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Abstract

With processor speeds no longer doubling every 18-24
months owing to the exponential increase in power con-
sumption and heat dissipation, modern high-end comput-
ing systems tend to rely less on the performance of single
processing units and instead rely on achieving high per-
formance by using the parallelism of a massive number of
low-frequency/low-power processing cores. Using such
low-frequency cores, however, puts a premium on end-host
pre- and post-communication processing required within
communication stacks, such as the Message Passing Inter-
face (MPI) implementation. Similarly, small amounts of
serialization within the communication stack that were
acceptable on small/medium systems can be brutal on
massively parallel systems. Thus, in this paper, we study
the different non-data-communication overheads within
the MPI implementation on the IBM Blue Gene/P system.
Specifically, we analyze various aspects of MPI, including
the MPI stack overhead itself, overhead of allocating and
queueing requests, queue searches within the MPI stack,
multi-request operations, and various others. Our experi-
ments, that scale up to 131,072 cores of the largest Blue
Gene/P system in the world (80% of the total system size),
reveal several insights into overheads in the MPI stack,
which were not previously considered significant, but can
have a substantial impact on such massive systems.
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1 Introduction

Today’s leadership class systems have already crossed
the petaflop barrier. As we move further into the petaflop
era, and look forward to multi-petaflop and exaflop sys-
tems, we note that modern high-end computing (HEC)
systems are undergoing a drastic change in their funda-
mental architectural model. Owing to the exponentially
increasing power consumption and heat dissipation, proc-
essor speeds no longer double every 18-24 months.
Accordingly, modern HEC systems tend to rely less on
the performance of single processing units and instead
try to extract parallelism out of a massive number of low-
frequency/low-power processing cores.

The IBM Blue Gene/L' was one of the early supercom-
puters to follow this architectural model, soon followed by
other systems such as the IBM Blue Gene/P (BG/P)2 and
the SiCortex SC5832°. Each of these systems uses
processing cores that operate in a modest frequency range
of 650-850 MHz. However, the capability of these sys-
tems is derived from the number of such processing ele-
ments they utilize. For example, the largest Blue Gene/L
system today, installed at the Lawrence Livermore
National Laboratory, comprises 286,720 cores. Similarly,
the largest BG/P system, installed at the Argonne National
Laboratory, comprises 163,840 cores.

While such an architecture provides the necessary
ingredients for building petaflop and larger systems, the
actual performance perceived by users is heavily depend-
ent on the capabilities of the systems-software stack used,
such as the Message Passing Interface (MPI) implemen-
tation. While the network itself is quite fast and scalable
on these systems, the local pre- and post-data-communi-
cation processing required by the MPI stack might not be
as fast, owing to the low-frequency processing cores. For
example, local processing tasks within MPI that were con-
sidered quick on a 3.6 GHz Intel processor, might form a
significant fraction of the overall MPI processing time on
the modestly fast 850 MHz cores of a BG/P. Similarly,
small amounts of serialization within the MPI stack
which were considered acceptable on a system with a
few hundred processors, can be brutal when running on
massively parallel systems with hundreds of thousands of
cores.

These issues raise the fundamental question on whether
systems-software stacks on such architectures would scale
with system size, and if there are any fundamental limita-
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tions that researchers have to consider for future systems.
Specifically, while previous studies have focused on
communication overheads and the necessary improve-
ments in these areas, there are several aspects that do not
directly deal with data communication but are still very
important on such architectures. Thus, in this paper, we
study the non-data-communication overheads in MPI,
using BG/P as a case-study platform, and perform exper-
iments to identify such issues. We identify various bottle-
neck possibilities within the MPI stack, with respect to
the slow pre- and post-data-communication processing as
well as serialization points, and stress these overheads
using different benchmarks. We further analyze the rea-
sons behind such overheads and describe potential solu-
tions for solving them.

The remaining part of the paper is organized as fol-
lows. We present a brief overview of the hardware and
software stacks on the IBM BG/P system in Section 2.
Detailed experimental evaluation examining various
parts of the MPI stack are presented in Section 3. We
present other literature related to this work in Section 4.
Finally, we conclude the paper in Section 5.

2 BG/P Hardware and Software Stacks

In this section, we present a brief overview of the hard-
ware and software stacks on BG/P.

2.1 Blue Gene/P Communication Hardware

BG/P has five different networks’. Two of them, 10-
Gigabit Ethernet and 1-Gigabit Ethernet with a JTAG
interface’, are used for file I/O and system management.
The other three networks, described below, are used for
MPI communication:

3-D Torus Network: This network is used for point-to-
point MPI and multicast operations and connects
all compute nodes to form a 3-D torus. Thus, each
node has six nearest neighbors. Each link provides
a bandwidth of 425 MB/s per direction for a total
of 5.1 GB/s bidirectional bandwidth per node.

Global Collective Network: This is a one-to-all network
for compute and I/O nodes used for MPI collec-
tive communication and I/O services. Each node
has three links to the collective network for a total
of 5.1 GB/s bidirectional bandwidth.

Global Interrupt Network: It is an extremely low-
latency network for global barriers and interrupts.
For example, the global barrier latency of a
72,000-node partition is approximately 1.3 ps.

On the BG/P, compute cores do not handle packets
on the torus network. A direct memory access (DMA)

engine on each compute node offloads most of the net-
work packet injecting and receiving work, so this enables
better overlap with of computation and communication.
The DMA interfaces directly with the torus network.
However, the cores handle the sending/receiving packets
from the collective network.

2.2 Deep Computing Messaging Framework

BG/P is designed for multiple programming models. The
Deep Computing Messaging Framework (DCMF) and
the Component Collective Messaging Interface (CCMI)
are used as general-purpose libraries to support different
programming models (Kumar et al., 2008). DCMF imple-
ments point-to-point and multisend protocols. The multi-
send protocol connects the abstract implementation of
collective operations in CCMI to targeted communica-
tion networks. The DCMF application programming
interface (API) provides three types of message-passing
operations: two-sided send, multisend and one-sided get.
All three have non-blocking semantics.

2.3 MPIl on DCMF

IBM’s MPI on BG/P is based on MPICH2 and is imple-
mented on top of DCMF. Specifically, the MPI on BG/P
implementation borrows most of the upper-level code from
MPICH2, including the ROMIO implementation of MPI-
IO and MPE profiler, while implementing BG/P specific
details within a device implementation called dcmfd. The
DCMF library provides basic send/receive communica-
tion support. All advanced communication features such
as allocation and handling of MPI requests, dealing with
tags and unexpected messages, multi-request operations
such as MPI_Waitany or MPI_Waitall, derived
datatype processing and thread synchronization are not
handled by the DCMF library and have to be taken care
of by the MPI implementation.

3 Experiments and Analysis

In this section, we study the non-data-communication over-
heads in MPI on BG/P.

3.1 Basic MPI Stack Overhead

An MPI implementation can be no faster than the under-
lying communication system. On BG/P, this is DCMF.
Our first measurements (Figure 1) compare the communi-
cation performance of MPI (on DCMF) with the commu-
nication performance of DCMF. For MPI, we used the
OSU MPI suite’ to evaluate the performance. For DCMF,
we used our own benchmarks on top of the DCMF API,
that imitate the OSU MPI suite. The latency test uses
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Fig. 1 MPI stack overhead.

blocking communication operations while the bandwidth
test uses non-blocking communication operations for
maximum performance in each case.

The difference in performance of the two stacks is the
overhead introduced by the MPI implementation on BG/P.
We observe that the MPI stack adds close to 1.1 us over-
head for small messages; that is, close to 1,000 cycles are
spent for pre- and post-data-communication processing
within the MPI stack. We also note that for message
sizes larger than 1 kB, this overhead is much higher
(closer to 4 ps or 3,400 cycles). This additional overhead
is because the MPI stack uses a protocol switch from
eager to rendezvous for message sizes larger than 1,200
bytes. Although DCMF itself performs the actual rendez-
vous-based data communication, the MPI stack performs
additional book-keeping in this mode which causes this
additional overhead. In several cases, such redundant
book-keeping is unnecessary and can be avoided.

3.2 Request Allocation and Queueing Overhead

MPI provides non-blocking communication routines that
enable concurrent computation and communication where
the hardware can support it. However, from the MPI
implementation’s perspective, such routines require man-
aging MPI_Request handles that are needed to wait on
completion for each non-blocking operation. These
requests have to be allocated, initialized, and queued/
dequeued within the MPI implementation for each send
or receive operation, thus adding overhead, especially on
low-frequency cores.

In this experiment, we measure this overhead by run-
ning two versions of the typical ping-pong latency test:
one using MPI_ Send and MPI_Recv and the other using

MPI_Isend,MPI_Irecv,and MPI_Waitall. The lat-
ter incurs the overhead of allocating, initializing, and
queuing/dequeuing request handles. Figure 2 shows that
this overhead is roughly 0.4 ps or a little more than 300
clock cycles7. While this overhead is expected due to the
number of request management operations, carefully rede-
signing them can potentially bring this down significantly.

3.3 Overheads in Tag and Source Matching

MPI allows applications to classify different messages
into different categories using tags. Each sent message
carries a tag. Each receive request contains a tag and
information about which source the message is expected
from. When a message arrives, the receiver searches the
queue of posted receive requests to find the one that
matches the arrived message (both tag and source informa-
tion) and places the incoming data in the buffer described
by this request. Most current MPI implementations use a
single queue for all receive requests, i.e. for all tags and
all source ranks. This has a potential scalability problem
when the length of this queue becomes large.

To demonstrate this problem, we designed an experi-
ment that measures the overhead of receiving a message
with increasing request-queue size. In this experiment,
process PO posts M receive requests for each of N peer
processes with tag TO, and finally one request of tag T1 for
P1. Once all of the requests are posted (ensured through a
low-level hardware barrier that does not use MPI), P1
sends a message with tag T1 to PO. PO measures the time
to receive this message not including the network com-
munication time. That is, the time is only measured for
the post-data-communication phase to receive the data
after it has arrived in its local temporary buffer.
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Fig. 2 Request allocation and queuing: (a) overall performance; (b) overhead.
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Fig. 3 Request matching overhead: (a) requests per peer; (b) number of peers.

Figure 3 shows the time taken by the MPI stack to
receive the data after it has arrived in the local buffer.
Figures 3(a) and (b) show two different versions of the
test: the first version restricts the number of peers to one
(N = 1) but increases the number of requests per peer
(M), while the second version restricts the number of
requests per peer to one (M = 1) but increases the number
of peers (N). For both versions, the time taken increases
rapidly with increasing number of total requests (M x N).
In fact, for 4,096 peers, which is modest considering the
size BG/P can scale to, we note that even just one request
per peer can result in a queue parsing time of about
140,000 ps.

Another interesting observation in the graph is that the
time increase with the number of peers is not linear. To
demonstrate this, we present the average time taken per
request in Figure 4: the average time per request increases
as the number of requests increases. Note that parsing
through the request queue should take linear time; thus, the
time per request should be constant, not increase. There are
several reasons for such a counter-intuitive behavior; we
believe the primary cause for this is the limited number of
pre-allocated requests that are reused during the lifetime of
the application. If there are too many pending requests,
the MPI implementation runs out of these pre-allocated
requests and more requests are allocated dynamically.
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3.4 Algorithmic Complexity of Multi-request
Operations

MPI provides operations such as MPT_Waitany, MPT_
Waitsome, and MPI_Waitall that allow the user to
provide multiple requests at once and wait for the com-
pletion of one or more of them. In this experiment, we
measure the MPI stack’s capability to efficiently handle
such requests. Specifically, the receiver posts several
receive requests (MPI_Irecv) and once all of the requests
are posted (ensured through a low-level hardware bar-
rier) the sender sends just one message that matches the
first receive request. We measure the time taken to
receive the message, not including the network commu-
nication time, and present it in Figure 5.

Waitany Time
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Fig.5 MPI_waitany time.

We note that the time taken by MPI_Waitany
increases linearly with the number of requests passed to
it. We expect this time to be constant since the incoming
message matches the first request itself. The reason for this
behavior is the algorithmic complexity of the MPI_
Waitany implementation. While MPI_Waitany would
have a worst-case complexity of O (N), where N is the
number of requests, its best-case complexity should be
constant (when the first request is already complete when
the call is made). However, the current implementation
performs this in two steps. In the first step, it gathers the
internal request handles for each request (takes O (N)
time) and in the second step does the actual check for
whether any of the requests have completed. Thus, overall,
even in the best case, where the completion is constant
time, acquiring of internal request handlers can increase
the time taken linearly with the number of requests.

3.5 Overheads in Derived Datatype Processing

MPI allows non-contiguous messages to be sent and
received using derived datatypes to describe the mes-
sage. Implementing these efficiently can be challenging
and has been a topic of significant research (Gropp et al.,
1999; Ross et al., 2003; Balaji et al., 2007). Depending
on how densely the message buffers are aligned, most
MPI implementations pack sparse datatypes into contigu-
ous temporary buffers before performing the actual com-
munication. This stresses both the processing power and
the memory/cache bandwidth of the system. To explore
the efficiency of derived datatype communication on BG/P,
we looked only at the simple case of a single stride (vec-
tor) type with a stride of two. Thus, every other data item
is skipped, but the total amount of data packed and com-
municated is kept uniform across the different datatypes
(equal number of bytes). The results are shown in Figure 6.

These results show a significant gap in performance
between sending a contiguous messages and a non-contigu-
ous message (with the same number of bytes). The situation
is particularly serious for a vector of individual bytes
(MPI_CHAR). Itis also interesting to look at the behavior
for shorter messages (Figure 6(b)). This shows, roughly, a
2 us gap in performance between contiguous send and a
send of short, integer or double precision data with a
stride of two.

3.6 Buffer Alignment Overhead

For operations that involve touching the data that is being
communicated (such as datatype packing), the alignment
of the buffers that are being processed can play a role in
overall performance if the hardware is optimized for spe-
cific buffer alignments (such as word or double-word
alignments), which is common in most hardware today.
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Fig. 7 Buffer alignment overhead.

In this experiment (Figure 7), we measure the commu-
nication latency of a vector of integers (4 bytes) with a
stride of two (that is, every alternate integer is packed
and communicated). We perform the test for different
alignment of these integers: “0” refers to perfect align-
ment to a double-word boundary, “1” refers to an mis-
alignment of 1 byte. We note that as long as the integers
are within the same double word (0—4 byte misalign-
ment) the performance is better as compared with when
the integers span two different double words (5-7 byte
misalignment), the performance difference being about
10%. This difference is expected as integers crossing the
double-word boundary require both the double words to be
fetched before any operation can be performed on them.

3.7 Unexpected Message Overhead

MPI does not require any synchronization between the
sender and receiver processes before the sender can send
its data out. So, a sender can send multiple messages
which are not requested immediately by the receiver.
When the receiver tries to receive the message it needs,
all of the previously sent messages are considered unex-
pected, and are queued within the MPI stack for later
requests to handle. Consider the sender first sending mul-
tiple messages of tag TO and finally one message of tag
T1. If the receiver is first looking for the message with
tag T1, it considers all of the previous messages of tag TO
as unexpected and queues them in the unexpected queue.
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Such queueing and dequeuing of requests (and poten-
tially copying data corresponding to the requests) can
add overhead.

To illustrate this, we designed an experiment that is a
symmetric-opposite of the tag-matching test described in
Section 3.3. Specifically, in the tag-matching test, we
queue multiple receive requests and receive one message
that matches the last queued request. In the unexpected
message test, we receive multiple messages, but post
only one receive request for the last received message.
Specifically, process PO first receives M messages of
tag TO from each of N peer processes and finally
receives one extra message of tag T1 from P1. The
time taken to receive the final message (tag T1) is
measured, not including the network communication
time, and shown in Figure 8 as two cases: (a) when there
is only one peer, but the number of unexpected messages
per peer increases (x-axis), and (b) the number of unex-
pected messages per peer is one, but the number of peers
increases. We see that the time taken to receive the last
message increases linearly with the number of unex-
pected messages.

3.8

To support flexible hybrid programming model such as
OpenMP plus MPI, MPI allows applications to perform
independent communication calls from each thread by
requesting for MPT_THREAD_MULTIPLE level of thread
concurrency from the MPI implementation. In this case,
the MPI implementation has to perform appropriate locks
within shared regions of the stack to protect conflicts
caused due to concurrent communication by all threads.

Overhead of Thread Communication

Obviously, such locking has two drawbacks: (i) they add
overhead and (ii) they can serialize communication.

We performed two tests to measure the overhead and
serialization caused by such locking. In the first test, we
use four processes on the different cores which send 0-byte
messages to MPI_ PROC_NULL (these messages incur all
of the overhead of the MPI stack, except that they are
never sent out over the network, thus imitating an infi-
nitely fast network). In the second test, we use four
threads with MPI__THREAD MULTIPLE thread concur-
rency to send 0-byte messages to MPT_PROC_NULL. In
the threads case, we expect the locks to add overheads
and serialization, so the performance to be lower than in
the processes case.

Figure 9 shows the performance of the two tests
described above. The difference between the one-process
and one-thread cases is that the one-thread case requests
for the MPI_THREAD_MULTIPLE level of thread con-
currency, while the one-process case requests for no con-
currency, so there are no locks. As expected, in the process
case, since there are no locks, we note a linear increase in
performance with increasing number of cores used. In the
threads case, however, we observe two issues: (a) the
performance of one thread is significantly lower than the
performance of one process and (b) the performance of
threads does not increase at all as we increase the number
of cores used.

The first observation (difference in one-process and
one-thread performance) points out the overhead in
maintaining locks. Note that there is no contention on the
locks in this case as there is only one thread accessing
them. The second observation (constant performance with
increasing cores) reflects the inefficiency in the concur-
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rency model used by the MPI implementation. Specifi-
cally, most MPI implementations perform a global lock
for each MPI operation thus allowing only one thread to
perform communication at any given time. This results in
virtually zero effective concurrency in the communica-
tion of the different threads. Addressing this issue is the
subject of a separate paper (Balaji et al., 2008a).

3.9 Error Checking Overhead

Since MPI is a library, it is impossible for the MPI imple-
mentation to check for user errors in arguments to the MPI
routines except at runtime. These checks cost time; the
more thorough the checking, the more time they take. MPI
implementations derived from MPICH2 (such as the BG/P
MPI) can be configured to enable or disable checking of
user errors. Figure 10 shows the percentage overhead of

Error Checking Overhead (Bandwidth)

~

GMA\

®5

(]

<

T4

S \

33

: \

[

2 \/\

fo

&1 Y

0 \“-~
N e bb‘(ﬁ)%’il"b*\é"bb*(ﬁ)&\@b?‘

Message size (bytes)

enabling error checking. For short messages, it is about 5%
of the total time, or around 0.1-0.2 ps. This overhead is rel-
ative small compared with the other overheads demon-
strated in this paper, but should ideally be further reduced,
by letting the user specify which parts of the code she
would prefer to have error checking enabled, for exam-
ple.

3.10 Non-data Overheads in Sparse Vector
Operations

A number of MPI collectives also have an associated vec-
tor version, such as MPI_Gatherv, MPI_Scatterv,
MPI_Alltoallv, and MPT_Alltoallw. These oper-
ations allow users to specify different data counts for dif-
ferent processes. For example, MPI_Alltoallv and
MPI_Alltoallw allow applications to send a different
amount of data to (and receive a different amount of data
from) each peer process. This model is frequently used by
applications to perform nearest neighbor kind of commu-
nication. Specifically, each process specifies O bytes for all
processes in the communicator other than its neighborsg.
The PETSc libraryg, for example, uses MPI_Alltoallw
in this manner.

For massive-scale systems such as Blue Gene/P, how-
ever, such communication would often result in a sparse
data count array since the number of neighbors for each
process is significantly smaller than the total number of
processes in the system. Thus, the MPI stack would spend
a significant amount of time parsing the mostly empty
array and finding the actual ranks of processes to which
data needs to be sent to or received from. This overhead in
illustrated in Figure 11 under the legend “original”, where
we measure the performance an extreme case of a sparse
MPI_Alltoallwv in which all data counts are zero. Per-
formance numbers are shown for varying system sizes up
to 131,072 cores.
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Fig. 11 Zero-byte Alltoallv communication.



Together with the original scheme, we also present
three different enhancements that can potentially allow
the MPI library to reduce this overhead.

3.10.1 No Error Checks While useful for debugging
and development, library-based runtime error checking,
as described in Section 3.9, is generally an overhead for
production runs of applications. In particular, in the case
of collective operations that take large arrays as input
parameters, checking each array element for correctness
is time consuming. Thus, we evaluated the performance
of MPI_Alltoallvwv as described above (with zero data
count) but after disabling error checks; this is illustrated
under the legend “No Error Checks” (NEC). We note that
this enhancement gives about 25% benefit as compared
with the base case (i.e. “Original”).

3.10.2 No Mod Operator In order to optimize the
internal queue search time (as described in Sections 3.3
and 3.7), MPICH2 uses an offset-based loop to pick
which destination to post a receive request from and a
send request to. Specifically, this offset-based loop is
implemented using a “%” arithmetic operator, so that a
destination is picked as follows:

for i from 0 to communicator_size
destination = (rank + 1)
% communicator_size
if data_to_send(destination) != 0
send_data (destination)

However, the “%” operator is an expensive operation on
many architectures including x86 and PowerPC'’. This is
just an example of various operations that do not form a
part of the first-level optimizations, but can hamper per-
formance on large-scale systems with moderately fast proc-
essors. That is, a few additional cycles per peer process
would not cost too much on a fast processor or for a small
number of peer processes. However, on systems such as
BG/P, this can be a large performance bottleneck.

A simple approach to avoid using this operator is to
manually split the loop into two loops, one going from
rank to the communicator_size, and the other going from
zero to rank, as follows:

for 1 from rank to communicator_size
if data_to_send(i) != 0
send_data (destination)
for 1 from 0 to (rank - 1)
if data_to_send(i) != 0
send_data (destination)

This avoids the expensive “%” operator and improves
performance significantly as illustrated in Figure 11.

3.10.3 Dual-register Loading Many current proces-
sors allow for some vector-processor-like operations allow-
ing multiple registers to be loaded with a single instruction.
The BG/P processor (PowerPC), in a similar manner,
allows two 32-bit registers to be simultaneously loaded.
Thus, since the data count array comprises of integers
(which are 32-bit on BG/P), this allows us to compare
two elements of the array to zero simultaneously. This
can improve performance for sparse arrays without hurting
performance for dense arrays. As illustrated in Figure 11,
this benefit can be significant.

4 Related Work and Discussion

There has been significant previous work on understand-
ing the performance of MPI on various architectures (Liu
et al., 2002, 2004, 2003; Alam et al., 2008; Balaji et al.,
2008b; Chan et al., 2008). However, all of this work
mainly focuses on data communication overheads, which
although related, is orthogonal to the study in this paper.
Further, although not formally published, there are also
proposals to extend MPI (in the context of MPI-3 (MPI
Forum, 1994)) to work around some of the overheads of
existing collective operations such as MPT_Alltoallv
for sparse communication.

Finally, there has also been a significant amount of
work recently to understand whether MPI would scale to
such massively large systems, or if alternative program-
ming models are needed. This includes work in extend-
ing MPI itself (MPI Forum, 1994) as well as other models
including upC", Co-Array Fortran'*, Global Arraysl3,
OpenMP (Packirisamy and Barathvajasankar, 2005) and
hybrid programming models (MPI + OpenMP (Cappello
and Etiemble, 2000), MPI + UPC). Some studies per-
formed in this paper (such as request allocation and
queueing overheads, buffer alignment overheads, over-
heads of multi-threading, and error checking) are inde-
pendent of the programming model itself, and thus are
relevant for other programming models. However, some
other subjects in this paper (such as derived datatypes,
MPI_Alltoallv communication) are more closely
tied to MPI. For such parts, although they might not be
directly relevant to other programming models, we
believe that they do give an indication of potential pit-
falls other models might run into as well.

5 Concluding Remarks

In this paper, we have studied the non-data-communication
overheads within MPI implementations and demonstrated
their impact on the IBM Blue Gene/P system. We identi-
fied several bottlenecks in the MPI stack including request
handling, tag matching and unexpected messages, multi-
request operations (such as MPI_Waitany), derived-



datatype processing, buffer alignment overheads and thread
synchronization, that are aggravated by the low processing
capabilities of the individual processing cores on the system
as well as scalability issues triggered by the massive scale
of the machine. Together with demonstrating and analyzing
these issues, we have also described potential solutions for
solving these issues in future implementations.
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Notes

1 See http://www.research.ibm.com/journal/rd/492/gara.pdf
See http://www.research.ibm.com/journal/rd/521/team.pdf
See http://www.sicortex.com/products/sc5832

See http://www.redbooks.ibm.com/redbooks/pdfs/sg247287.pdf

JTAG is the IEEE 1149.1 standard for system diagnosis and
management.

a A W N

6 See hitp://mvapich.cse.ohio-state.edu/benchmarks

7 This overhead is more than the entire point-to-point MPI-level
shared-memory communication latency on typical commodity
Intel/AMD processors (Buntinas et al., 2006).

8 We cannot perform such communication easily by using sub-
communicators as each process would be a part of many sub-
communicators, potentially causing deadlocks and/or serializing
communication.

9 See hitp://www.mcs.anl.gov/petsc

10More details about this issue can be found in elliotth’s blog
(2007).

11 See http://upc.lbl.gov/
12 See http://www.co-array.org/

13 See http://www.emsl.pnl.gov/docs/global/
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