Pointer D, Siegel A (2008) Petascale al-
gorithms for reactor hydrodynamics. J Phys Conf Ser 125(1).
doi:10.1088/1742-6596/125/1/012076

12. Frigo M, Johnson SG (2005) The design and implementation of
FFTW3. Proc IEEE 93:216–231

13. Cooley JW, Tukey JW (1964) An algorithm for the machine calcu-
lation of complex Fourier series. Math Comput 19(90):297–301

14. San Diego Supercomputing Center. P3DFFT. http://www.sdsc.
edu/us/resources/p3dfft/

15. Chan A, Balaji P, Gropp W, Thakur R (2008) Communication
analysis of parallel 3D FFT for flat Cartesian meshes on large
blue gene systems. In: Proceedings of the IEEE/ACM interna-
tional conference on high performance computing (HiPC), Ban-
galore, India, 17–20 Dec 2008

16. Wallcraft AJ (1991) The NRL layered ocean model users guide.
NOARL Report 35, Naval Research Laboratory, Stennis Space
Center, MS

17. Traff J (2002) Implementing the MPI process topology mecha-
nism. In: SC, pp 1–14

18. Hur J (1999) An approach for torus embedding. In: ICPP, Wash-
ington, DC, USA. IEEE Computer Society, Los Alamitos, p 301

19. Ou C, Ranka S, Fox G (1996) Fast and parallel mapping algo-
rithms for irregular problems. J Supercomput 10(2):119–140

20. Bokhari S (1981) On the mapping problem. IEEE Trans Comput
30(3):207–214

21. Bollinger SW, Midkiff S (1991) Heuristic technique for proces-
sor and link assignment in multicomputers. IEEE Trans Comput
40(3):325–333

22. Mansour N, Ponnusamy R, Choudhary A, Fox GC (1993) Graph
contraction for physical optimization methods: a quality-cost
tradeoff for mapping data on parallel computers. In: ISC, New
York, NY, USA. ACM, New York, pp 1–10

23. Chockalingam T, Arunkumar S (1992) Randomized heuristics for
the mapping problem. The genetic approach. In: Parallel comput-
ing, pp 1157–1165

24. Bhagnot G, Gara A, Heidelberger P et al (2005) Optimizing task
layout on the Blue Gene/L supercomputer. IBM J Res Dev 49(2–
3):489–500. doi:10.1147/rd.492.0489

25. Almasi G, Archer C, Castanos J et al (2004) Implementing MPI
on the BlueGene/L Supercomputer. In: Euro-Par, pp 833–845

26. Yu H, Chung I, Moreira J (2006) Topology mapping for Blue
Gene/L supercomputer. In: SC, New York, NY, USA. ACM, New
York, p 116

27. Agarwal T, Sharma A, Laxmikant A, Kale LV (2006) Topology-
aware task mapping for reducing communication contention on
large parallel machines. In: IPDPS, p 122

28. Smith B, Bode B (2005) Performance effects of node mappings
on the IBM BlueGene/L machine. In: Euro-Par, pp 1005–1013

29. Faraj A, Yuan X, Lowenthal D (2006) STAR-MPI: self tuned
adaptive routines for MPI collective operations. In: Proceedings
of the 20th annual international conference on supercomputing
(ICS), Cairns, Queensland, Australia, pp 199–208

Pavan Balaji holds a joint appoint-
ment as an Assistant Computer Sci-
entist at the Argonne National Lab-
oratory, a research fellow of the
Computation Institute at the Univer-
sity of Chicago, and as an adjunct
associate professor at the Institute of
Software of the Chinese Academy
of Sciences. He had received his
Ph.D. from the Computer Science
and Engineering department at the
Ohio State University. His research
interests include parallel program-
ming models and middleware for
communication and I/O, high-speed

interconnects, efficient protocol stacks, cloud computing systems, and
job scheduling and resource management. He has more than 75 pub-
lications in these areas and has delivered more than 100 talks and tu-
torials at various conferences and research institutes. He has received
several awards for his research activities including an Outstanding Re-
searcher award at the Ohio State University, the Director’s Technical
Achievement award at Los Alamos National Laboratory, and several
best paper and other awards. Dr. Balaji has also served as a chairman
or editor in nearly two-dozen journals, conferences and workshops
including CCGrid, JHPCA, ICPP, IEEE Micro, Hot Interconnects,
P2S2 workshop, and ICCCN, and as a technical program committee
member in numerous conferences and workshops. He is a member
of the IEEE and ACM. More details about Dr. Balaji are available at
http://www.mcs.anl.gov/~balaji.

Rinku Gupta is a senior scien-
tific developer at Argonne National
Laboratory and the lead developer
for the Fault Tolerance Backplane
project. She received her M.S. de-
gree in Computer Science from
Ohio State University in 2002. She
has several years of experience de-
veloping systems and infrastruc-
ture for enterprise high-performance
computing. Her research interests
primarily lie towards middleware li-
braries, programming models and
fault tolerance in high-end com-
puting systems. More details about

Ms. Gupta are available at http://www.mcs.anl.gov/~rgupta.

Abhinav Vishnu is a research sci-
entist in the high performance com-
puting group at the Pacific North-
west National Laboratory. He re-
ceived his Ph.D. from the Computer
Science and Engineering Depart-
ment at The Ohio State University
in 2007. His research interests in-
cluding scalable, fault tolerant and
energy efficient parallel program-
ming models, communication run-
time systems, high speed intercon-
nects and cloud computing systems.
Dr. Vishnu has many publications
cross-cutting the areas of scalability,

energy efficiency, fault tolerance, with several demonstrations of fault
tolerance using partitioned global address space models and scientific
applications. Dr. Vishnu has served as co-chairman of International

http://www.sdsc.edu/us/resources/p3dfft/index.php
http://www.sdsc.edu/us/resources/p3dfft/index.php
http://www.navo.hpc.mil/Navigator/PDFS/Fall1999.pdf
http://www.navo.hpc.mil/Navigator/PDFS/Fall1999.pdf
http://dx.doi.org/10.1088/1742-6596/125/1/012076
http://www.sdsc.edu/us/resources/p3dfft/
http://www.sdsc.edu/us/resources/p3dfft/
http://dx.doi.org/10.1147/rd.492.0489
http://www.mcs.anl.gov/~balaji
http://www.mcs.anl.gov/~rgupta

256 P. Balaji et al.

Workshop on Parallel Programming Models and Systems Software for
three years and co-editor of a special issue on International Journal of
High Performance Computing and Applications for two years. He has
also served as a technical program committee member in multiple con-
ferences including CCGrid, IC3N, Cluster Computing, and HiPC. De-
tails about Dr. Vishnu are available at http://hpc.pnl.gov/people/vishnu.

Pete Beckman is a recognized
global expert in high-end comput-
ing systems. During the past 20
years, he has designed and built
software and architectures for large-
scale parallel and distributed com-
puting systems. After receiving his
Ph.D. degree in computer science
from Indiana University, he helped
found the university’s Extreme Com-
puting Laboratory. In 1997 Pete
joined the Advanced Computing
Laboratory at Los Alamos National
Laboratory.
In 2000 he established a Turbolinux-

sponsored research laboratory in Santa Fe that developed the world’s
first dynamic provisioning system for cloud computing and high per-
formance computing (HPC) clusters. The following year, Pete became
Vice President of Turbolinux’s worldwide engineering efforts, manag-
ing development offices worldwide.
Pete joined Argonne National Laboratory in 2002 as Director of En-
gineering. Later, as Chief Architect for the TeraGrid, he designed and
deployed the world’s most powerful Grid computing system for link-
ing production HPC computing centers. Pete then started a research
team focusing on petascale high-performance software systems, wire-
less sensor networks, Linux, and the SPRUCE system to provide urgent
computing for critical, timesensitive decision support.
In 2008 he became Director of the Argonne Leadership Computing Fa-
cility, home to one of the world’s fastest open science supercomputers.
He is currently the director of the Exascale Technology and Comput-
ing Institute, where he leads Argonne’s exascale computing strategic
initiative.

http://hpc.pnl.gov/people/vishnu

	Mapping communication layouts to network hardware characteristics on massive-scale blue gene systems
	Abstract
	Introduction
	Complexity in process mapping
	Application logical process layout
	Process mapping for BG/P

	Communication contention model
	Routing on Blue Gene/P
	Example contention analysis

	Experiments and analysis
	Microbenchmark-based evaluation
	2D nearest-neighbor communication
	3D nearest-neighbor communication

	Evaluation of application kernels
	P3DFFT library
	The Halo application kernel

	Related work
	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

