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Abstract For parallel applications running on high-end
computing systems, which processes of an application get
launched on which processing cores is typically determined
at application launch time without any information about
the application characteristics. As high-end computing sys-
tems continue to grow in scale, however, this approach is
becoming increasingly infeasible for achieving the best per-
formance. For example, for systems such as IBM Blue Gene
and Cray XT that rely on flat 3D torus networks, process
communication often involves network sharing, even for
highly scalable applications. This causes the overall appli-
cation performance to depend heavily on how processes are
mapped on the network. In this paper, we first analyze the
impact of different process mappings on application perfor-
mance on a massive Blue Gene/P system. Then, we match
this analysis with application communication patterns that
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we allow applications to describe prior to being launched.
The underlying process management system can use this
combined information in conjunction with the hardware
characteristics of the system to determine the best mapping
for the application. Our experiments study the performance
of different communication patterns, including 2D and 3D
nearest-neighbor communication and structured Cartesian
grid communication. Our studies, that scale up to 131,072
cores of the largest BG/P system in the United States (us-
ing 80% of the total system size), demonstrate that different
process mappings can show significant difference in overall
performance, especially on scale. For example, we show that
this difference can be as much as 30% for P3DFFT and up to
twofold for HALO. Through our proposed model, however,
such differences in performance can be avoided so that the
best possible performance is always achieved.

Keywords Process mapping · Blue gene · Torus networks

1 Introduction

The massive-scale systems being deployed throughout the
world will utilize a large amount of shared hardware in-
cluding shared caches, memory, and network infrastructure.
For example, systems such as the IBM Blue Gene (BG) [1]
and Cray XT [2] have started utilizing flat 3D torus net-
works where each node connects directly to its six neigh-
bors. Therefore, unless each node communicates with only
its physically nearest neighbors, it will be forced to share
network links with other communication. Unless the physi-
cal placement of application processes matches the commu-
nication characteristics of the application, such sharing can
result in significant communication contention and perfor-
mance loss.

mailto:balaji@mcs.anl.gov
mailto:rgupta@mcs.anl.gov
mailto:abhinav.vishnu@pnl.gov
mailto:beckman@mcs.anl.gov


248 P. Balaji et al.

Communication libraries such as the Message Passing In-
terface (MPI) optimize application communication and pro-
cess mapping at runtime using virtual topology functionality
(such as Cartesian topologies or graph topologies). The idea
of such functionality is that the application can specify the
layout of the data it wants to process, and the runtime system
can reorder process ranks while matching the data layout to
the network hardware topology. A number of applications
do not take full advantage of such functionality, however,
mainly because it is not descriptive enough. That is, it does
not allow the application to specify its exact communication
pattern within the data layout.

For example, computational kernels such as partial dif-
ferential equation solvers [3], molecular dynamics simu-
lations [4], climate/ocean-modeling systems [5], and ray-
tracing applications with domain-based parallelism [6] all
use Cartesian grids of different dimensions and structure
(2D, 3D, unstructured). Depending on the application and
what it is trying to solve, however, the communication pat-
tern might be completely different. For instance, partial dif-
ferential equation solvers and climate/ocean-modeling sys-
tems perform nearest-neighbor communication along the
edges or diagonals or both. Fast Fourier transforms (FFTs),
on the other hand, communicate with all processes in each
dimension. Ray-tracing applications with domain-based par-
allelism communicate with processes along their diagonals.
With the current model of communication libraries, the ap-
plication can specify that it want its processes to be laid out
as a 2D or 3D Cartesian grid, but it cannot specify that it will
communicate with its neighbors along the edges, or neigh-
bors along the diagonals, or all processes in its row/column,
or any other communication pattern.

Thus, in practice, many applications try to manually map
processes to the network topology. While this is a reason-
able approach for small to medium scale topologies, it is
not a feasible solution for massive-scale systems with hun-
dreds of thousands of processors. The important aspect is
that application developers know their applications commu-
nication pattern while the application is being launched. But,
there currently exists no good way to provide this informa-
tion to the process management system in order to optimize
the process layout while taking network hardware character-
istics into account.

In previous work [7, 8], we noticed the variance of
communication performance with process mapping, and we
studied the network congestion characteristics of flat torus
networks that cause this behavior. In this paper, we extend
that research by first performing a detailed analysis of the
mapping of logical process layouts on the physical network
topology. Then, we take advantage of this analysis to al-
low the application to describe its communication pattern,
estimate the expected network contention through a sim-
ple first-order approximation model, and use this estimate

to identify the right mapping to use. Moreover, we study
the performance benefits such a model would provide, using
evaluations with various micro-benchmarks and real appli-
cation kernels including P3DFFT [9] and the HALO ocean-
modeling kernel [10]. Our experiments, which scale up to
131,072 cores of the largest BG/P system in the United
States (using 80% of the total system size), demonstrate that
different process mappings can show significant difference
in overall performance, especially on large-scale systems.
For example, we show that this difference can be as much as
30% for P3DFFT and up to twofold for HALO. Through our
proposed model, however, such differences in performance
can be avoided, so that the best possible performance is al-
ways achieved.

2 Complexity in process mapping

In this section, we describe the complexity of process map-
ping on large-scale systems. Specifically, in Sect. 2.1, we
describe the application viewpoint of application processes
and their logical layout. In Sect. 2.2, we tie such logical
mapping to the physical system topology for 3D torus-based
systems.

2.1 Application logical process layout

Most communication libraries, including MPI, do not ex-
pose the physical layout of the underlying system to the
application in order to improve portability across different
systems. Thus, applications form logical topologies of the
processes available to match the problem they are trying
to solve (often depending on the data layout correspond-
ing to the application science). For example, if we consider
ocean/climate modeling and other computational fluid dy-
namics applications, the data representation is often a 2D
plane, 3D volume, or even a multidimensional unstructured
grid [11]. Thus, these applications form logical grids of the
available processes, with each process having a part of the
overall data. The computation on the local data, however,
depends on the partially evaluated results from neighboring
processes on the logical process grid formed by the applica-
tion.

In other computational kernels such as FFTs [9, 12], the
interaction is based on the Cartesian dimension. Processes
are divided into a logical multidimensional grid (e.g., 2D
grid). Each process initially has data corresponding to one
dimension of the data grid. Once all processes are done com-
puting their parts, the entire data grid is transposed, resulting
in each process locally getting a different dimension of the
data grid. Thus, a process interacts only with other processes
in each dimension it is a part of. For example, in a 2D grid,
each process interacts only with

√
N processes in each of

the two dimensions.
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Fig. 1 2D mapping for nearest-neighbor communication: (a) Logical mapping, (b) XYZ physical mapping, (c) YXZ physical mapping

Similarly, in ray-tracing applications with domain-based
parallelism [6], while working on one particular ray, each
process interacts only with other processes that share data
corresponding to that ray. This is several times a diagonal
group of processes in a 2D logical grid.

The common aspect in these and many other applications
is that all of them rely on a logical layout of the processes
without any information about the physical placement or
mapping of the actual processes.

2.2 Process mapping for BG/P

Optimal mapping of logical communication patterns onto
the actual physical topology of the system is an intricate
task. As the complexity of the communication patterns and
system topology increases, this task becomes even more
challenging. This section describes the mapping complex-
ity for applications with different logical process layouts
while being mapped onto a 3D physical system grid. The
complexity is similar for other layouts such as Cartesian
dimension-based communication and diagonal communica-
tion patterns, but these are not discussed here.

One-dimensional communication is one of the simpler
patterns among nearest-neighbor communication patterns—
every process communicates with its two logically neighbor-
ing processes. Consider mapping such an application hav-
ing 512 processes onto 512 nodes connected in a 8 × 8 × 8
3D physical grid topology. Such a grid will have 8 nodes
along each of the X, Y , and Z axes. The process manage-
ment framework on BG/P allows application processes to
be mapped onto the system in different ways, as represented
by the mapping string; for example, with an XYZ mapping,
processes are mapped to nodes along X-axis first, followed
by Y -axis and Z-axis respectively. Thus, for a 1D logical
nearest-neighbor communication, most of the application

processes will get mapped next to each other in a sequen-
tial order.

Two-dimensional and three-dimensional communication
patterns are more challenging to map optimally. Every pro-
cess communicates with up to 8 (in 2D mapping) and
26 (in 3D mapping) logically neighboring processes.1 Fig-
ure 1 illustrates such process mapping for 2D nearest-
neighbor communication, while Fig. 2 shows 3D mapping.
Figure 2(a) shows a portion of the 3D logical grid as viewed
by the application. Figures 2(b) and 2(c) show the process
mapping of this logical grid on to a 8 × 16 × 8 physical grid
with XYZ and XZY mappings, respectively. As can be seen
from these figures, communicating groups of processes can
get dispersed throughout the physical network, resulting in
increased communication overlap between process groups
and performance degradation. More important, the disper-
sal of processes depends heavily on the process mapping
(e.g., an XYZ mapping in these figures shows a different,
and slightly smaller, dispersal as compared with the YXZ

mapping), which causes different mappings to have differ-
ent performance characteristics.

Based on these observations, from the system perspective
we can conclude that the physical layout of the application
processes (and thus the communication overhead) is highly
dependent on the mapping type and the dimensions of the
physical grid/torus.

While in theory any mapping of processes to cores is pos-
sible, different systems have different restrictions on what
mappings they allow. For example, the IBM Blue Gene/P
system allows different combinations of process mappings
along the X, Y , Z dimensions of the 3D torus. We note that

1Some applications treat diagonally intersecting processes as neigh-
bors as well (star stencils), while some applications treat only processes
intersecting along the edges as neighbors (box stencils).
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Fig. 2 3D mapping: (a) Logical mapping, (b) XYZ physical mapping, (c) XZY physical mapping

Table 1 Argonne BG/P system torus dimensions

Nodes Dimensions

512 8 × 8 × 8

1024 8 × 8 × 16

2048 8 × 8 × 32

4096 8 × 16 × 32

8192 8 × 32 × 32

16384 16 × 32 × 32

32768 32 × 32 × 32

for simplicity of description we have discussed process map-
pings only along the X, Y , Z dimensions of the 3D torus.
However, BG/P systems consist of four cores per compute
node, which can be considered to be a fourth dimension rep-
resented as “T .” Thus, an application can be mapped by us-
ing various mappings such as T XYZ, XYZT , and T YXZ.2

Other mappings that do not form a symmetric ordering of
ranks in one of these orders are not supported. Thus, the
“best performance” we can achieve is artificially restricted
by this requirement.

Further complicating this issue, applications on the BG/P
system run on a subset of nodes defined by a “partition.” Two
different partitions can have the same number of cores while
having completely different dimension sizes. For example,
partitions of both 8 × 16 × 32 and 16 × 16 × 16 dimensions
can be used for a 4,096-process job. The dimensions of dif-
ferent partition sizes of the torus on the BG/P system can
be configured by the system administrator and would de-
termine how much network sharing, and consequently con-

2T XYZ indicates that Message Passing Interface processes are or-
dered with priority given first to cores of a node, followed by nodes
on the X-axis, Y -axis, and Z-axis, respectively.

tention, each mapping would cause for any given partition
shape. Table 1 shows the dimensions of the torus for vary-
ing system sizes for the Argonne BG/P system.

3 Communication contention model

In this section, we describe our methodology for analyzing
different communication patterns of applications and map-
ping them optimally.

The basic idea of our approach is to (1) understand the
communication pattern of the application by allowing the
application to describe it, (2) understand the physical plat-
form network topology and the routing algorithm behavior
on the platform, and (3) map these two categories of infor-
mation to calculate the network contention for the given ap-
plication pattern on the available network. The contention
analysis model, as its output, predicts an optimal mapping
that would give the best performance for a given application
on a given platform. We have chosen the IBM BG/P sys-
tem as an example platform for this paper. This information,
consisting of application pattern and its optimal mapping,
can then be integrated in the IBM BG/P job launching sys-
tem. Applications can then specify their application pattern
during job submission time, and the optimal mapping can
be automatically and transparently picked up by the runtime
system while launching the application.

Our current analysis is specific to symmetric communi-
cation patterns where all processes are involved in similar
communication. Instances of such symmetric communica-
tion include 1D, 2D, and 3D nearest-neighbor communica-
tion patterns, which we analyze in this section.
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3.1 Routing on Blue Gene/P

Our contention analysis model relies on the routing algo-
rithm used by BG/P. Specifically, for small messages, BG/P
uses a static routing algorithm in a dimension-wise order
(e.g., first along the X-axis, then the Y -axis, and finally the
Z-axis). For large messages, BG/P uses a destination-based
adaptive routing algorithm. To avoid livelocks, however, it
always picks one of the minimum distance routes. In other
words, at each hop, the adaptive routing algorithm considers
only the outgoing links that reduce the hop count to the des-
tination node. Among the outgoing links being considered,
it selects the one with the least amount of other ongoing traf-
fic.

As a first-order approximation, we assume that the data
packets in a large message are split equally on all possible
paths at each hop. This approximation allows us to estimate
the amount of data traffic on each hop caused by the com-
munication between any pair of processes.

We, currently, consider only symmetric communication
patterns in our research. We note that every partition on
the BG/P is fully symmetric and forms a torus on all di-
mensions. This symmetry allows us to model the contention
caused by a single process for its communication with all its
peers, and simply extend it to all the processes in the entire
system.

3.2 Example contention analysis

To analyze the optimal topology for a given physical parti-
tion layout and application, our model needs to understand
the contention that may arise because of shared network
links during the application communication. We explain the
logic used in our model through an example.

Consider a 128×128 2D process grid (16,384 cores). On
BG/P, this will require 4,096 quad-core nodes. The partition
dimensions for 4,096 nodes on the Argonne BG/P are 8 ×
16 × 32 along the X-, Y -, and Z-axis, respectively.

Let us analyze the T XYZ mapping of processes, with
a row-major mapping of the 2D 128 × 128 processor log-
ical grid. Each row of 128 processors of the logical grid
will occupy the four rows of the X-axis (8 nodes; i.e., 32
cores lie along the X-axis). Now consider a node commu-
nicating with its eight nearest neighbors. Its neighbors on
either side of it, on the same row, will lie either on the same
physical node or on a neighboring node (since all cores of
a node are allocated before the next node), thereby incur-
ring minimal communication overhead (no link contention).
The three neighbors on the row above it will lie on nodes
on the same X-axis at a distance of four hops (since one
row of the 2D grid spans four rows of the physical torus)
from its node. Thus, each link along these four hops will be
used three times by this communicating center node. Each

of these links along the four hops will be used by other sets
of nearest-neighbor communicating nodes as well, in both
directions bringing its average contention count to 24.3

In a T ZXY mapping, on the other hand, the Z-axis has
32 nodes (i.e., 128 processors along its axis). Thus, a single
row of the 2D grid can map along a single Z-axis plane.
Analyzing this reveals that for every node, the neighbors
above or below a process are mapped to a single node, one
hop away. On average, the bidirectional contention count for
every link is 6. Similarly an XYZT mapping would have
an average bidirectional contention count for every link of
about 10.5. Thus, contention seen by the T ZXY mapping is
the least, while that seen by T XYZ is the highest. This anal-
ysis is substantiated by the results presented in Sect. 4. Note
that for completely symmetric communication patterns such
as nearest neighbor, it is sufficient to evaluate the contention
caused by one process.

We performed similar analyses for other communication
patterns such as dimension-wise communication (used by
3DFFT libraries) and diagonal communication (used by ray-
tracing applications). However, descriptions for those have
been omitted because of space restrictions.

Contention counts will vary with the type of mapping,
type of communication, partition size of the system, logical
grid size of the application and order (row major, column
major, etc.) in which logical grid rows are mapped onto the
partition cores. In the rest of the paper, because of lack of
space, we do not analyze contention count further. Rather,
we demonstrate the results obtained from our experiments
on the BG/P system.

4 Experiments and analysis

In this section, we discuss the impact of various mappings
on different micro-benchmarks and applications. Our exper-
iments also demonstrate the performance achieved by the
model described in Sect. 3 (called ‘Contention Detection
Model’ and represented by “CDL” in the charts), which is
automatically and transparently picked by the runtime sys-
tem when launching the application.

4.1 Microbenchmark-based evaluation

We first evaluate 2D and 3D logical nearest-neighbor com-
munication. Both experiments use star stencils, so each pro-
cess has (3d − 1) neighbors, where d is the logical process
grid dimensionality.

3“Contention count” can be considered to be an indication of how
many communication streams are going over a link at the same time.
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Fig. 3 2D communication benchmark performance: (a) 16 K cores, (b) 64 K cores

Fig. 4 3D communication benchmark performance: (a) 16 K cores, (b) 64 K cores

2D nearest-neighbor communication In this experiment,
each process does point-to-point communication exchang-
ing some data with its logical neighbors. In real applica-
tion kernels, this data would typically correspond to the
ghost cells that form the bordering data points between the
two processes. Figure 3(a) shows the communication perfor-
mance for a system size of 16,384 processes, and Fig. 3(b)
shows the same for a system size of 65,536 processes.

From the figure, we see that the difference in perfor-
mance between the various mappings increases with both
message size (as shown in each subfigure) and system size
(comparing the two subfigures). In fact, for a system size
of 65,536 cores and a message size of 1 MB, we notice
almost a sevenfold difference in performance between the
different mappings. This behavior is expected; as the mes-
sage size increases, each network link is used for longer pe-
riods of time, increasing the possibility of congestion and
performance degradation. Similarly, as the system size in-
creases, the number of communication flows increases pro-
portionally with the number of pairs of processes available,
that is, O(N2), where N is the number of processes in the
system. But the number of network links increases only as
O(N); this situation leads to more congestion and perfor-
mance degradation. The results in Fig. 3(a) also show that
CDL model can determine which layout has the least con-

tention (in this case T ZXY ) and automatically pick that for
the user. These results are similar to those reported in Sect. 3.

3D nearest-neighbor communication This experiment is
similar to the 2D nearest-neighbor experiment except that
processes are logically laid out in three dimensions. Thus,
each process has 26 logically nearest neighbors with which
it performs point-to-point communication. Because of space
restrictions, we simply point out, as can be seen in Figs. 4(a)
and (b), that the overall trend is similar to that of the 2D
nearest-neighbor benchmark: (1) there is a significant per-
formance difference between different mappings, (2) the
performance difference increases with message size and sys-
tem size, and (3) the CDL model allows the system to au-
tomatically pick the best mapping. In fact, for 65,536 pro-
cesses and a message size of 1 MB, we notice an order-of-
magnitude difference in performance.

4.2 Evaluation of application kernels

Next, we use two application kernels, P3DFFT and Halo,
to analyze the impact of process mapping on overall perfor-
mance.

P3DFFT library FFT [13] is an efficient algorithm to com-
pute the discrete Fourier transform (DFT) and its inverse.
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Fig. 5 P3DFFT performance: (a) 512 to 8 K cores, (b) greater than 8 K cores

Fig. 6 Halo application on (a) 32 K cores, (b) 128 K cores

FFT, as applied to a three-dimensional volume of space, is
typically referred to as 3DFFT. The goal of 3DFFT is essen-
tially to perform 1D Fourier transform on each of the three
dimensions of the 3D data mesh. Most parallel 3DFFT im-
plementations rely on a sequential version of 1DFFT (that
performs the transform on one dimension at a time) and
then transpose the data grid when needed. Multiple imple-
mentations of parallel 3D FFT are available today. P3DFFT
[14, 15] is a popular implementation of 3DFFT used in vari-
ous application domains, including digital speech and signal
processing, solving partial differential equations, molecular
dynamics simulations, and Monte Carlo simulations.

Figure 5 shows the performance of P3DFFT with increas-
ing system size for different process mappings. For viewa-
bility, we split the data into two graphs—Fig. 5(a) shows
the performance for small system sizes (up to 8,192 cores),
while Fig. 5(b) shows the performance for large system
sizes (more than 8,192 cores). As shown in the figures, for
small systems, process mapping has no significant impact.
When the system size increases beyond 8,192 cores, how-
ever, we do notice a performance difference between the dif-
ferent mappings. In fact, this difference is as high as 25%
for 65,536 cores, which makes the Contention Detection
Model’s (CDL) benefits substantial for large-scale systems.

The Halo application kernel The NRL Layered Ocean
Model (NLOM) [16] simulates semi-enclosed seas, major
ocean basins, and global ocean. The current implementation
of the model uses a tiled data-parallel programming style. Its
general nature allows implementations in various program-
ming models including MPI, OpenMP, Co-Array Fortran,
and shared memory. This makes NLOM a good candidate
for benchmarking both hardware and the associated com-
munication software. The Halo benchmark [10] simulates an
NLOM 2-D exchange for an N × N subdomain for differ-
ent values of N . In other words it performs nearest-neighbor
exchanges from a 2D array. Each of these exchanges is per-
formed by using several algorithms, different for each pro-
gramming technique. When Halo is used on a smaller num-
ber of nodes, the performance is affected predominantly by
the system latency, whereas for larger node counts the band-
width becomes a dominating factor [10].

Figure 6 shows the performance of Halo with varying
message size, for different process mappings (system sizes
of 32,768 cores and 131,072 cores). Again, we notice a sig-
nificant improvement in overall performance for the CDL
model, depending on the mapping. For 131,072 cores, we
notice more than twofold difference in performance. Fig-
ure 7 shows the performance of Halo with varying system
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Fig. 7 Halo application trends on varying system size: (a) 8 KB message size, (b) 1 MB message size

sizes (message sizes of 8 KB and 1 MB). We notice three
trends: (1) no single mapping performs the best in all cases,
which is also true for all other results shown in the pa-
per; (2) the overall performance difference between the best
mapping and the worst mapping generally increases with
system scale; and (3) the CDL model picks the best map-
ping in all cases.

5 Related work

In the past few years, a lot of research has been devoted
to studying techniques for mapping application topology
(tasks) onto the system’s actual physical topology [17–
20] and to optimizing these techniques [21–23]. Research
[24–27] provides different methods for optimizing problem
layout on BG/L. All this research assumes that applications
can describe their communication patterns effectively to the
runtime system; however, this is not currently the case. Most
mapping techniques assume a possible communication pat-
tern based on the data layout and optimize the process layout
accordingly.

The NAS Parallel Benchmarks [28] were evaluated with
different mappings such as Gray codes and permutations of
the X, Y , Z coordinates on the BG/L systems spanning up
to 256 processors. While that work is similar to a subset of
research proposed here, it was done only with microbench-
marks and on very small system size. None of the prior work
has shown these effects at the scales we have shown. Our ex-
periments are done on a scale nearly 100 times larger than
the previous papers (80% of the largest BG/P system in the
United States). Since network sharing is going to increase in
future exascale systems, scale of the applications is key to
understanding network saturation behavior.

Work also has been done in the context of STAR-MPI,
which focuses on adaptive techniques for various collec-
tive operations and utilizes the most optimal communica-
tion algorithm [29]. While such tools can help choose the

best communication algorithm for a given system process
mapping, they do not explicitly try to understand the net-
work congestion behavior caused by different mappings;
thus, they are mostly complementary to the work done in
this paper.

6 Concluding remarks

We analyzed the impact of different process mappings on
application performance on a massive BG/P system. Us-
ing this analysis, we propose a communication description
model/language (CDL) that applications can use to specify
their communication patterns prior to being launched. We
demonstrated the performance benefits the CDL model can
provide, using microbenchmarks and real application ker-
nels including P3DFFT and the Halo ocean-modeling ker-
nel. Our experiments, which scaled up to 131,072 cores
of the Blue Gene/P system indicate that different process
mappings can show significant difference in overall perfor-
mance, especially on large-scale systems. Through our CDL
model, however, one can avoid these differences in perfor-
mance, thereby obtaining the best possible performance.
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