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Abstract. MPI standard offers a set of topology-aware interfaces that can be 

used to construct graph and Cartesian topologies for MPI applications. These 

interfaces have been mostly used for topology construction and not for 

performance improvement. To optimize the performance, in this paper we use 

graph embedding and node/network architecture discovery modules to match 

the communication topology of the applications to the physical topology of 

multi-core clusters with multi-level networks. Micro-benchmark results show 

considerable improvement in communication performance when using 

weighted and network-aware mapping. We also show that the implementation 

can improve communication and execution time of the applications.  
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1 Introduction 

With the emerging many-core architectures and high performance interconnects 

offering more parallelism and performance, clusters are expected to move towards 

exascales in the next few years [1]. Such systems are becoming increasingly 

hierarchical in their node architecture and interconnection network.  Communication 

at various hierarchies demonstrate different performance levels. It is therefore critical 

for the communication libraries to efficiently handle the communication demands of 

High Performance Computing (HPC) applications on such hierarchical systems.  
Message Passing Interface (MPI) [2] is the predominant messaging standard for 

HPC applications. MPI provides a set of interfaces that are designed to assist the 

library to construct a virtual topology out of the application’s communication pattern, 

and to support remapping (reordering) the processes to the available cores in a way 

that optimizes performance. However, most MPI libraries merely provide a trivial 

implementation of these functions and lack the support for the remapping feature. In 

this work, we have designed the MPI non-distributed topology functions 

(MPI_Graph_create and MPI_Cart_create) for efficient process remapping over 

hierarchical clusters. We have integrated the node physical topology with network 

architecture and used graph embedding tools inside MPI library to override the 

current trivial implementation of the topology functions and efficiently reorder the 

initial process mapping. We have evaluated our implementation on two different 

InfiniBand [3] clusters using micro-benchmarks and MPI applications. Micro-

benchmark results show up to 60% communication time improvement for Cartesian 
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topologies with data exchange between the neighbors. The application results show 

up to 48% communication time improvement, and up to 26% runtime improvement. 

The rest of this paper is organized as follows. We briefly describe the MPI 

topology functions and the motivation behind this work in Section 2. Related work is 

covered in Section 3. Section 4 discusses our design and implementation. Section 5 

presents the experimental results, and Section 6 concludes the paper. 

2 Background and Motivation 

MPI defines a set of virtual-topology definition functions for graph and Cartesian 

structures [2]. MPI_Graph_create and MPI_Cart_create are collective calls that accept 

a virtual topology and return a new MPI communicator enclosing the desired 

topology. If the user opts for reordering, the function may reorder the process ranks 

for an efficient process-to-core mapping. The topology accepted by these functions is 

in a non-distributed form, meaning that all nodes have a full view of the entire 

structure and pass the whole information to the function. Recently, distributed graph 

topology functionality has been added to the MPI standard [2] to support large-scale 

systems. In these functions, each node has a limited neighborhood view of the graph, 

and all processes collectively construct the virtual topology in a distributed fashion. 

Although process topology functionality is not new to the MPI standard, HPC 

applications that utilize such functionality use them mainly for the constructed virtual 

topology (e.g., a Cartesian topology). Thus, the ability of this interface to support 

process reordering for better communication performance has widely remained 

unutilized, mostly because MPI implementations merely construct the virtual 

topology, and have no process remapping for performance improvement. In this 

paper, we focus on the design and implementation of MPI non-distributed topology 

functions to improve the performance of the applications. We will cover the 

distributed topology functions in a future work. 

3 Related Work 

There has been some past research on topology-aware communication in MPI. The 

authors in [4] look at the algorithms for mapping virtual topology to physical 

topology in MPI using a hierarchical tree structure to represent the hardware 

topology. This work defines a cost function that is the sum of the communication 

costs over the links. This paper presents an implementation for a specific machine (an 

HP server), with architecture similar to multi-core machines. 

The work in [5] presents a set of graph embedding algorithms with hardware 

topology represented using a hierarchical tree similar to [4], but with a more 

comprehensive mathematical analysis for different architectures. A major contribution 

is the optimization of two different cost functions. The first function is the sum of the 

communication costs over the interconnection links, and the second is a load 

balancing function that minimizes the number of expensive communications by any 

one process. This work experiments with a set of NEC SX-6 machines, each with up 

to eight shared-memory vector processors, connected through a proprietary network. 



Multi-core and Network Aware MPI Topology Functions  3 

 

 

The author in [6] argues that the MPI topology-aware functionality at the time 

lacks precision and accuracy. The paper suggests an extension to MPI where weighted 

communication graphs can be used in order to produce a better solution when using 

the topology functionality. The paper also suggests extensions to allow dynamic 

process reordering. No implementation of the suggested functionality is attempted. 

The authors in [7] summarize the work in [5] and [6], suggesting some additional 

changes to MPI as in [6]. The paper also shows that a non-trivial implementation of 

the MPI topology functions can provide great performance gains on SMP systems.  

In [8], functionality is implemented to map weighted communication graphs to 

weighted node architecture graphs using Scotch graph partitioning software [9]. The 

communication graph weights are chosen based on the total communication volume. 

Unlike our work in this paper, the work in [8] does not use or implement MPI 

topology functions. It rather calculates the mapping outside MPI, before the 

application is started. It also does not consider network hierarchy.  

In [10], the authors propose TreeMatch algorithm to calculate a near-optimal 

mapping of processes to resources on a NUMA cluster. Similar to the work in [8], this 

paper is concentrated on node architecture and does not consider network hierarchy. It 

does not use or implement MPI topology functions either. It rather calculates the 

mapping using MPICH2 process manager and hwloc [14]. The paper presents MPI 

results using simulation and NAS benchmarks on a 4 NUMA-node 96-core machine. 

Recently, the authors in [11] have explained the distributed topology functions in 

MPI 2.2 and discussed possible methods for implementing them in the future. In [12] 

the authors propose an automated framework to detect regular communication 

patterns in applications. The framework finds the dimensions of a possibly regular 

pattern and maps it to mesh/torus processor topologies. 

4 Design and Implementation of MPI Topology Functions 

4.1 Design of the Graph Topology Function 

Our design of both MPI graph and Cartesian topology functions is based on an 

underlying graph structure. We also use graphs to represent both virtual and physical 

topologies inside the MPI implementation. Using graphs at the underlying layer, we 

can use static mapping of virtual to physical topology graphs in order to find the sub-

optimal mapping of processes to processor cores.  

Virtual topology is constructed as a graph in which vertices represent processes 

and links represent the existence (or significance) of the inter-process 

communications. We use the normalized total communication volume between two 

processes as the metric for communication significance. MPI_Cart_create and 

MPI_Graph_create functions do not support weighted edges, meaning there is no 

differentiation among edges of the virtual topology. This is a critical shortcoming, 

since it is usual that the communication between some pairs is more significant than 

others. To realize how supporting weighted graphs can increase the effectiveness of 

process reordering, we use edge replication in MPI_Graph_create input to account for 

weighted edges. This approach, although not much scalable, can support realistic non-

uniform communication patterns.  
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The graph representation for the cluster’s physical topology consists of two distinct 

but integrated parts: node architecture and network architecture. The node architecture 

graph includes weighted edges that represent the communication performance 

between any two cores. We assume higher communication performance between the 

cores with closer proximity. Our representation of the network comprises network 

distances between any two cores. The network architecture includes weighted graph 

edges that represent the communication performance of the network path between the 

nodes on which the cores reside. 

4.2 Implementation of Topology Functions 

In this section, we present details about the implementation of the 

MPI_Graph_create and MPI_Cart_create functions inside MVAPICH2 [13]. We use 

the Scotch graph processing library [9] to map virtual to physical topology graphs in 

MPI_Graph_create. The library defines an undirected source graph, which can 

represent the virtual topology. Each vertex and edge of the source graph is weighted, 

to account for the computation and communication weight of the corresponding 

process and link, respectively. Similarly, the target machine architecture is 

represented by an undirected architecture target graph with weights for vertices and 

edges representing the processing power of the processor and communication 

performance of the link, respectively [9]. 

The hardware locality (hwloc) library [14] provides a portable abstraction of the 

underlying machine architecture. It detects architectural components of the nodes 

such as processor sockets, cores, caches, memory, SMT and NUMA architecture. The 

architecture is represented as a tree, with nodes at the top level and logical cores at the 

leaves. This library can assist MPI to construct the physical topology of the machine.  

To have a complete view of the cluster’s physical architecture and go beyond a flat 

network assumption, we add a network discovery part in our physical architecture 

discovery. This module extracts the network distance between any two nodes in the 

cluster and merges that information with the node architecture extracted by hwloc. In 

this paper, our network discovery module uses InfiniBand subnet manager [3] tools 

(i.e., ibtracert utility) to discover the network distance between Infiniband nodes. 

4.2.1 Implementation of Graph Topology Function. To supply MPI with the 

application virtual topology, we extract the exact amounts of data transfer between 

processes by profiling the applications using probes inside the MPI library. We give 

the highest weight to the maximum pairwise communication volume. The normalized 

weights range from 1 to 10. We use edge replication to represent edge weights. 

MPI_Graph_create calls the Scotch library if the user opts for reordering. Scotch 

builds a weighted graph out of the user-supplied graph. The topology table of a server 

node is also created using hwloc at each process. The communication performance 

between two logical cores on a node is calculated based on the depth of their common 

ancestor in the node topology tree. For example, if two cores reside on different 

sockets, their common ancestor will be the node itself, with the lowest depth in the 

tree, translating into the lowest communication performance. 

The process with rank zero (in MPI_COMM_WORLD) will perform a network 

discovery operation using ibtracert to extract the distance between any two 

InfiniBand nodes. This information is then scattered to other processes to be 
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integrated into the node architecture to have the full physical topology architecture. 

Topology graph edge loads (input to Scotch) represent the performance of the 

communication path between the connecting vertices. Network distance, defined as 

the number of hops between two nodes, is used to calculate the physical topology 

edge loads. The farthest nodes get the load of 1 on their graph edge. The closest nodes 

get the maximum network hop count as their edge load. The intra-node graph loads 

are calculated in a way that are always larger than the closest network distance, 

indicating the fact that intra-node communication is cheaper than inter-node 

communication. 

Fig. 1 shows an example of how graph loads are assigned based on the system and 

network architecture. N1-N4 are multi-core (here, 2-way quad-core) nodes, connected 

through three switches (S1-S3) in a tree-like network. In this architecture, d1 (the path 

between two cores of the same socket) will have the highest load value in the graph, 

while the path between N2 and N3 (d4) will have the lowest load value, indicating the 

lowest performance path in the network. Thus we have: d1 > d2 > d3 > d4 = 1. 

4.2.2 Cartesian Topology Implementation. Since the Scotch library does not 

support Cartesian topology, we internally convert the MPI_Cart_create topology to a 

graph and use MPI_Graph_create for reordering. In this conversion, the user view of 

the Cartesian topology remains intact. Cartesian topologies do not specify weights for 

graphs. Therefore, the converted topology will be a non-weighted graph.  

 
Fig. 1. An example of physical topology distances  

5 Experimental Results 

We have conducted our experiments on two clusters. The first cluster has four 

servers, each with two quad-core 2GHz AMD Opteron 2350 processors (a total of 32 

cores). The servers have 512KB L2 cache per core, 2MB shared L3 cache per 

processor and 8GB memory. They are interconnected through Mellanox ConnectX 

InfiniBand cards [15] via three Mellanox InfiniBand switches, similar to Fig. 1. The 

nodes run Linux Fedora 12 kernel version 2.6.31. The machines use OFED 1.5.2 to 

access the InfiniBand network. For the second cluster, we have 16 servers, each with 

two hexa-core 3GHz Intel Xeon X5670 processors (a total of 192 cores). There is a 

12MB multi-level cache per processor, and 24GB memory per machine. The servers 

use Mellanox ConnectX2 InfiniBand cards. Eight servers are connected to a Mellanox 

InfiniBand switch, and the remaining servers are connected to another switch. Each of 
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these switches is connected to two upper layer InfiniBand switches. The machines run 

Redhat Enterprise Linux 5 with kernel version 2.6.18-194. The nodes use OFED 

version 1.5.2. On both clusters, we use MVAPICH2 1.5 [13] as our code-base. 

5.1 Micro-benchmark Results 

We start our evaluation with two micro-benchmarks that put processes in Cartesian 

arrangements such as Torus and Hypercube. The tests are run on the first (32-core) 

cluster. The first micro-benchmark (Cartesian-model exchange) constructs a 2D/3D 

torus or a 5D hypercube. Each process runs 1000 iterations, each with a computation 

followed by exchanging messages with the neighbors in all dimensions. We report the 

average iteration time. We find the virtual-topology graph of each test by profiling it 

in an initial run. The graph is then supplied to the same program as input for 

MPI_Graph_create. To evaluate the effect of graph weights, we carry significantly 

heavier communication on one of the dimensions.  

    

   

Fig. 2. Runtime improvement of topology-aware mapping over block mapping for 2D-torus, 

3D-torus and 5D-hypercube in the Cartesian-model exchange micro-benchmark 

Fig. 2 shows the improvement of the topology-aware mapping compared to block 

mapping for an 8×4 2D-torus, a 4×4×2 3D-torus and a 5D-hypercube. The processes 

communicate more heavily on one dimension (the longer dimension for torus). For 

the micro-benchmarks, to particularly show the effect of network-aware mapping, we 

put two subsequent nodes on different switches. As shown in Fig. 2, for all topologies 

the weighted graph shows significant improvement compared to the block mapping. It 
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is because with a weighted graph the library differentiates between heavier and lighter 

dimensions and will try to map the processes of the heavier dimension on one node to 

take advantage of shared-memory performance. On the other hand, the non-weighted 

Cartesian topology does not make any differentiation between different dimensions. 

Consequently, it may map the heavier dimension across the network leading to worse 

performance. The other observation is the improvement when using network-aware 

mapping, especially for larger message. It shows that even when the difference in 

network distance is as little as two switches we can observe some improvement. 

The second micro-benchmark (dimensional collectives) examines the case where 

processes form a Cartesian arrangement and perform collective communications on 

one dimension of the topology. We arrange 32 processes in an 8×4 2D-torus and 

engage them in MPI_Alltoall collective operations on the longer dimension. Fig. 3 

clearly shows the improvement when using topology-aware mapping. The reason for 

on par performance between weighted graph and non-weighted graph is that the 

communication is done only on one dimension; therefore both graphs result in the 

same mapping. The network-aware mapping also shows similar improvement, 

because all eight processes of the collective dimension are mapped to the same node.  

Fig. 3 also shows the results for a 16×2 2D-torus. These results are reported since 

the longer dimension (on which collectives are performed) has the length of 16, which 

does not fit into one node, therefore network communication is inevitable even after 

topology-aware remapping. As the results suggest, network-aware mapping shows 

improvement compared to other graph mappings, especially for larger message sizes. 

   

Fig. 3. Runtime improvement of topology-aware mapping over block mapping for 2D-torus in 

the dimensional collective (Alltoal) micro-benchmark 

5.2 Evaluation Results for MPI Applications 

To see the effect of our implementation on MPI applications, we have adapted 

some MPI application benchmarks (NAS and LAMMPS) to use MPI graph topology 

function. We profiled the original applications to discover their virtual topology graph 

in order to supply them to MPI_Graph_create function. In LAMMPS, processes 

communicate in a 2D-torus. Processes in CG.32 also form a logical 8×4 2D-torus, 

however they do not always follow the torus links for communication. Processes in 

MG.32 communicate in the form of a reordered 5D-hypercube. To be consistent, 

regardless of application’s logical structure, we always use a graph topology function. 
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Fig. 4 shows the improvement of the topology-aware mapping for these 

applications compared to block and cyclic mappings on the 32-core cluster. This 

excludes the time in MPI_Graph_create to create the communicator. For most 

applications, the benefit over cyclic mapping is considerable while there is less 

benefit over block mapping. This is because processes mostly communicate with their 

adjacent ranks, thus the ideal mapping is close to block mapping. In LAMMPS 

(especially the friction workload), where the communication volume is not equal on 

different links, we can see more improvement with weighted and network-aware 

graphs, compared to non-weighted graph where sometimes it is even worse than the 

block mapping. We are currently investigating the reasons behind the poor 

performance of the weighted graph results for LAMMPS-Couple. 

   

   

Fig. 4. Application communication time and runtime improvement of topology-aware mapping 

over block and cyclic mappings on the 32-core cluster 

To show the benefits of our design on a larger test bed, we have also evaluated our 

work on a second cluster with 16 nodes (using 8 cores per node, for a total of 128-

cores) using some of the application workloads. The results are presented in Fig. 5. 

In Fig. 5 we observe more improvement for most of the workloads, which indicates 

the performance scalability with the machine size. Higher improvement in the 128-

core case for some workloads such as LAMMPS-friction is partially because some of 

the neighbors that would fall on the same node in block mapping in 32-core case fall 

on different nodes in 128-core case. Therefore reordering is more effective for the 

latter case. LAMMPS-couple shows a considerable difference in communication 

pattern between 32-core and 128-core cases. While for 32 cores, processes 

communicate to their neighbors almost symmetrically, the pattern becomes 
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asymmetric in 128-core case (a process mostly communicates with two partners). 

Thus we see higher difference between non-weighted and weighted/network-aware 

results for 128 cores. Such behavior is also observed for pour workload to some 

extent, leading to more improvement compared to block mapping.  

   

   
Fig 5. Application communication time and runtime improvement of topology-aware mapping 

over block and cyclic mappings on the 128-core cluster 

5.3 Implementation Overhead 

Our implementation of MPI_Graph_create imposes an overhead compared to the 

trivial implementation. Table 1 shows the approximate overhead and its scalability in 

LAMMPS application. This one-time overhead is amortized in application runtime. 

Table 1- Time to create the communicator in MPI_Graph_create for LAMMPS 

System Job size 

(#processes) 

Trivial 

(ms) 

Non-weighted 

Graph (ms) 

Weighted 

Graph (ms) 

Network-aware 

Graph (ms) 

 8 0.3 7.3 7.3 7.9 

Cluster 1 16  0.3 7.6 7.7 8.1 

 32 0.5 8.6 8.7 9 

Cluster 2 128 5.1 31.3 31.7 31.7 

6 Conclusions and Future Work 

In this paper, we presented design and implementation of MPI non-distributed 

graph and Cartesian functions in MVAPICH2 for multi-core nodes connected through 

multi-level InfiniBand networks. The Cartesian-model micro-benchmarks show that 
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the effect of reordering process ranks can be significant, and when the communication 

is heavier on one dimension the benefits of using weighted and network-aware graphs 

(instead of non-weighted graph / Cartesian functions) are considerable. We also 

modified some MPI applications with MPI_Graph_create. The evaluation results 

show that MPI applications can benefit from topology-aware MPI_Graph_create.  

As for the future work, we intend to evaluate the effect of topology awareness on 

other MPI applications, design a more general communication cost/weight model for 

graph mapping, and design and implement MPI distributed topology functions for 

more scalability. 
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