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Abstract—With the growing scale of high-performance com-
puting (HPC) systems, today and more so tomorrow, faults are
a norm rather than an exception. HPC applications typically
tolerate fail-stop failures under the stop-and-wait scheme, where
even if only one processor fails, the whole system has to stop and
wait for the recovery of the corrupted data. It is now a more-or-
less accepted fact that the stop-and-wait scheme will not scale to
the next generation of HPC systems.

Inspired by the previous stop-and-wait algorithm-based fault
tolerance (ABFT) recovery technique, we propose in this paper
a nonstop fault tolerance scheme at the application level and
describe its implementation. When failure occurs during the
execution of applications, we do not stop to wait for the
recovery of the corrupted node; instead, we replace it with
the corresponding redundant node and continue the execution.
At the end of execution, the correct solution can be recovered
algorithmically at a very low cost.

In order to implement the scheme, some new fault-tolerant
features of the Message Passing Interface (MPI) have been
investigated and utilized in the MPICH implementation of MPI.
We also describe a case study using High Performance Linpack
(HPL) with these new features and evaluate the performance of
both our new scheme and ABFT recovery. Experimental results
show the advantage of our new scheme over ABFT recovery even
in a small scale.

Keywords: Nonstop; Algorithm-Based Fault Tolerance; High
Performance Linpack; MPICH

I. INTRODUCTION

The largest systems in the world today already scale to
hundreds of thousands of cores. With plans under way for
exascale systems to emerge within the next decade, we will
soon have systems comprising more than a million processing
elements. As researchers work toward architecting these enor-
mous systems, it is becoming increasingly clear that, at such
scales, resilience to hardware faults is going to be a prominent
issue that needs to be addressed.

While the peak performance of contemporary high-
performance computing (HPC) systems continues to grow
exponentially, it is getting more and more difficult for sci-
entific applications to achieve high performance because of
the increasing failures in these systems. Today’s long-running
scientific applications typically tolerate system failures by
using checkpoint-restart techniques, where the application (or
the system) occasionally checkpoints the state of the executing
processes to a reliable storage [1], [2]. With the increasing gap

between the compute power of these systems and the capabil-
ity of the storage systems, the scalability of checkpointing
solutions in next-generation HPC systems is in doubt. For
example, based on a balanced system model and statistics from
the Computer Failure Data Repository (CFDR) [3], Gibson
et al. predicted that the effective application utilization of
checkpoint/restart-based fault tolerance will keep dropping to
zero under current technology trends [4], [5]. Such behavior
has been predicted by other researchers as well [6].

Diskless checkpointing has been proposed to improve the
scalability of checkpointing [1], [7]. However, methods such
as algorithm-based fault tolerance (ABFT) recovery [8], [7]
promise even better scalability. The ABFT method has been
studied in many applications, such as ScaLAPACK [9], [10],
HPL [11], preconditioned conjugate gradient (PCG) solver [8],
[7], and iterative methods in PETSc [12]. Unlike system-
level checkpointing, using ABFT recovery to handle faults is
not transparent to applications. However, it does have several
advantages. First, this technique introduces no explicit stop-
page to perform a checkpoint. The redundancy is computed
synchronously with the main computing process; thus, no
rollback of work is needed when failure occurs. Second, the
redundancy is completely in-memory and does not rely on
the capability of the storage system. Previous experimental
results show that this technique has better performance than
checkpointing [8], [7], [12].

However, ABFT recovery is still based on the stop-and-
wait scheme, where even if only one process fails during
the execution of applications, all processes alive have to stop
and wait for the recovery of the failed process. According
to Amdahl’s law, the maximum speedup of an application is
limited by its sequential proportion. Thus, the stop-and-wait
scheme will affect the parallel efficiency of applications under
large scale.

To ease this problem, we propose a new nonstop algorithm-
based fault tolerance scheme called ABFT hot-replacement.
When failure occurs during the execution of the application,
we do not stop to wait for the recovery of corrupted data;
rather, we replace it with the corresponding redundant data and
continue the execution. At the end of execution, our scheme
can recover the correct solution algorithmically at a low cost.

In order to implement this new scheme, some new fault



tolerance features of Message Passing Interface (MPI) imple-
mentations are required, for which we utilized the MPICH
implementation of MPI.

This paper also describes a case study using High Per-
formance Linpack (HPL) and the MPICH implementation of
MPI and evaluates its performance. Together with those new
features, some additional supports at application level such as
message redundancy and virtual ranks are implemented, which
may be addressed in future version of MPICH. Experimental
results show an observable advantage of the new scheme over
ABFT recovery even in a small scale.

The rest of paper is organized as follows. Section II briefly
introduces the conventional ABFT method and fault-tolerant
MPI implementations. Section III proposes our new algorithm-
based fault tolerance scheme, ABFT hot-replacement. In Sec-
tion IV, we introduce the new fault tolerance features of
MPICH used to implement the proposed scheme. In Section V,
we demonstrate how to incorporate fault tolerance into HPL
using the proposed scheme. Section VI presents some exper-
imental results and evaluations. Section VII concludes this
paper and discusses future work.

II. BACKGROUND AND RELATED WORK

In this section, we first briefly introduce the conventional
algorithm-based fault tolerance method. Then the background
and related work of fault-tolerant MPI are given.

A. Conventional Algorithm-Based Fault Recovery Method

The algorithm-based fault tolerance technique first proposed
by Huang and Abraham [13] [14] uses the encoded data to
detect and correct instant errors in certain matrix operations
at the system level. This technique was further developed by
Chen and Dongarra to tolerate fail-stop failures that occurred
during the execution of HPC applications [15] [9]. This latter
technique is also the basis of the ABFT recovery method
mentioned in this paper. The idea of ABFT is to encode
the original matrices using real number codes to establish a
checksum type of relationship between data, and then redesign
algorithms to operate on the encoded matrices in order to
maintain the checksum relationship during the execution.

Assume there will be a single process failure. Since it’s hard
to locate which process will fail before the failure actually
occurs, a fault-tolerant scheme should be able to recover the
data on any process. In the conventional ABFT method, it is
assumed that at any time during the computation the data Di

on the ith process Pi satisfies

D1 +D2 + · · ·+Dn = E, (1)

where n is the total number of processes and E is data on the
encoding process. Thus, the lost data on any failed process
can be recovered from Eq. (1). Suppose Pi fails. Then the
lost data Di on Pi can be reconstructed by

Di = E − (D1 + · · ·+Di−1 +Di+1 + · · ·+Dn). (2)

In practice, this kind of special relationship is by no means
natural. However, it is possible to design applications to

maintain such a special checksum relationship throughout the
computation, and this is one purpose of ABFT research.

B. Fault-Tolerant MPI

Although fault tolerance has not been addressed by the MPI
standard as of 2.2, work has been done previously to improve
the fault tolerance of MPI implementations and applications
using checkpoint-rollback recovery (e.g., [16], [17] and [18])
and application-level fault tolerance (e.g., [19], [20] and [21]).
Checkpoint-based fault tolerance is attractive because it is
provided transparently to the application. No action on the
part of the application is required to detect or handle faults.
However, checkpointing-based fault tolerance has drawbacks,
as mentioned in Section I, and is not suitable in all situations.

To support application-level fault tolerance, the MPI imple-
mentation must itself be able to tolerate faults. Furthermore,
it must provide features to allow the application to proceed
in a meaningful manner after a fault has occurred. This issue
has also been studied previously (e.g., [19], [20] and [21]).
Collective operations in FT-MPI [19] are required, in the
presence of a failed process, to complete with the same result
as if there were no failed processes; otherwise the operation
must abort. The fault-tolerant features we added to MPICH
differ from FT-MPI in that we decided to relax the restriction
on collective operations in order to reduce the overhead during
failure-free operation. In our implementation, collectives will
return an error code at those processes where the result may
be invalid, but they also may return successfully if the result
is known to be unaffected by the failure.

In MPI/FT [21] failed processes are always replaced from
a pool of spare processes. When the pool of spare processes
is exhausted, the application is aborted. Our implementation
does not yet have the ability to restart failed processes; instead,
the decision on whether to continue is left to the application.
Since spare processes are not always feasible, we feel that
allowing the application to decide how to continue gives the
application more flexibility.

III. A NONSTOP ALGORITHM-BASED FAULT TOLERANCE
SCHEME

In this section, a nonstop algorithm-based fault tolerance
scheme, called ABFT hot-replacement, is proposed.

A. Hot-Replacement Scheme

For the simplicity of presentation, we assume there will
be only one process failure. However, it is straightforward
to extend the results here to multiple failures by simply
using multilevel redundancy or regenerating the encoded data.
Suppose that at any time during the computation the data Di

on the ith process Pi satisfies

D1 +D2 + · · ·+Dn = E. (3)

If the ith process failed during the execution, we replace it with
the encoding process E and continue the execution instead of
stopping all the processes to recover the lost data Di. Note



that this kind of transformation can be effective only when
there is an encoding relationship among the data.

From the global view, the original data is

D = (D1 · · ·Di−1DiDi+1 · · ·Dn), (4)

and the transformed data (after replacement) is

D′ = (D1 · · ·Di−1EDi+1 · · ·Dn). (5)

We can establish a relationship between the transformed data
and the original data as

D′ = D × T, (6)

and T can be represented as an n×n matrix in the following
form:

T =



1 1
. . .

...
1 1

1
1 1
...

. . .
1 1


, (7)

where the elements omitted in the diagonal and the ith column
are all 1 and the other elements omitted are 0. We can see that
T is a nonsingular matrix.

If operations on the data are linear transformations (e.g.,
matrix operations such as decomposition), the relationship
D′ = D× T will always be kept. At the end of computation,
the original correct solution based on D can be recomputed
through the intermediate solution based on D′. And this
recomputation is actually a transformation related to T .

One can see that the encoding relationship D′ = D × T
cannot be maintained under all HPC applications. However, for
a class of them, including matrix computations involving linear
transformations, such as matrix decomposition, matrix-matrix
multiplication, and scalar product, the encoding relationship
can be maintained. A simple example on HPL is given in the
next section.

B. A Simple Example on HPL

HPL is a popular benchmark for supercomputing and is
widely used for ranking supercomputers on Top500 [22]. It is
used to solve linear system

Ax = b (8)

using Gaussian elimination with partial pivoting (GEPP).
We assume process Pi fails during the execution. After the
replacement with redundancy, the linear systems becomes

A′y = b. (9)

At the end of execution, it gives the solution y as an inter-
mediate result. Since all the operations in GEPP are linear
transformations, the relationship

A′ = A× T (10)

can always be kept during the execution. Combining Eq. (8),
(9), and (10), we obtain the correct solution x by

x = T × y. (11)

Assume the transformation matrix T is the same as Eq. (7).
Substitute Eq. (7) into Eq. (11), giving{

xj = yi + yj , if 1 ≤ j 6= i ≤ q
xi = yi

(12)

It shows that the cost of recomputing the solution x is O(n),
whereas the cost of ABFT recovery to handle a single process
failure is O(n2). Because of the simplicity of T , the correct
solution can be recovered algorithmically at a low cost.

In the real implementation of fault-tolerant HPL, however,
the encoding of data matrix and the transformation matrix
T will be more complex because of its block-cyclic data
distribution. We will discuss these issues in Section V.

C. Advantages

Compared with ABFT recovery, ABFT hot-replacement
introduces the following two advantages.

First, consider there is only one process failure in a system,
say Pi. With ABFT hot-replacement, the other processes in
the system do not need to stop and wait for the recovery of
the data on Pi. This nonstop scheme improves the efficiency
of large-scale systems, since the wasted CPU cycles during
the stop-and-wait period increase with the system scale.

Second, since T is a very sparse matrix, the cost of
recomputing the correct solution by using T can be much
lower than that of the recovery of failed process directly,
especially for those computation-intensive or communication-
intensive applications where each process is allocated with a
large set of data. This can be seen from the simple example
of HPL.

In the case shown above, because of the maintenance of
checksum relationship, we were able to process the lost data
on any failed process without periodically checkpointing. In
practice, however, this kind of special relationship is by no
means natural. Nevertheless, one can design an application to
maintain such a special checksum relationship throughout the
computation, by using the checksum matrices of the original
ones as the input matrices. To demonstrate the feasibility of
the proposed ABFT hot-replacement method, we will apply it
to the fault tolerance of HPL in Section V.

IV. FAULT TOLERANCE IN MPICH

While the MPI Forum is currently working on adding
fault-tolerance features to the standard, [23], the current MPI
standard (2.2) does not yet define the behavior of an MPI
library in the presence of process or communication failures.
We have identified the minimum set of fault-tolerance features
required of an MPI implementation in order to support our
fault tolerant algorithm as follows.
• Node failure will not cause the entire job to abort.
• The MPI implementation should provide a mechanism to

query for failed processes.
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• Communication operations involving a failed process will
not hang and will eventually complete.

• Communication operations will return an error code when
it is affected by a failed process. This is needed to
determine whether to re-send or re-receive messages.

These requirements are a subset of the features proposed
by the MPI Forum’s fault tolerance working group. We have
implemented these requirements and included them in the
1.3.2 release of MPICH2. In this section we describe the
failure detection mechanism and the API to query for failed
processes followed by the behavior of point-to-point and
collective communication when failed processes are involved.
Note that since MPI fault-tolerance features have not been
standardized and are still in the process of being defined, the
MPICH fault-tolerance features described here may differ from
the features ultimately included in the MPI standard, and so
may change in the future.

A. Process failure detection and query

Although process failure can sometimes be inferred from
communication failure by the MPI library, this is not a reliable
way to detect failed processes. For instance, sending a message
to a failed process may result in a timeout or an error reply
from the operating system at the remote node, but a passive
receiver may wait for a message which will never arrive from a
failed process. For this reason, we modified the Hydra process
manager to detect failed processes. Figure 1 shows the Hydra
process manager and proxies in relation to the MPI processes.
When launching an application Hydra starts a proxy at each
node, which, in turn, spawns the MPI processes. When an
MPI process terminates, the proxy will receive a SIGCHLD
signal and will then notify the process manager. If the process
terminated before calling MPI_Finalize(), the process is
considered to be a failed process. Hydra can be configured to
abort the entire job when a failed process has been detected.
This is often useful for non-fault tolerant applications in order
to prevent runaway processes. For fault tolerant applications,
however, when Hydra detects a failed process, it does not abort
the job, but adds the process to its list of failed processes,
then notifies the MPI processes by having the proxies send
the processes a SIGUSR1 signal.

The MPICH library catches the SIGUSR1 signal and
queries Hydra for the list of failed processes then
closes all connections to the failed processes. The MPI
process can get the failed process list by querying
the MPICH_ATTR_FAILED_PROCESSES attribute on
MPI_COMM_WORLD. The list consists of an array of integers
representing the ranks of failed processes, terminated by
MPI_PROC_NULL.

B. Point-to-point communication

When a message is sent to or a receive is posted for a
message from a failed process, the send or receive function
returns an MPI_ERR_OTHER error code, or, in the case of
nonblocking operations, the request is completed with the
error code set. Additionally, wildcard receives, i.e., using
MPI_ANY_SOURCE, posted to communicators with a failed
process will also be completed with an error. When notified
of a failed process, MPICH scans the list of posted receives
and queued sends, and completes the ones involving the failed
process with an error.

Handling wildcard receives as described above requires
knowing that a communicator contains a failed process. The
communicator data structure has a list of every process it
contains, however, to conserve memory, MPICH does not keep
track of the reverse, i.e., a list of every communicator of
which a particular process is a member. Determining whether
a communicator contains failed processes requires scanning
the list of processes in that communicator. This can be costly,
especially if an application uses many communicators.

To address this, a communicator is only checked for a
failed process only when a wildcard receive is encountered,
either when one is posted or when scanning the list of posted
receives. Each communicator has a flag which is set whenever
the list of processes is scanned and it is determined that it
contains a failed process. If the flag is set, then the list of
processes does not need to be scanned again, since once a
process fails, it cannot be repaired. However, if the flag is not
set, it is possible that the communicator was not previously
checked for a failed process or that a process has failed since
the last time the communicator was checked. In this case, we
use a timestamp to indicate the last time the list of processes
was scanned. If a process failure notification has been received
since the list of processes was scanned, the list is scanned
again, otherwise we know that there cannot be any failed
processes in the communicator. This reduces the number of
communicators that need to be scanned and the number of
times a particular communicator needs to be scanned.

C. Collective communication

Collective operations, by definition, require the participation
of all processes of the communicator. The current MPI stan-
dard does not define the result of a collective communication
operation when a member of the communicator has failed.
Rather than try to define the result of a collective operation
with missing processes, we decided first, make sure that the
collective operation does not hang, and additionally, that the



collective operation will return an error at all processes where
the result may be invalid.

Failed processes may cause a collective operation to hang
unless the collective operation has been implemented to han-
dle process failures. Consider a broadcast operation that is
implemented by logically arranging the processes in a tree
and forwarding the message over the tree using point-to-
point messages. If the broadcast algorithm is implemented so
that when a send or receive operation returns an error, the
process will immediately abort the broadcast operation, then
that process’s children may hang. A child process will wait
trying to receive the message from its parent, but if the parent
has aborted the broadcast it will never receive the message,
and will not get an error because the parent has not failed. The
solution we applied is to continue the collective operation even
when a failure is detected. This will prevent processes from
hanging, but may result in some, but not all, processes getting
invalid results from the collective operation. For instance, in
the broadcast operation, the ancestors of a failed process would
receive an invalid message; however, the other processes will
receive the message correctly.

It is important for each process of an application to tell
whether a collective operation produced a valid result. Because
only the processes directly receiving from or sending to the
failed process will detect the failure, the other ancestors of
the failed process will need to be notified that the received
data is invalid. To do this we mark the messages carrying
invalid data by using a different tag value. During a collective,
when a receive operation fails, all subsequent send operations
will set the tag to mark the message as containing invalid
data. Processes will use a wildcard tag, i.e., MPI_ANY_TAG,
to receive the collective messages, then check the tag to
determine whether the data is valid. If a process receives a
message marked as containing invalid data, the process will
continue performing the collective operation, but will mark any
subsequent messages it sends as containing invalid data. When
a process completes the collective operation it will return an
error code if a send or receive operation failed, or if it had
received invalid data at any point during the operation. In this
way an error code will be returned by the collective function
at any process where the collective produced an invalid result.

As of MPICH2 version 1.3.2, no mechanism is provided
to be able to repair a communicator, or to allow a collective
operation to be performed correctly while excluding any failed
processes in a communicator. Such features are currently being
investigated in this paper at the application level and we expect
to include them in future versions of MPICH.

V. INCORPORATING FAULT TOLERANCE INTO HIGH
PERFORMANCE LINPACK

With the support of the MPICH implementation of MPI,
we incorporate fault tolerance into HPL using ABFT hot-
replacement scheme proposed in Section III. Our implemen-
tation focuses on handling a single process failure occurred
in the main part of HPL, that is factorization, row broadcast
and update phases. However, it’s possible to extend the result

Asub
(k+1)

U12
(k)

L21
(k)

U11
(k)

L11
(k)

A22
(k)

A12
(k)

A21
(k)

Asub
(k)

A11
(k)

Fig. 2. Algorithm of HPL using left-looking LU factorization.

here to multiple process failure cases by rebuilding checksum
in background and maintaining multi-level redundancies.

In this section, we first present an overview of HPL.
Second, we briefly introduce the encoding of matrix and
how to locate a failure. Then we give a detailed presentation
on the failure handling in factorization and update phases,
using hot replacement and background recovery technique.
For better robustness, we also describe failure handling in
row broadcasting by proposing a new message broadcasting
mechanism.

A. High Performance Linpack Overview

The main algorithm of HPL solves Ax = b using GEPP.
It first computes the LU factorization of the n × (n + 1)
coefficient matrix [A|b], producing [A|b] = [[L,U ]L−1b].
Then the solution x can be obtained by solving the upper
triangular system Ux = L−1b. The pseudo code for HPL
using left-looking LU factorization with look-ahead depth = 0
is given as follows. For better presentation, we also depict it
in Figure 2. The colored part of the matrix in Figure 2 is
the part that has been computed, while the uncolored part
is the trailing submatrix Asub. The part of the matrix that
changes color is the part that is computed by one iteration.
We denote matrices in the kth iteration with a superscript
(k). At the very beginning ,we assume Asub

(0) = A. Then
we could see that in the kth iteration, A(k)

sub is divided into 4
submatrices: A11

(k), A12
(k), A21

(k) and A22
(k). At the end of

the iteration, it produces the new trailing submatrix Asub
(k+1).

We could also notice that the trailing submatrix shrinks after
every iteration. For more details, we refer the reader to [24].

Each process generates its local random matrix A
; operate on each trailing submatrix Asub

(k)

for k = 0, 1, . . .
; factorization phase
factorize A11

(k) and A21
(k) as L11

(k) · U11
(k) and

L21
(k) · U11

(k)

; row broadcast phase
broadcast L11

(k), L21
(k) and pivoting information right

; update phase
perform row swaps and calculate U12

(k) = L11
(k)−1 ·

A12
(k)

update the trailing submatrix Asub
(k+1) = A22

(k) −
L21

(k) · U12
(k)

solve U · x = L−1 · b to obtain x
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Fig. 3. Two-dimensional process grid with P = 2 and Q = 2 and the data
distribution of an example matrix with redundancy: (a) original process grid,
(b) original matrix with redundancy from global view, (c) process grid with
redundancy, (d) original matrix with redundancy from distributed/local view.

B. Matrix Encoding

The encoding of the matrix is similar to that described
in [9]. In HPL, the random matrix A is distributed onto a
two-dimensional P ×Q process grid according to the block-
cyclic scheme. To tolerate a single-process failure, we dedicate
additional P processes and organize the total P × Q + P
processes as a P × (Q + 1) process grid. The redundant P
processes are distributed on the (Q+1)th column of the new
process grid, holding the checksum encoding, which can be
obtained by adding all local matrices on the first Q process
columns. Figure 3(a) shows the original layout of a process
grid with P = 2 and Q = 2. Figure 3(c) is the corresponding
process grid with redundant processes P2 and P5, where
P2 holds the checksum encoding of P0 and P1, and P5
does similarly. We show the encoding of an example matrix
with redundancy in Figure 3(b) and denote the local matrices
of each process in Figure 3(d). In Figure 3, we distinguish
different processes in different colors. The matrix order N we
use is 4 and the block size nb is 1. Based on the consideration
of simple implementation, we also keep a copy of column b
on the redundant processes.

Under this encoding scheme, the row checksum rela-
tionship (matrix L excluded) can be maintained during
the computation, after each update phase [11].

C. Failure Location

Since failure occurrence is unpredictable, we do not know
the time and the location of the failure before it actually
occurs. To obtain this information, every process should query
the new MPICH_ATTR_FAILED_PROCESSES attribute on
MPI_COMM_WORLD after every phase. Since different pro-
cesses may finish the same phase at different time, we need
to do a barrier operation before the failure checking operation
to make sure that all processes get the same result.
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Fig. 4. Perform ABFT hot-replacement on the example matrix after P3
failed: (a) global matrix before failure, (b) rearranged process grid after hot-
replacement, (c) global matrix after hot-replacement, (d) global matrix after
recovery.

D. Hot Replacement Technique

If a process failure is discovered in the failure checking
after a phase, all processes alive will enter a uniform entry
to perform failure handling using the ABFT hot-replacement
method proposed in Section III. The redundant process column
will replace the dead process column, and the computation
will continue. Consider the example in Figure 3. We assume
the failed process is P3 and the failure is discovered after
the first update phase, thus we replace the redundant process
column with the dead one, i.e. the 1st column. Figure 4(a) is
the supposed matrix after the first update phase without failure.
Figure 4(b) is the rearranged grid after hot-replacement and
Figure 4(c) is the corresponding global matrix. Note that the
submatrix with cross lines in Figure 4 denotes matrix L.

In our implementation, we replace the whole column rather
than a single process upon process failure. Since processes
inside a column need to do some row swaps during the
computation, only replacing the dead process by a redundant
process will make the transformation matrix T difficult to
derive.

Moreover, this hot-replacement is not physical but can be
done rapidly. It is implemented by exchanging the relative
parameters in the data structure of process grid and does not
involve any internode data transmissions.

Note that the replacement can be done only when the
checksum relationship is satisfied, that is, after the update
phase. Thus, if a process failure is found after a factorization
or row-broadcasting phase, all processes alive should continue
execution until they finish the updating. After that, the hot-
replacement could be performed.

Another issue is how to update the status of communica-
tors after the replacement. A communicator is used in MPI
to denote a set of active processes. An ideal fault-tolerant
MPI implementation should be able to dynamically adjust a
communicator to add new or remove failed processes. In our
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implementation, we address this issue in the application level
by designating a virtual rank to each process. Messages are
sent or received by using these virtual ranks. We wrote two
macros to do the mappings between the original rank of a
process in MPI_COMM_WORLD and its virtual rank according
to the status of the process grid.

E. Background Recovery Technique

It can be inferred from Figure 4(c) that the matrix U we get
at last will no longer be upper-triangular, since the submatrix
that has been factorized before the failure occurrence is
replaced by redundancy. This will make it difficult to solve
Ux = L−1b. To overcome this issue, we do not replace
the already factorized data but, instead, recover them onto
the corresponding redundant processes. Figure 4(d) shows the
global view of the example matrix after the recovery.

We note that the factorized data is not for immediate use
(only used in solving Ux = b). Thus, recovering the data could
be performed in background to achieve better performance. We
overlap the communication needed for the recovery with the
succeeding update phases, which consist mainly of matrix-
matrix multiplications. We divide the data to recover into
several parts according to the amount of data to be transferred
in every succeeding update phase. Then we use nonblocking
MPI_Isend and MPI_Irecv to overlap the communication
and the computation. Note that as the calculation takes place,
the data to update decreases; thus the data to send or receive
during the update phase also decreases.

F. Failure Handling in Row Broadcasting

The methods discussed thus far can handle failures in the
factorization or update phases. But for the row broadcast
phase, the procedure may be a little tricky. All row broad-
casting methods provided by HPL are based on message
forwarding. Thus, if a process fails during a row broadcast
phase, processes that indirectly receive messages from the
failed process will be blocked. For example, suppose P1

forwards messages from P0 to P2 and P0 failed. Then P1

will get notified of the failure by the error code of a MPI
receive operation while P2 will block.

Here we need a new robust message broadcasting mecha-
nism. It should meet the following conditions:
• None of the processes will block if a failure occurs.
• Either all nonfailed processes receive the message suc-

cessfully or none of them receive the message.
In this section, we present a robust message broadcasting

mechanism for the commonly used row broadcast method in
HPL: the increasing-2-ring-modified method (2rinM method).

Figure 5 illustrates how the 2rinM method works in a
row_com with size Q = 8. Messages are first sent from the
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Fig. 6. Message transmissions of 2rinM method with father-son relationship
in chronological sequence

root P0 to P1. The Q− 2 processes left are divided into two
groups: processes P2 to P(Q+1)/2−1 are in one group and
processes P(Q+1)/2 to PQ−1 in another. Messages are then
sent to processes P2 and P(Q+1)/2, which act as sources of
two increasing-one rings.

In our implementation, we designate a father node for
each nonroot node. The messages of a father node should be
transferred ahead of its son nodes. Each nonroot node sends
the error code of its MPI_Recv to its father node. If its
MPI_Recv failed, it should also initiate another MPI_Recv
waiting to receive re-sent messages from its father node. As a
father node, it receives the error code from its corresponding
son nodes and then determines whether to resend a message
again. We denote in Figure 6 the chronological sequences
of message transmissions of Figure 5. The dashed arrows in
Figure 6 point from son nodes to their father nodes, showing
one possible father-son relationship. In this way, we can ensure
that all processes will receive the messages successfully no
matter which nonroot node is failed.

But what if the root P0 fails before the first message is
received successfully? If so, all processes will hang there
except those that receive messages directly from the root
node. To overcome this problem, we separate the first message
transmission out of the row broadcast phase. The fault-tolerant
mechanism presented above is performed only after the root
P0 send messages to P1 successfully.

VI. EXPERIMENTAL EVALUATION AND ANALYSIS

We performed three sets of experiments to answer the
following questions about our ABFT hot-replacement method:
• How does the ABFT hot-replacement method perform?
• Is the ABFT hot-replacement method correct?
• How does the timing of process failures affect perfor-

mance?
The experiments were performed on two different platforms.

The first two sets of experiments were performed on a smaller
cluster of 17 nodes. Each node of the cluster has four quad-
core 2.2GHz AMD Opteron processors, connected by Gigabit
Ethernet. The third set of experiments was performed on a
larger cluster of 8 blades, 10 Intel Xeon X5650 processors
each, 960 cores in total. In this cluster, nodes in the same
blade are connected by InfiniBand, while different blades
are connected with each other by a single InfiniBand cable.
All nodes of the two clusters are running Linux operating
systems. The MPICH package we used on both platforms is



TABLE I
EXPERIMENT CONFIGURATIONS ON THE SMALLER CLUSTER

Matrix Order Number Processes Process grid
of nodes per node with redt.

10,000 6 1 2 by 3
20,000 1 16 4 by 4
30,000 2 16 4 by 8
40,000 4 16 8 by 8
50,000 12 16 16 by 12
60,000 16 16 16 by 16

TABLE II
HPL EXECUTION TIME (IN SECONDS) USING DIFFERENT METHODS

Matrix Order No Failures Hot-Rep. Rec.
10,000 577.74 591.61 602.73
20,000 1608.15 1677.14 1723.37
30,000 2601.03 2791.12 2821.43
40,000 3150.11 3358.38 3497.08
50,000 3433.09 3479.26 3577.77
60,000 4708.54 4722.44 4858.23

mpich2-trunk-r7834, and all the timings were measured by
MPI_Wtime.

A. Performance of Different Algorithm-Based Fault Tolerance
Methods

The first set of experiments was designed to compare the
performance of the two different fault tolerance methods:
ABFT recovery and ABFT hot-replacement. We incorporated
both of them into HPL to handle a single process failure.
Process failure was simulated by killing a process at a certain
period of time after HPL started running.

The order of random matrix A and the number of com-
putation nodes used in this set of experiments are listed in
Table I. The matrix orders we used are of 104 magnitude.
Table II reports the execution time of HPL using the two
methods with one process failure and HPL without failure. The
corresponding overheads of the two fault tolerance methods
are shown in Figure 7. These overheads were calculated
against HPL without failure. We can see that to handle a
single-process failure, the execution time of HPL using ABFT
hot-replacement is about 10–200 s shorter than that of HPL
using ABFT recovery. The proportion of this part is about 1–
5% of the execution time of HPL without failures. It should
also be noted that the overhead of ABFT methods is affected
by the mappings between processes and physical cores. If
processes in the same row or column are mapped to physical
cores in different nodes, the communication cost will be higher
than that they all mapped inside the same node. Consider the
fifth experiment where the matrix order is 50,000. One process
row contains 12 processes, while one node has 16 physical
cores. We can infer that there must be processes in certain
rows are not mapped inside the same node. This could also
explain why the overhead of ABFT methods in this experiment
is higher than that of the last one, though the amount of data
allocated to each process in this experiment is less.
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B. Numerical Impact of Round-Off Errors in Different
Algorithm-Based Fault Tolerance Methods

As discussed in Section II-A, ABFT techniques are based
on floating-point arithmetic encodings and may therefore
introduce round-off errors in HPL. Moreover, the ABFT
hot-replacement method involves matrix transformation when
replacing the dead process column by the redundant process
column, which will make the round-off errors even greater.
The experiments reported in this section were designed to
measure the numerical impact of the round-off errors by
checking the norm of residuals.

All experiment configurations are the same with the first
one, listed in Table I. Figure 8 reports the norm of residuals at
the end of each computation for the two ABFT methods with
a single process failure, compared with the nonfailure case.
One can see that the ABFT recovery method introduces a little
round-off error into HPL whereas the ABFT hot-replacement
method almost doubles the norm of residuals of HPL.

C. Performance of HPL using Hot-Replacement at Different
Time Period

The third set of experiments was designed to evaluate the
performance of the HPL using ABFT hot-replacement method
when failure occurs at different times. The experiments were
performed on the larger cluster with 8 blades. We used 75
of the nodes, 900 cores in total. We initiated one process per
core and organized the 900 processes into a 30 × 30 grid.
The matrix order we used was 200,000. The time of failure
occurrence were controlled by the sleep function in python
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scripts.
Figure 9 shows the execution time of HPL using the

ABFT hot-replacement method while varying the timing of
the failure. We can see that after 1,000 s, the total execution
time increases radically. The reason is that, with the execution,
the amount of factorized data is increasing. At the same time,
the amount of data to be recovered, if a failure occurs, is also
increasing. When that amount becomes too large to overlap
the background recovery and the succeeding update phases, the
total execution time will increase. However, the execution time
of HPL using ABFT hot-replacement in the worst case should
approach that of HPL using ABFT recovery theoretically.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a new nonstop algorithm-based fault-tolerant
scheme is proposed for a class of HPC applications, including
matrix computations involving linear transformations. HPL has
been modified to use the new fault-tolerant scheme with the
support of MPICH’s new fault tolerance features. Experimen-
tal results indicate that the proposed scheme is more efficient
than existing algorithmic recovery methods.

Future work may include the following three directions.
First, the proposed nonstop algorithm-based fault tolerance
scheme should be implemented at large scale and under real
circumstances, including handling multiple failures. Second,
the round-off errors introduced by this fault-tolerant method
when handling multiple failures at large scale should be further
investigated. Third, this approach should be extended to the
fault tolerance of other HPC applications.
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