
49FINE-GRAINED MULTITHREADING SUPPORT

The International Journal of High Performance Computing Applications,
Volume 24, No. 1, Spring 2010, pp. 49–57
DOI: 10.1177/1094342009360206
© The Author(s), 2010. Reprints and permissions:
http://www.sagepub.co.uk/journalsPermissions.nav

FINE-GRAINED MULTITHREADING
SUPPORT FOR HYBRID THREADED
MPI PROGRAMMING

Pavan Balaji1

Darius Buntinas1

David Goodell1

William Gropp2

Rajeev Thakur1

Abstract

As high-end computing systems continue to grow in scale,
recent advances in multi- and many-core architectures
have pushed such growth toward more dense architec-
tures, that is, more processing elements per physical node,
rather than more physical nodes themselves. Although a
large number of scientific applications have relied so far on
an MPI-everywhere model for programming high-end par-
allel systems; this model may not be sufficient for future
machines, given their physical constraints such as decreas-
ing amounts of memory per processing element and shared
caches. As a result, application and computer scientists
are exploring alternative programming models that involve
using MPI between address spaces and some other
threaded model, such as OpenMP, Pthreads, or Intel TBB,
within an address space. Such hybrid models require effi-
cient support from an MPI implementation for MPI mes-
sages sent from multiple threads simultaneously. In this
paper, we explore the issues involved in designing such an
implementation. We present four approaches to building a
fully thread-safe MPI implementation, with decreasing lev-
els of critical-section granularity (from coarse-grain locks to
fine-grain locks to lock-free operations) and correspondingly
increasing levels of complexity. We present performance
results that demonstrate the performance implications of
the different approaches.

Key words: MPI, threads, hybrid programming, fine-grained
locks

1 Introduction

High-end computing (HEC) systems have continued to
grow in scale over the past few years. However, recent
advances in multi- and many-core architectures have
pushed such growth toward more dense architectures
(more processing elements per physical node), rather than
more physical nodes themselves. For example, more than
80% of the systems in the November 2008 ranking of the
Top500 supercomputers belong to the multi/many-core
processor family (Top500, 2008). Even in the low-end
server market, quad-core and hex-core processors are
already available and are considered commodity processors
today. With Intel’s plans to support the 16-core Larrabee
(Seiler et al., 2008) processor by next year and SUN’s plans
to allow as many as 2,048 threads within a single physical
node in the near future (Vance, 2008), systems can be
expected to continue to get denser.

The vast majority of parallel scientific applications
running on HEC systems today rely on an MPI-every-
where model, where an MPI process is launched on each
processing element. Each process explicitly communi-
cates with other processes without sharing any part of the
address space, regardless of whether it is on the same
physical node. However, given the physical constraints of
current and future generation parallel machines (including
decreasing amounts of per-processing-element memory,
shared caches, and per-process translation lookaside buffer
(TLB) space), many application and computer scientists
are reconsidering this design and exploring alternative pro-
gramming models that can be used with incremental addi-
tions to their existing programs. These models include
using MPI between address spaces and relying on some
threaded model, OpenMP (Chapman andMassaioli, 2005),
Pthreads (IEEE/ANSI, 1996), Intel Threading Building
Blocks (Reinders, 2007), within an address space. For
example, the Sequoia benchmark suite1 that was used
recently for procurement of a 20 petaflops system at
Lawrence Livermore National Laboratory contains many
codes that use a hybrid MPI and threaded model.

The MPI-2 (MPI Forum, 1997) standard already speci-
fies a clear definition of interaction between MPI and all
such models that internally rely on threads sharing the same
address space. However, many MPI implementations
either provide no support for such hybrid programming or
rely on coarse-grained global locking to avoid multiple
threads corrupting their internal stacks. This limitation is
primarily because of the complexity associated with

1 MATHEMATICS AND COMPUTER SCIENCE DIVISION,
ARGONNE NATIONAL LABORATORY, ARGONNE, IL 60439,
USA.
(BALAJI@MCS.ANL.GOV)

2 DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF
ILLINOIS, URBANA, IL 61801, USA.

50 COMPUTING APPLICATIONS

designing and implementing fine-grained locking sup-
port for threads (Gropp and Thakur, 2007). However, as
the number of processing elements within the same node
continues to grow, the need for efficient threaded-MPI
hybrid programming is becoming increasingly important.

Thus, in this paper, we study the issues associated with
fine-grained threading support in MPI. We propose four
different approaches to building a fully thread-safe MPI
implementation, with decreasing levels of critical-section
granularity and correspondingly increasing levels of com-
plexity. We also describe details of the implementation of
our proposed schemes in MPICH22, a popular implemen-
tation of the MPI-2 standard, as well as various experi-
ments evaluating its performance in different scenarios.
Our experimental results show that our proposed schemes
can improve the performance of hybrid threaded-MPI pro-
gramming significantly.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss related work in the area of multithread-
ing in MPI implementations. In Section 3 we briefly
describe the thread-safety specification in MPI. In Sec-
tion 4 we describe the four approaches to selecting gran-
ularity of critical sections. In Section 5 we present our
experimental results. In Section 6 we present our conclu-
sions and discuss future work.

2 Related Work

The issue of efficiently supporting multithreaded MPI
communication has received only limited attention in the
literature. In Gropp and Thakur (2007), we described and
analyzed what the MPI standard says about thread safety
and what it implies for an implementation. We also pre-
sented an efficient multithreaded algorithm for generat-
ing new context ids, which is required for creating new
communicators. Protopopov and Skjellum (2001) and
Skjellum et al. (1996) discuss a number of issues related to
threads and MPI, including a design for a thread-safe ver-
sion of MPICH-1. Plachetka (2002) describes a mechanism
for making a thread-unsafe PVM or MPI implementation
quasi-thread-safe by adding an interrupt mechanism and
two functions to the implementation. García et al. (1999)
present MiMPI, a thread-safe implementation of MPI.
TOMPI (Demaine, 1997) and TMPI (Tang and Yang,
2001) are thread-based MPI implementations, where each

MPI rank is actually a thread. (Our paper focuses on con-
ventional MPI implementations where each MPI rank is
a process that itself may have multiple threads, all having
the same rank.) USFMPI is a multithreaded implementa-
tion of MPI that internally uses a separate thread for
communication (Caglar et al., 2003). A good discussion
of the difficulty of programming with threads in general
is given in Lee (2006).

3 Thread Safety in MPI

For performance reasons, MPI defines four “levels” of
thread safety (MPI Forum, 1997) and allows the user to
indicate the level desired, the idea being that the imple-
mentation need not incur the cost for a higher level of
thread safety than the user needs. The four levels of
thread safety are as follows:

1. MPI_THREAD_SINGLE: Each process has a sin-
gle thread of execution.

2. MPI_THREAD_FUNNELED: A process may be
multithreaded, but only the thread that initialized
MPI may make MPI calls.

3. MPI_THREAD_SERIALIZED: A process may
be multithreaded, but only one thread at a time
may make MPI calls.

4. MPI_THREAD_MULTIPLE: A process may be
multithreaded, and multiple threads may simulta-
neously call MPI functions (with a few restric-
tions mentioned below).

MPI provides a function, MPI_Init_thread, by which
the user can indicate the level of thread support desired,
and the implementation will return the level supported. A
portable program that does not call MPI_Init_ thread
should assume that only MPI_THREAD_SINGLE is sup-
ported. This paper focuses on the MPI_THREAD_
MULTIPLE (fully multithreaded) case.

For MPI_THREAD_MULTIPLE, the MPI standard
specifies that when multiple threads make MPI calls con-
currently, the outcome will be as if the calls executed
sequentially in some (any) order. Also, blocking MPI calls
will block only the calling thread and will not prevent other
threads from running or executing MPI functions. (The
example in Figure 1 must not deadlock for any ordering

Fig. 1 An implementation must ensure that this example never deadlocks for any ordering of thread execution.

51FINE-GRAINED MULTITHREADING SUPPORT

of thread execution.) MPI also says that it is the user’s
responsibility to prevent races when threads in the same
application post conflicting MPI calls. For example, the
user cannot call MPI_Info_set and MPI_Info_
free on the same info object concurrently from two
threads of the same process; the user must ensure that the
MPI_Info_free is called only after MPI_Info_set
returns on the other thread. Similarly, the user must
ensure that collective operations on the same communi-
cator, window, or file handle are correctly ordered among
threads.

4 Choices of Critical-section Granularity

To support multithreaded MPI communication, the
implementation must protect certain data structures and
portions of code from being accessed by multiple threads
simultaneously in order to avoid race conditions. A por-
tion of code so protected is called a critical section (Dijk-
stra, 1965). The granularity (size) of the critical section
and the exact mechanism used to implement the critical
section can have a significant impact on performance. In
general, having smaller critical sections allows more con-
currency among threads but incurs the cost of frequently
acquiring and releasing the critical section. A critical sec-
tion can be implemented either by using mutex locks or
in a lock-free manner by using assembly-level atomic
operations, such as compare-and-swap or fetch-and-add
(Herlihy, 1991). Mutex locks are comparatively expen-
sive, whereas atomic operations are non-portable and can
make the code more complex.

We describe four approaches to the selection of criti-
cal-section granularity in a thread-safe MPI implementa-
tion.

Global. There is a single, global3 critical section that is
held for the duration of most MPI functions,
except if the function is going to block on a net-
work operation. In that case, the critical section
is released before blocking and then reacquired
after the network operation returns. A few MPI
functions have no thread-safety implications4 and
hence have no critical section (e.g. MPI_Wtime)
(Gropp and Thakur, 2007). This is the simplest
approach and is used in the past few releases of
MPICH2.

Brief Global. There is a single, global critical section,
but it is held only when required. This approach
permits concurrency between threads making MPI
calls, except when common internal data structures
are being accessed. However, it is more difficult to
implement than Global, because determining where
a critical section is needed, and where not, requires
care.

Per Object. There are separate critical sections for dif-
ferent objects and classes of objects. For example,
there may be a separate critical section for com-
munication to a particular process. This approach
permits even more concurrency between threads
making MPI calls, particularly if the underlying
communication system supports concurrent com-
munication to different processes. Correspond-
ingly, it requires even more care in implementing.

Lock Free. Instead of critical sections, lock-free (or wait-
free) synchronization methods (Herlihy, 1991) are
implemented by using atomic operations that
exploit processor-specific features. This approach
offers the potential for improved performance and
greater concurrency. Complexity-wise, it is the
hardest of the four.

In this paper we implement and evaluate the first three
approaches to selecting critical-section granularity. The
lock-free approach is part of our future work as discussed
in Section 6.

To manage building and experimenting with these four
options in MPICH2, we have developed a set of abstrac-
tions built around named critical sections and related
concepts. These are implemented as compile-time mac-
ros, ensuring that there is no extra overhead. Each section
of code that requires atomic access to shared data struc-
tures is enclosed in a begin/end of a named critical sec-
tion. In addition, the particular object (if relevant) is
passed to the critical section. For example,

 MPIU_THREAD_CS_BEGIN(COMM,vc)
 ... code to access a virtual

communication channel vc
 MPIU_THREAD_CS_END(COMM,vc)

In the Global mode, there is an “ALLFUNC” (all func-
tions) critical section, and the other macros, such as the
COMM one above, are defined to be empty so that there is no
extra overhead. In the Brief Global mode, the ALLFUNC
critical section is defined to be empty, and others, such as
the above COMM critical section, are defined to acquire and
release a common, global mutex. The vc argument to the
macro is ignored in that case. In the Per Object mode, the
situation is similar to that in Brief Global, except that
instead of using a common, global mutex, the critical-
section macro uses a mutex that is part of the object
passed as the second argument of the macro.

5 Performance Evaluation

To assess the performance of each granularity option, we
wrote a test that measures the message rate achieved by n
threads of a process sending to n single-threaded receiv-

52 COMPUTING APPLICATIONS

ing processes, as shown in Figure 2(a). The receiving
processes prepost 128 receives using MPI_Irecv, send
an acknowledgment to the sending threads, and then wait
for the receives to complete. After receiving the acknowl-
edgment, the threads of the sending process send 128 mes-
sages using MPI_Send. This process is repeated for
100,000 iterations. The acknowledgment message in
each iteration ensures that the receives are posted before
the sends arrive, so that there are no unexpected mes-
sages. The sending process calls MPI_Init_thread
with the thread level set to MPI_THREAD_MULTIPLE
(even for runs with only one thread, in order to show the
overhead of providing thread safety). The message rate is
calculated as n/avg_latency, where n is the number of send-
ing threads or processes, and avg_latency is avg_looptime/
(niters * 128), where avg_looptime is the execution time
of the entire iteration loop averaged over the sending
threads.

To provide a baseline message rate, we also measured
the message rate achieved with separate processes (instead
of threads) for sending. For this purpose, we used a modi-
fied version of the test that uses multiple single-threaded
sending processes, as shown in Figure 2(b). The sending
processes simply call MPI_Init, which sets the thread
level to MPI_THREAD_SINGLE.

We performed three sets of experiments to measure
the impact of critical-section granularity. The first set
does not perform any actual communication (all sends
are to MPI_PROC_NULL), the second performs blocking
communication, and the third performs non-blocking
communication.

The tests were run on a single Linux machine with two
2.6 GHz, quad-core Intel Clovertown chips (a total of
eight cores), with our development version of MPICH2
in which the ch3:sock (TCP) channel was modified to
incorporate the thread-safety approaches described in
this paper.

5.1 Performance with MPI_PROC_NULL

This test is intended to measure the threading overhead in
the MPICH2 code in the absence of any network communi-
cation. For this purpose, we use MPI_PROC_NULL as the
destination in MPI_Send and as a source in MPI_
Irecv. In MPICH2, an MPI_Send to MPI_PROC_
NULL is handled at a layer above the device-specific
code and does not involve manipulation of any shared
data structures.

Figure 3 shows the aggregate message rate of the send-
ing threads or processes as a function of the number of
threads or processes. In the multiple-process case, the
message rate increases with the number of senders
because there is no contention for critical sections. In the

Fig. 2 Illustration of test programs. Multiple threads or processes send messages to a different single-threaded
receiving process.

Fig. 3 Message rate (in million messages per second)
for a multithreaded process sending to MPI_PROC_
NULL with Global and Brief Global granularities, com-
pared with that with multiple processes.

53FINE-GRAINED MULTITHREADING SUPPORT

multithreaded case with Brief Global, the performance is
almost identical to multiple processes because Brief Glo-
bal acquires critical sections only as needed, and in this
case no critical section is needed as there is no communi-
cation. With the Global mode, however, there is a consid-
erable decline in message rate because, in this mode, a
critical section is acquired on entry to an MPI function,
which serializes the accesses by different threads.

Figure 4 shows the time the multithreaded process
spent waiting for a mutex, averaged over the number of
threads. This figure clearly shows that there is no mutex
contention for Brief Global granularity, while for Global
granularity the time a thread spends waiting for a mutex
increases with the number of threads.

The number of times a mutex is acquired was counted
for each send and is shown in Table 1. The first data col-

umn shows the number of times a mutex is locked when
sending to MPI_PROC_NULL. We see that for Global
granularity the global mutex is only acquired once, while
in Brief Global it is not acquired at all.

5.2 Performance with Blocking Sends

This test measures the performance when the communi-
cation path is exercised, which requires critical sections
to be acquired. The test measures the message rate for
zero-byte blocking sends. (Even for zero-byte sends, the
implementation must send the message envelope to the
destination because the receives could have been posted
for a larger size.)

Figure 5 shows the results. Note that because of the cost
of communication, the overall message rate is considerably
lower than with MPI_PROC_NULL. In this test, even
Brief Global performs as poorly as Global because it

Table 1
Number of times a mutex is acquired per send operation for sending to MPI_PROC_NULL (Section 5.1),
for blocking sends (Section 5.2), and for non-blocking sends (Section 5.3).

Communication type

Granularity MPI_PROC_NULL Blocking Non-blocking

Global 1 1 1

Brief Global 0 1 8

Per Object 0 1 8

Per Obj+TLS 0 1 6

Per Obj+TLS+Atomic 0 1 2

Fig. 4 Per-thread mutex wait time for a multithreaded
process sending to MPI_PROC_NULL with Global and
Brief Global granularities, compared with that with
multiple processes.

Fig. 5 Message rates with blocking sends for Global,
Brief Global, and Per Object granularities.

54 COMPUTING APPLICATIONS

acquires a large critical section during communication,
which dominates the overall time. We then tried the Per
Object granularity, which demonstrated very good per-
formance (comparable to multiple processes) because the
granularity of critical sections in this case is per virtual chan-
nel (VC), rather than global. In MPICH2, a VC is a data
structure that holds all of the state and information required
for a process to communicate with another process. Since
each thread sends to a different process, they use separate
VCs, and there is no contention for the critical section.

Figure 6 shows the mutex wait time for this test. As
before, we see that with Global granularity, the mutex
wait time increases with the number of threads, indicating
that increasing the number of threads increases contention
on the single mutex. We see a similar increase in mutex
wait time with Brief Global granularity as well because of
the use of a single global mutex in both Global and Brief
Global cases. In the Per Object case, very little time is
spent waiting for mutexes because the threads are not con-
tending for the same VC structures. The mutex wait time
does increase very slightly in the Per Object case, but it is
most likely an artifact of the mechanism we used to time
the mutex. From Table 1 we see that, in the blocking case,
Global, Brief Global, and Per Object acquire the mutex
the same number of times per send operation (once). In
the Per Object case, however, each thread locks a different
mutex, resulting in a higher message rate (Figure 5) as
there is no contention (Figure 6).

5.3 Performance with Non-blocking Sends

When performing a blocking send for short messages,
MPICH2 does not need to allocate an MPI_Request

object. For non-blocking sends, however, MPICH2 must
allocate a request object to keep track of the progress of
the communication operation. Requests are allocated
from a common pool of free requests, which must be pro-
tected by a critical section. When a request is completed,
it is freed and returned to the common pool. As a result,
the common request pool becomes a source of critical-
section contention.

Each request object also uses a reference count to
determine when the operation is complete and when it is
safe to free the object. Since any thread can cause progress
on communication, any thread can increment or decrement
the reference count. A critical section is therefore needed,
which can become another source of contention. All of this
makes it more difficult to minimize threading overhead
in non-blocking sends than blocking sends.

We modified the test program to use nonblocking sends
and measured the message rates. Figure 7 shows the
results. Note that the performance of Per Object granular-
ity is considerably affected by the contention on the request
pool, and the message rate does not increase beyond more
than two threads.

To reduce the contention on the common request pool,
we experimented with providing a local free pool for
each thread. These thread-local pools are initially empty.
When a thread needs to allocate a request and its local
pool is empty, it will get it from the common pool. How-
ever, when a request is freed, it is returned to the thread’s
local pool. The next time the thread needs a request, it
will allocate it from its local pool and avoid acquiring the
critical section for the common request pool. The graph

Fig. 6 Per-thread mutex wait time with blocking sends
for Global, Brief Global, and Per Object granularities.

Fig. 7 Message rates with non-blocking sends. Per-
Object tlp is the thread-local request-pool optimization
and Per-Object tlp atom updates reference counts
using atomic assembly instructions.

55FINE-GRAINED MULTITHREADING SUPPORT

labeled “Per-Object tlp” in Figure 7 shows that by add-
ing the thread-local request pool, the message rate
improves, but only slightly. The contention for the ref-
erence-count updates still has a negative impact on the
message rate.

To alleviate the reference-count contention, we modi-
fied MPICH2 to use atomic assembly instructions for
updating reference counts (instead of using a mutex). The
graph labeled “Per-Object tlp atom” in Figure 7 shows
that the message rate improves even further with this
optimization, and increases with the number of threads. It
is still less than in the multiple-process case, but some
performance degradation is to be expected with multi-
threading because critical sections cannot be completely
avoided.

Figure 8 shows the mutex wait times for each of the
granularities. Again, we see the mutex wait time of Glo-
bal granularity increasing with thread count. Interest-
ingly, we also see the mutex wait time of Brief Global
increase faster than Global. This higher wait time is
because of the smaller critical section in Brief Global,
which required the mutex to be acquired eight times to
send each message as shown in Table 1. Specifically, the
mutex is acquired when a request object is allocated or a
reference count is updated, following which the mutex is
immediately released. The mutex must then be reac-
quired when entering the progress engine to actually send
the message. As mentioned previously, while requests do
not need to be allocated when performing blocking
sends, they do need to be allocated for non-blocking
sends. Therefore, we did not see this overhead in the pre-

vious tests. Even though the overall size of the critical
section is decreased compared with Global granularity,
the thread must contend for the mutex multiple times for
each send, increasing the overall mutex wait time.

With Per Object granularity, a mutex is allocated the
same number of times for each non-blocking send as in
Brief Global (Table 1), but the mutex wait time is much
lower than Global and Brief Global (Figure 8). The lower
wait time is because Per Object uses separate mutexes to
lock different data structures, many of which are accessed
by only one thread, and hence there is no contention.
Using the thread-local request-pool optimization with
Per Object reduces both the number of times a mutex
needs to be locked as well as the overall mutex wait time.
Combining this optimization with reference-count updates
using atomic assembly instructions further decreases the
mutex count and mutex wait time.

6 Conclusions and Future Work

We have studied the problem of improving the multi-
threaded performance of MPI implementations and pre-
sented several approaches to reducing the critical-section
granularity, which can have a significant impact on per-
formance. Such optimizations, however, require careful
implementation.

While it is clear that atomic use and update of the com-
munication engine is essential, it is equally important to
ensure that all shared data structures, including MPI
datatypes, requests, and communicators, are updated in a
thread-safe way. For example, the reference-count updates
used in most (if not all) MPI implementations must be
thread atomic. This is not just a theoretical requirement: in
some early experiments, we did not atomically update the
reference counts, assuming that the very small race con-
dition would not affect the results; but, by doing so, we
regularly encountered failures in our communication-
intensive tests. This experience suggests that the quasi-
thread-safe approach proposed by Plachetka (2002), in
which only the access to the communication engine is
serialized, is not sufficient.

We plan to implement Lock Free granularity in MPICH2
in the future. As part of this work, we are implementing
a portable library of atomic operations (such as com-
pare-and-swap, test-and-set, and fetch-and-add). The
atomic operations are implemented separately for differ-
ent architectures by using assembly-language instruc-
tions. By using these atomic operations, we can replace
many of the critical sections with lock-free code in a
portable manner.

The abstractions we have employed to control critical-
section granularity are similar to what is required for
transactional memory. We plan to use these abstractions
to explore the use of transactional memory.

Fig. 8 Per-thread mutex wait times with non-blocking
sends. Per-Object tlp is the thread-local request-pool
optimization and Per-Object tlp atom updates refer-
ence counts using atomic assembly instructions.

56 COMPUTING APPLICATIONS

Acknowledgments

This work was supported by the Office of Advanced Scien-
tific Computing Research, Office of Science, U.S. Depart-
ment of Energy, under Contract DE-AC02-06CH11357 and
Award DE-FG02-08ER25835. We thank Sameer Kumar
and others in the MPI group at IBM Research and IBM
Rochester for discussions about efficient support for thread
safety in MPI.

Authors’ Biographies

Pavan Balaji holds a joint appointment as an Assistant
Computer Scientist at the Argonne National Laboratory
and as a research fellow of the Computation Institute at
the University of Chicago. He received a Ph.D. from
Ohio State University. His research interests include high-
speed interconnects, efficient protocol stacks, parallel pro-
gramming models and middleware for communication and
I/O, and job scheduling and resource management. He has
nearly 60 publications in these areas and has delivered
more than 60 talks and tutorials at various conferences
and research institutes.

Darius Buntinas is an assistant computer scientist at
Argonne National Laboratory. His primary research area
is communication subsystems, specifically support for
MPI and scalable parallel tools. He received his B.S. and
M.S. degrees from Loyola University Chicago, and his
Ph.D. from The Ohio State University.

David Goodell is a software developer at the Mathemat-
ics and Computer Science division of Argonne National
Laboratory. He primarily works on the MPICH2 project, a
widely portable, high-quality implementation of the MPI
standard. His research interests include communica-
tions software for parallel programming, system soft-
ware portability, and lock-free algorithms for parallel
programming.

William Gropp is the Paul and Cynthia Saylor Pro-
fessor in the Department of Computer Science and
Deputy Directory for Research for the Institute of
Advanced Computing Applications and Technologies
at the University of Illinois in Urbana-Champaign. He
received his Ph.D. in computer science from Stanford
University in 1982. He was on the faculty of the Com-
puter Science Department of Yale University from
1982–1990 and from 1990–2007 he was a member of
the Mathematics and Computer Science Division at
Argonne National Laboratory. His research interests
are in parallel computing, software for scientific comput-
ing, and numerical methods for partial differential equa-
tions.

Rajeev Thakur is a Computer Scientist in the Mathemat-
ics and Computer Science Division at Argonne National
Laboratory. He is also a Fellow in the Computation Insti-
tute at the University of Chicago and an Adjunct Associ-
ate Professor in the Department of Electrical Engineering
and Computer Science at Northwestern University. He
received a Ph.D. in Computer Engineering from Syracuse
University. His research interests are in the area of high-
performance computing in general and particularly in par-
allel programming models and message-passing and I/O
libraries.

Notes
1 See https://asc.llnl.gov/sequoia/benchmarks/

2 See http://www.mcs.anl.gov/mpi/mpich2

3 Global here means global to all threads of a process.

4 See http://www.mcs.anl.gov/research/projects/mpich2/design/
threadlist.htm

References

Caglar, S. G., Benson, G. D., Huang, Q. and Chu, C.-W. (2003).
USFMPI: A multi-threaded implementation of MPI for
Linux clusters. In Proceedings of the IASTED Conference
on Parallel and Distributed Computing and Systems.

Chapman, B. M. and Massaioli, F. (2005). OpenMP. Parallel
Computing 31(10–12): 957–959.

Demaine, E. D. (1997). A threads-only MPI implementation for
the development of parallel programs. In Proceedings of
the 11th International Symposium on High Performance
Computing Systems, pp. 153–163.

Dijkstra, E. W. (1965). Solution of a problem in concurrent pro-
gramming control. Communications of the ACM 8(9): 569.

García, F., Calderón, A. and Carretero, J. (1999). MiMPI: A
multithread-safe implementation of MPI. In Recent
Advances in Parallel Virtual Machine and Message Pass-
ing Interface, 6th European PVM/MPI Users’ Group
Meeting (Lecture Notes in Computer Science, Vol. 1697).
Berlin: Springer, pp. 207–214.

Gropp, W. and Thakur, R. (2007). Thread safety in an MPI
implementation: Requirements and analysis. Parallel
Computing 33(9): 595–604.

Herlihy, M. (1991). Wait-free synchronization. ACM Transac-
tions on Programming Languages and Systems 11(1): 124–
149.

IEEE/ANSI (1996). Portable Operating System Interface
(POSIX)–Part 1: System Application Program Interface
(API) [C Language]. IEEE/ANSI Standard 1003.1 (1996 edi-
tion).

Lee, E. A. (2006). The problem with threads. Computer 39(5):
33–42.

MPI Forum (1997). MPI-2: Extensions to the message-passing
interface. http://www.mpi-forum.org/docs/docs.html.

Plachetka, T. (2002). (Quasi-) thread-safe PVM and (quasi-)
thread-safe MPI without active polling. In Recent Advances

57FINE-GRAINED MULTITHREADING SUPPORT

in Parallel Virtual Machine and Message Passing Inter-
face, 9th European PVM/MPI Users’ Group Meeting
(Lecture Notes in Computer Science, Vol. 2474). Berlin:
Springer, pp. 296–305.

Protopopov, B. V. and Skjellum, A. (2001). A multithreaded
message passing interface (MPI) architecture: Perform-
ance and program issues. Journal of Parallel and Distrib-
uted Computing 61(4): 449–466.

Reinders, J. (2007). Intel Threading Building Blocks. Sebas-
topol, CA: O’Reilly & Associates, Inc.

Seiler, L. et al. (2008). Larrabee: a many-core x86 architecture
for visual computing. In SIGGRAPH ’08: ACM SIGGRAPH
2008 papers. New York: ACM Press, pp. 1–15.

Skjellum, A., Protopopov, B. and Hebert, S. (1996). A thread
taxonomy for MPI. In Proceedings of the 2nd MPI Devel-
opers Conference, pp. 50–57.

Tang, H. and Yang, T. (2001). Optimizing threaded MPI execu-
tion on SMP clusters. In Proceedings of the 15th ACM
International Conference on Supercomputing, pp. 381–
392.

Top500 (2008). Top500 supercomputer sites, November. http://
www.top500.org/lists/2008/11.

Vance, A. (2008). Sun’s Niagara 3 will have 16-cores and 16
threads per core. The Register http://www.theregister.co.
uk/2008/06/23/sun_niagara_k2.

