
Noncollective Communicator Creation in MPI�

James Dinan1, Sriram Krishnamoorthy2, Pavan Balaji1, Jeff R. Hammond1,
Manojkumar Krishnan2, Vinod Tipparaju3, and Abhinav Vishnu2

1 Argonne National Laboratory, Argonne, Illinois
{dinan,balaji}@mcs.anl.gov, jhammond@alcf.anl.gov

2 Pacific Northwest National Laboratory, Richland, Washington
{sriram,manoj,abhinav.vishnu}@pnl.gov

3 Oak Ridge National Laboratory, Oak Ridge, Tennessee
tipparajuv@ornl.gov

Abstract. MPI communicators abstract communication operations across appli-
cation modules, facilitating seamless composition of different libraries. In addi-
tion, communicators provide the ability to form groups of processes and establish
multiple levels of parallelism. Traditionally, communicators have been collec-
tively created in the context of the parent communicator. The recent thrust toward
systems at petascale and beyond has brought forth new application use cases, in-
cluding fault tolerance and load balancing, that highlight the ability to construct
an MPI communicator in the context of its new process group as a key capability.
However, it has long been believed that MPI is not capable of allowing the user to
form a new communicator in this way. We present a new algorithm that allows the
user to create such flexible process groups using only the functionality given in
the current MPI standard. We explore performance implications of this technique
and demonstrate its utility for load balancing in the context of a Markov chain
Monte Carlo computation. In comparison with a traditional collective approach,
noncollective communicator creation enables a 30% improvement in execution
time through asynchronous load balancing.

1 Introduction

MPI communicators [6] provide communication contexts that differentiate both point-
to-point and collective operations. This functionality enables the programmer to isolate
communication between application modules by effectively sandboxing communica-
tion in different communicators. This has enabled the development of large applica-
tions composed of independently developed modules and libraries. In addition to this
primary function, communicators also provide the ability to form groups of MPI pro-
cesses and perform communication, especially collective communication, within these
groups. Such process groups enable the programmer to express multiple levels of par-
allelism within MPI applications, a capability that has been shown to be increasingly
important as computing system size increases.

� This work was supported through a resource grant from the Argonne Leadership Com-
puting Facility (ALCF) and by the U.S. Department of Energy under contracts DE-AC02-
06CH11357, DE-AC05-00OR22725, and DE-ACO6-76RL01830.

Y. Cotronis et al. (Eds.): EuroMPI 2011, LNCS 6960, pp. 282–291, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Noncollective Communicator Creation in MPI 283

At the MPI implementation level, the key ingredient in a communicator is a context
id. All processes participating in a communication operation identify the communica-
tor using its context id, often an integer. The context id essentially serves as another
tag, in addition to any user-provided communication tag, in matching communication
operations. As such, consensus on the context id is required in order to correctly match
communication operations.

MPI supports collective creation of communicators, where all processes in the par-
ent communicator participate in the creation of the child communicator. However, the
recent push towards petascale and beyond has brought forth new application architec-
ture idioms and programming model use cases that highlight the need for noncollec-
tive creation of communicators. For example, in applications where a small subset of
processes dynamically cooperate to make progress on a work component, this subset
of processes might want to create a communicator without synchronizing with the re-
maining processes in the system. Similarly, when a process fails, recreating the com-
municator should be possible without involving the failed process. However, current
MPI communicator creation operations such as MPI Comm dup, MPI Comm split, and
MPI Comm create do not allow for such flexibility.

This collective mode of creation is so widely taught and practiced that noncollec-
tive creation of communicators was considered impossible within the MPI standard. In
this paper, we present a new communicator creation algorithm that constructs a com-
municator collectively only on the group of processes that will be members in the new
communicator. This algorithm is portable and uses only functionality provided by the
current MPI standard. In short, our algorithm works around the MPI API’s limitation by
hierarchically constructing and merging intercommunicators into intracommunicators.

We present key use cases from a variety of domains that motivate the need for com-
municator creation that is not collective on a parent communicator. In addition, we
evaluate the overhead of this implementation as compared with the traditional collec-
tive creation directly supported in the MPI API. We evaluate the benefits of this ap-
proach to asynchronous dynamic load balancing through a Markov chain Monte Carlo
benchmark kernel. Compared with a traditional collective approach to load balancing,
noncollective communicator formation enables a 30% improvement in execution time.

This paper is organized as follows. In Section 2 we present the current state of MPI
communicators and motivate the need for noncollective communication creation. In
Section 3 we present our noncollective communicator creation algorithm. In Section 4
we present an empirical evaluation of the overhead and performance impact of noncol-
lective communicator creation. Section 5 contains a discussion of how this functionality
can be incorporated into the MPI standard to improve performance. We summarize our
conclusions in Section 6.

2 Need for Noncollective Communicator Creation

The processes cooperating in a subcomputation of a program are said to form a process
group. In MPI, such groups can be conveniently specified using MPI Group objects.
These objects, created using local operations, specify the participation and ordering of
processes in a group. While MPI groups allow querying for membership, they are not

284 J. Dinan et al.

sufficient for communication operations. Such operations require the creation of an MPI
communicator, which backs the group information with one or more context ids.

The widely used interfaces for MPI communicator creation are MPI Comm create,
MPI Comm dup, and MPI Comm split. MPI Comm dup and MPI Comm split result in
valid communicator handles on all processes in the parent group and hence are naturally
collective on all member processes in the parent communicator. MPI Comm create, on
the other hand, takes an MPI Group object and creates a communicator on the subset
of processes specified by the group. While the outcome is useful only for the processes
participating in the subcommunicator, it is specified to be collective on the parent com-
municator. This has resulted in the common belief that MPI communicator creation
requires full cooperation of all processes in the parent communicator. In the remainder
of this section, we present several case studies where a communicator creation operation
that is not collective over the parent communicator is required to enable a certain capa-
bility (e.g., collective communication after one or more process failures) or is helpful
to improve performance.

2.1 Fault Tolerance

Several solutions have been proposed to provide fault tolerance for MPI programs. All
approaches must address the reconstruction of a communicator that can be used for
continued program execution. Proposed approaches include the use of explicit inter-
communicators [4] and an MPI extension to introduce dynamic communicators that
support grow and shrink operations [3]. The MPI standard leaves the behavior of an
MPI implementation following process or network failures undefined, and several im-
plementations allow for specific communication operations to proceed in such cases.
For example, if a process has failed, point-to-point communication between remaining
processes is not affected; all communication with a failed process would return an error.

Supporting collective operations after a failure has occurred is more challenging, as
all communicators that contain a failed process can no longer be used. A collective op-
eration on such a communicator can return an error. Furthermore, since all operations
to create new communicators are collective, the application cannot create a new com-
municator that excludes the failed process, thus making collective operations unusable
after a process failure has occurred.

With the algorithm we present in this work, a new communicator can be rebuilt
by the application after a failure without introducing the complexity associated with
intercommunicators or an extension to the MPI standard. Our approach relies on the
observation that MPI COMM SELF is well defined on all live processes, irrespective of
the state of any other communicators.

2.2 Global Arrays

Global Arrays [9] is a global address space programming model that provides a
global view of multidimensional, shared arrays distributed across the memory of multi-
ple processes. Much of GA’s functionality is implemented on top of the remote memory

Noncollective Communicator Creation in MPI 285

operations provided by the Aggregate Remote Memory Copy Interface (ARMCI) [7].
Global Arrays and ARMCI were designed to be fully interoperable with MPI and em-
ploy MPI for process management, message passing, and collective operations.

Support for process groups in GA was initially built using MPI communicators.
Subsequent application use cases motivated GA to support process groups that are
collectively constructed only on the processes that are members of the new group.
The implementation of these alternative process groups was not backed by an MPI
communicator. The lack of an MPI communicator for each process group necessitated
alternative pathways for functionality in the implementation that did not rely on com-
municators, primarily in supporting two-sided and collective communication. This de-
sign was based on the widely held assumption that MPI cannot support the needed mode
of communicator creation. While efficient and practical, this broke the interoperability
between ARMCI and MPI. GA has henceforth supported both functionalities, letting
the user trade MPI interoperability for increased flexibility. The work presented in this
paper resolves this dichotomy.

2.3 Dynamic Load Balancing and Multilevel Parallelism

Several applications have stressed the need for flexible management of process groups.
Flexible process groups have been used in mixed quantum-mechanical and molecular
mechanical calculations (QM/MM) [5] that couple classical force calculations for long-
range interactions with short-range quantum mechanical corrections. The work per task
performing a quantum mechanical calculation can vary widely and can only be ap-
proximately estimated a priori, making static load balancing difficult. One approach [8]
employed a dynamic load balancing scheme in which the each QM task specified the
number of processes that form a group to execute that task. Idle processes are identified
and batched into a group to execute the next available task. This approach required idle
processes to form a group while other processes are actively executing other tasks.

Dynamical nucleation theory Monte Carlo (DNTMC) [10,11] simulations are used
for determining molecular nucleation rate constants and chemical properties. One of
the main components of these algorithms involves many parallel Markov chain walkers
to accelerate the exploration of the potential energy surface of interest. The walkers,
each of which is executed in parallel on a subgroup, are all periodically synchronized
to collect statistics and restart information, determine convergence, and steer for the
simulation. One of the major concerns of this model was the load imbalance that can
occur between the individual Markov chains. The reason behind this imbalance is the
variable time for individual energy evaluations, which depends on the overall molecular
cluster configuration and method being used for the evaluation. An alternative method
currently under development allows a group that has completed its assigned work to
help another group. The two groups merge to form a larger group and accelerate the
lagging Markov chain calculation. This approach requires localized creation of groups
with participation from only processes contributing to the particular work of interest.

Nonequilibrium umbrella sampling (NEUS) [2] is a technique for obtaining tran-
sition rates for rare events. Its computational profile is similar to DNTMC, although
load imbalance can emerge from many different sources, as the walkers evaluate mul-
tistep dynamic trajectories rather than an energy evaluation. Because of the scalability

286 J. Dinan et al.

of the underlying molecular dynamics simulations and the possibility of large variation
in the execution time of each trajectory (the termination criteria depend greatly on the
physics), NEUS can and should dynamically adjust the number of nodes assigned to
each task.

3 Noncollective Formation of MPI Communicators

As discussed in Section 2, the routines provided by MPI for communicator creation
(e.g., MPI Comm create) are collective over an existing parent communicator. In this
section, we define a new group-collective communicator creation model where commu-
nicator creation is collective over only the processes that will be members in the result-
ing communicator. In addition, this algorithm does not require a parent communicator
that is valid for collective communication. This is useful when a parent communicator
(e.g., MPI COMM WORLD) has become invalid for collective communication because
of a failure, when all processes in the parent communicator cannot be recruited to par-
ticipate in communicator creation, and for performance when the output communicator
is much smaller than the parent communicator.

The group-collective communicator creation algorithm is given in Algorithm 1. This
algorithm accepts as input the MPI group corresponding to the new communicator, an
existing communicator that contains all ranks in group, and a tag that can be safely
used by this operation for communication on comm. The algorithm is collective only
on processes that are members of group, and group must be identical on all ranks. If
desired, a check for grp rank = MPI UNDEFINED can be used to filter out callers
that are not in group, returning MPI COMM NULL on these processes. As output, a new
communicator is produced where the ranks are ordered according to group’s ordering.
The algorithm performs log |group| intercommunicator creation and merge steps to
form the final intracommunicator.

The first step in this algorithm is to translate group’s ranks, {0..|group| − 1}, to
the corresponding ranks in comm. In most MPI implementations, this step requires
O(|group| · |comm|) steps except when translating to MPI COMM WORLD, whose
translation table is cached, yielding a complexity of O(|group|).

The output communicator, comm′, is initially assigned MPI COMM SELF. This
communicator is then recursively merged between pairs of adjacent groups until a sin-
gle communicator remains. If the current group identity is even, the group attempts to
create an intercommunicator with the group to its right. This operation requires a tag
that MPI can use internally to create the intercommunicator. The tag argument to the
group-collective communicator creation algorithm is particularly important when mul-
tiple threads invoke this routine concurrently; the user must supply tags such that each
operation can be uniquely identified. If no right neighbor group exists (i.e., size is not
a power of two), the group skips this round and will participate as a right neighbor in a
future round. If an intercommunicator is created, it is then merged into an intracommu-
nicator and stored in comm′. A high/low argument to MPI Intercomm merge is used to
ensure that the rank ordering given in pids is preserved.

Noncollective Communicator Creation in MPI 287

Algorithm 1. Group-collective communicator creation algorithm.
INPUT: group, comm, tag
OUTPUT: comm′

REQUIRE: group is ordered by desired rank in comm′ and is identical on all callers
LET: grp pids[0..|group| − 1] = N and pids[] be arrays of length |group|

MPI Comm rank(comm, &rank)
MPI Group rank(group, &grp rank), MPI Group size(group, &grp size)
MPI Comm dup(MPI COMM SELF, &comm′)

MPI Comm group(comm, &parent grp)
MPI Group translate ranks(group, grp size, grp pids, parent grp, pids)
MPI Group free(&parent grp)

for (merge sz ← 1; merge sz < grp size; merge sz ← merge sz · 2) do
gid← grp rank/merge sz, comm old← comm′

if gid mod 2 = 0 then
if ((gid + 1) ·merge sz < grp size then

MPI Intercomm create(comm′, 0, comm, pids[(gid + 1) ·merge sz], tag, &ic)
MPI Intercomm merge(ic, 0 /* LOW */, &comm′)

end if
else

MPI Intercomm create(comm′, 0, comm, pids[(gid− 1) ·merge sz], tag, &ic)
MPI Intercomm merge(ic, 1 /* HIGH */, &comm′)

end if
if comm′ �= comm old then

MPI Comm free(&ic)
MPI Comm free(&comm old)

end if
end for

4 Experimental Evaluation

We have evaluated the cost of our group-collective communicator creation method rel-
ative to the cost of the parent-collective MPI Comm create routine. In addition, we
present a Markov chain Monte Carlo benchmark kernel to explore the performance im-
plications of group-collective communicator creation to load balancing. Experiments
were conducted on a Blue Gene/P system using IBM MPI, which is a derivative of
MPICH2. A node in this system contains a 4-core 850 MHz PowerPC 450 processor
with 2 GB of memory. Racks consist of 1024 nodes and the total number of racks is 40,
yielding 163,840 total processing cores. Because of a bug in the MPI implementation’s
intercommunicator creation routine, we have been forced to limit our experimentation
to two racks, or 8,192 cores.

4.1 Group Creation Cost

In Figure 1 we present the costs of group- and parent-collective communicator cre-
ation over a range of output group sizes. All experiments in this figure were run on

288 J. Dinan et al.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 4 16 64 256 1024 4096

C
re

at
io

n
T

im
e

(m
se

c)

Group Size (processes)

Group-collective
MPI_Comm_create

Fig. 1. Communicator creation cost for group-collective versus MPI Comm create

8,192 cores. In the case of MPI Comm create, collective communication was performed
across all ranks in the parent group (MPI COMM WORLD for this experiment) regard-
less of the output group size. This explains the flat cost of MPI Comm create relative to
the output group size.

In comparison, the group-collective communicator creation must perform
log |group| collective communication steps; the size of the groups involved in this col-
lective communication increases exponentially at each step because of the recursive
merging nature of the algorithm. For small groups, we see that this approach is sig-
nificantly faster than MPI Comm create. The cost increases well beyond the cost of
MPI Comm create; however, as we demonstrate in the next section, this cost can be
amortized by potential benefits to the application.

4.2 MCMC Load-Balancing Example

Markov chain Monte Carlo (MCMC) simulations are typically composed of walkers
that explore a state space with sequential state transitions. The Monte Carlo transition
from one state to the next is tested to determine whether the state is valid; if it is not, it is
rejected, and another transition attempt is made. In addition, the amount of computation
involved in calculating acceptance can vary across states with respect to the input data.
Because of these factors, load balancing MCMC applications is extremely challenging.
Often, the work performed by a walker can be parallelized and executed on a group of
processes. In our current work with the DNTMC application [11], we have developed a
load-balancing solution that reassigns idle processes to active walker groups in order to
accelerate that walker.

For this work, we have developed a benchmark kernel that is representative of such
MCMC simulations. This benchmark creates a set of initial walker groups of size G
and assigns each group a workload. The workload is composed of S work items, cor-
responding to S state transitions in the Markov chain; processing of each item requires
T/group size milliseconds; for simplicity, all state transitions are accepted. When a
group finishes processing its S work items, it merges with the group to its right. Like-
wise, groups must periodically check for incoming merge requests; when one arrives,

Noncollective Communicator Creation in MPI 289

 0

 1

 2

 3

 4

 5

 6

 7

 8

 32 64 128 256 512 1024 2048 4096 8192

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of Processes

None
Collective (i=1)

Collective (i=16)
Collective (i=128)

Asynchronous
Ideal

Fig. 2. Markov chain Monte Carlo benchmark
weak scaling up to 8192 cores with none, asyn-
chronous, and collective load balancing

Ld. Bal. i Avg. St. Dev. Min Max
None 0.00 0.00 0 0
Async. 14.38 3.54 5 26
Collect. 1 5.38 2.12 2 8
Collect. 2 5.38 2.12 2 8
Collect. 4 5.38 2.12 2 8
Collect. 8 5.38 2.12 2 8
Collect. 16 5.38 2.12 2 8
Collect. 32 5.38 2.12 2 8
Collect. 64 3.75 1.20 2 5
Collect. 128 2.62 0.48 2 3

Table 1. Average number of regrouping
operations performed per process for the
experiment in Figure 2 on 8,192 cores

the old group is freed, and a new group is created. We have implemented this algorithm
using both group- and parent-collective communicator creation. In the group-collective
case, point-to-point merge requests are sent and result in a merge operation that involves
only the merging processes. In the parent-collective case, all processes must perform pe-
riodic collective exchange of load information followed by regrouping. This collective
load balancing is performed every i work units.

In Figure 2 we present data for a weak scaling experiment with the MCMC bench-
mark kernel. In this experiment G was four processes, T was 100 ms, and S was 10 ·R
mod 32, where R is the group leader’s rank. This resulted in a cyclic work distribution
of 0, 40, 80, 120, 160, 200, 240, 280, 0, In the baseline case, regrouping is disabled,
and the execution time is bounded by the time required to process the longest Markov
chain: S · T/G or 280 · 100ms/4 = 7sec. The ideal execution time is also shown; this
is the calculated execution time with perfect load balancing. Because we have chosen a
cyclic, triangular workload, the ideal time is half of the baseline execution time.

Collective load balancing with load balancing intervals of i = 1, 16, 128 steps are
shown and result in a roughly 15% improvement in execution time compared with no
load balancing. Asynchronous group-collective load balancing yields over a 40% im-
provement in execution time compared with the baseline and over a 30% improvement
compared with collective load balancing. The gap between ideal and asynchronous
load balancing is due to the interval at which load balancing is performed. Polling
for load balancing requests is performed once after each step in the Markov chain.
The time between polling operations is the step execution time, T/group size. For
the cyclic work distribution with period P = 8, this results in an overhead of up to
(P − 1) · T/group size for each group.

Table 1 shows the number of regroupings that occurred for each load-balancing con-
figuration on 8,192 cores. We can see from this data that the collective scheme results
in a regular load-balancing pattern. In contrast, the asynchronous scheme takes advan-
tage of more fine-grained load-balancing opportunities, leading to a significantly higher
average number of regroupings over all processes.

290 J. Dinan et al.

5 Discussion

Intercommunication creation and merge steps perform an all-reduce operation which
requires O(log p) communication steps. In the group-collective communicator creation
algorithm, intercommunicator creation and merge steps are repeated log p times, yield-
ing a time complexity of O(log2 p). In comparison, the standard MPI communicator
creation routine performs a single all-reduce step and has time complexity O(log p).
The additional log p cost associated with group-collective communicator creation can
be eliminated by extending MPI to provide a direct method for group-collective com-
municator formation.

5.1 Group-Collective Communicator Creation

The simplest method by which MPI can provide more efficient support for group-
collective communicator creation is to include a group-collective communicator cre-
ation routine in the MPI standard. This would allow MPI implementors to provide a
direct method for backing the provided group with a context ID, for example via a
point-to-point all-reduce. Such a routine would take the form:

int MPIX Group comm create(MPI Comm in, MPI Group grp, int tag, MPI Comm *out)

In this routine, the input intracommunicator and tag are used to create the output in-
tracommunicator. A communicator and tag are necessary to provide MPI with a safe
conduit for noncollective communication; this is similar to the mechanism used by
MPI’s intercommunicator creation routines. The tag plays an important role in ensuring
safety of this routine in the presence of threads. Creation of the new communicator is
collective over members of the input group, and the input group must be a subset of
the input communicator’s group. We have included an implementation of this routine
using the portable algorithm presented in this paper as an extension in version 1.4 of
the MPICH2[1] MPI distribution. We are working toward an integrated implementation
that uses MPICH2’s internal API to eliminate the overheads identified in this algorithm.

5.2 Generalized Multicommunicators

An alternative to group-collective communicator creation would be to accomplish
communicator creation with a single multicommunicator creation and merging step,
eliminating a factor of log p from the creation cost. We present the concept of a
multicommunicator as generalization of the current MPI communicator. In the cur-
rent standard, an MPI intracommunicator is defined to contain a single MPI group.
An intercommunicator is defined to contain two nonoverlapping MPI groups. A multi-
communicator would be capable of containing an arbitrary number of nonoverlapping
groups.

Multiple groups within a single communicator present a significant programmabil-
ity challenge and significant difficulty in mapping multicommunicators to existing MPI
routines. For the purpose of incorporating these generalized communicators with ex-
isting MPI functionality, the multicommunicator can be flattened into an intercommu-
nicator. This flattening would merge all nonlocal groups into a single remote group

Noncollective Communicator Creation in MPI 291

and produce a new intercommunicator. Thus, group-collective communicator forma-
tion could be achieved in three steps: multicommunicator creation, flattening into an
intercommunicator, and merging of the intercommunicator into an intracommunicator.

6 Conclusion

We have presented an algorithm for MPI communicator creation that is collective over
the output group and utilizes only functionality in the current MPI standard. This type
of group-collective communicator creation is a key capability for fault tolerance, multi-
level parallelism, and load balancing. We have measured the overhead of our technique
and demonstrated its effectiveness on a Markov chain Monte Carlo benchmark kernel.
Compared with a traditional collective approach, group-collective communicator cre-
ation yields a 30% improvement in execution time to the MCMC benchmark through
improved load balance.

References

1. MPICH2 Project Website (June 2011),
http://www.mcs.anl.gov/research/projects/mpich2/

2. Dickson, A., Maienschein-Cline, M., Tovo-Dwyer, A., Hammond, J.R., Dinner, A.R.: Flow-
dependent unfolding and refolding of an RNA by nonequilibrium umbrella sampling. ArXiv
e-prints (1104.5180), cond–mat.stat–mech (April 2011)

3. Graham, R.L., Keller, R.: Dynamic communicators in MPI. In: Ropo, M., Westerholm, J.,
Dongarra, J. (eds.) PVM/MPI. LNCS, vol. 5759, pp. 116–123. Springer, Heidelberg (2009)

4. Gropp, W.D., Lusk, E.: Fault tolerance in MPI programs. International Journal of High Per-
formance Computer Applications 18(3), 363–372 (2004)

5. Kamiya, M., Hirata, S., Valiev, M.: Fast electron correlation methods for molecular clusters
without basis set superposition errors. The Journal of Chemical Physics 128(7), 74103 (2008)

6. MPI Forum: MPI: A Message-Passing Interface Standard. Version 2.2 (September 4, 2009)
7. Nieplocha, J., Carpenter, B.: ARMCI: A portable remote memory copy library for dis-

tributed array libraries and compiler run-time systems. In: Rolim, J.D.P. (ed.) IPPS-WS
1999 and SPDP-WS 1999. LNCS, vol. 1586, pp. 533–546. Springer, Heidelberg (1999),
doi:10.1007/BFb0097937

8. Nieplocha, J., Krishamoorthy, S., Valiev, M., Krishnan, M., Palmer, B., Sadayappan, P.: In-
tegrated data and task management for scientific applications. In: Bubak, M., van Albada,
G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 20–31.
Springer, Heidelberg (2008)

9. Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., Aprà, E.: Advances, ap-
plications and performance of the global arrays shared memory programming toolkit. Int. J.
High Perform. Comput. Appl. 20(2), 203–231 (2006)

10. Schenter, G.K., Kathmann, S.M., Garrett, B.C.: Dynamical nucleation theory: A new molec-
ular approach to vapor-liquid nucleation. Physical Review Letters 82(17), 3484 (1999)

11. Windus, T.L., Kathmann, S.M., Crosby, L.D.: High performance computations using dynam-
ical nucleation theory. Journal of Physics: Conference Series 125(1), 12017 (2008)

http://www.mcs.anl.gov/research/projects/mpich2/

	Noncollective Communicator Creation in MPI
	Introduction
	Need for Noncollective Communicator Creation
	Fault Tolerance
	Global Arrays
	Dynamic Load Balancing and Multilevel Parallelism

	Noncollective Formation of MPI Communicators
	Experimental Evaluation
	Group Creation Cost
	MCMC Load-Balancing Example

	Discussion
	Group-Collective Communicator Creation
	Generalized Multicommunicators

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

