
58 COMPUTING APPLICATIONS

The International Journal of High Performance Computing Applications,
Volume 24, No. 1, Spring 2010, pp. 58–68
DOI: 10.1177/1094342009359013
© The Author(s), 2010. Reprints and permissions:
http://www.sagepub.co.uk/journalsPermissions.nav
Figures 1–10 appear in color online: http://hpc.sagepub.com

A PIPELINED ALGORITHM FOR
LARGE, IRREGULAR ALL-GATHER
PROBLEMS

Jesper Larsson Träff1

Andreas Ripke1

Christian Siebert1

Pavan Balaji2

Rajeev Thakur2

William Gropp3

Abstract

We describe and evaluate a new pipelined algorithm for
large, irregular all-gather problems. In the irregular all-
gather problem each process in a set of processes con-
tributes individual data of possibly different size, and all
processes have to collect all data from all processes. The
pipelined algorithm is useful for the implementation of the
MPI_Allgatherv collective operation of the Message-
Passing Interface (MPI) for large problems. By concep-
tion, the new algorithm is well suited to implementation on
clustered multiprocessors, such as symmetric multipro-
cessing (SMP) clusters. The new algorithm has been
implemented within different MPI libraries. Benchmark
results on NEC SX-8, Linux clusters with InfiniBand and
Gigabit Ethernet, IBM Blue Gene/P, and SiCortex sys-
tems show huge performance gains in accordance with
the expected behavior.

Key words: message-passing interface, collective opera-
tions, all-gather problem, pipelining, NEC SX-8, Linux clus-
ters, IBM Blue Gene/P, SiCortex

1 Introduction

The all-gather problem is a basic collective (or group)
communication problem, in which each participant of a
predefined group of processes wants to broadcast personal
data to all other processes of the group. In the Message-
Passing Interface (MPI) standard (MPI Forum, 2008), the
de-facto standard for parallel programming in the message-
passing paradigm, this functionality is embodied in two, so-
called collective communication operations (MPI Forum,
2008, Chapter 5). In the regular MPI_Allgather opera-
tion each process contributes the same amount of data,
whereas in the irregular (or vector) MPI_Allgatherv
operation the amount of data may vary among the proc-
esses. By the end of such an operation, all processes have
gathered all contributed data in some prescribed order. For
both MPI collectives, all participating processes know the
sizes of the data to be broadcast by all other processes.
Both operations are useful, symmetric (i.e. non-rooted)
data-gathering operations with many applications. The
irregular variant is used, for instance, in linear algebra
kernels for matrix multiplication and LU factorization
(Balaji et al., 2007).

The regular all-gather problem has been studied inten-
sively (theoretically under the term gossiping, but is also
known as broadcast-to-all, all-to-all-broadcast, and other
names) (Hedetniemi et al., 1988; Krumme et al., 1992),
and many algorithms have been proposed and/or imple-
mented as part of MPI libraries for various systems and
communication models (Bruck et al., 1997; Benson et al.,
2003; Thakur et al., 2004; Mamidala et al., 2006; Träff,
2006; Balaji et al., 2007). The more challenging, irregu-
lar all-gather problem has received much less attention,
and MPI libraries typically use the same algorithm for
both MPI_Allgather and MPI_Allgatherv. For
irregular problems with considerable differences between
the amount of data contributed by the processes, this can
have huge performance drawbacks. For extreme cases,
the resulting performance loss can amount to orders of
magnitude (cf. Section 3).

In this paper, we present an algorithm for large, irregular
all-gather problems. The underlying idea is quite simple
and can be viewed as an adaptation to the irregular problem
of a ring-based algorithm for regular all-gather problems
for single-ported, clustered multiprocessors. The result-

1 NEC LABORATORIES EUROPE, NEC EUROPE LTD.,
RATHAUSALLEE 10, D-53757 SANKT AUGUSTIN, GERMANY.
(TRAFF@IT.NECLAB.EU)

2 MATHEMATICS AND COMPUTER SCIENCE DIVISION,
ARGONNE NATIONAL LABORATORY, ARGONNE, IL 60439,
USA.

3 DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF
ILLINOIS, URBANA, IL 61801, USA.

59IRREGULAR ALL-GATHER PROBLEMS

ing algorithm is a pipelined (or blocked), linear ring, similar
to a linear pipeline as sometimes used for implementing
broadcast and reduction operations for large problem
sizes. By conception, the new algorithm is well suited for
implementation on clustered multiprocessors, such as clus-
ters of symmetric multiprocessing (SMP) nodes. The algo-
rithm has been implemented for several MPI libraries, and
evaluated on diverse systems, namely an NEC SX-8, two
Linux clusters, IBM Blue Gene/P, and a SiCortex 5832.
We demonstrate significant performance improvements
over a standard MPI_Allgatherv algorithm, depend-
ing on the amount of irregularity in the benchmark sce-
narios.

2 Algorithm and Implementation(s)

In the following, p is the number of participating (MPI)
processes, numbered consecutively from 0 to p – 1. We
let mi denote the size of the data contributed by process i,
and m = mi the total amount of data that eventually
has to be gathered by all processes. For large data, we
assume that the time for transmitting a message of size m′
is simply O(m′). For most of the following discussion, a
detailed communication cost model is unnecessary.

2.1 Standard, Linear Ring Algorithm

A basic (folklore) algorithm for large, regular all-gather
problems is the linear ring. All processes contribute data of
size mi = m′. The linear ring algorithm steps through p – 1
communication rounds. In each round process i sends
(starting with its own data) an already known block of
data of size m′ to process (i + 1) mod p and receives an
unknown block of data from process (i – 1) mod p. Since
p – 1 blocks are sent, and p – 1 blocks are received by the
processes in parallel, the completion time of the linear
ring algorithm is O((p – 1)m′) = O(m – m′). The number
of communication start-ups (latency) scales linearly with
p. This is unproblematic for large m′, but for small prob-
lems, an algorithm with a logarithmic number of start-
ups is clearly preferable (Bruck et al., 1997; Balaji et al.,
2007; Träff, 2006).

The linear ring algorithm is straightforward to imple-
ment. For systems with single-ported, bidirectional com-

munication capabilities (where each process can at the
same time send data to another process and receive data
from a possibly different process) it uses the system com-
munication bandwidth to full capacity, since each proc-
esses both sends and receives data in each round. For
irregular all-gather problems, where the data sizes mi can
vary arbitrarily over the processes, the linear ring algo-
rithm can perform poorly. The running time is deter-
mined by the largest amount of data m′ = mi, which
has to be sent along the ring in each round, and is there-
fore O((p – 1)m′). In particular, (p – 1)m′ can be much
larger, up to a factor of (p – 1), than the total amount of
data m.

2.2 Pipelined (Blocked) Ring Algorithm

We first observe that the linear ring algorithm can also be
used for the regular all-gather problem on clustered mul-
tiprocessors (such as clusters of SMP nodes) with a sin-
gle-ported communication network. In such a system a
set of compute nodes each consisting of one or more
processors is connected by an interconnection network
such that on each node at most one processor can at any
one instant be sending and at most one processor be
receiving data from processors on other nodes.

The ring is organized such that exactly one process i
per node has its predecessor (i – 1) mod p on another
node, and exactly one process i′ per node has its succes-
sor (i′ + 1) mod p on another node. To accomplish this, a
(virtual) reranking of the MPI processes might be neces-
sary. The clustered, linear ring algorithm is now commu-
nication-bandwidth optimal, because in each round one
process on each node receives a block of data and one
process sends a block of data. This holds also for the case
where the number of MPI processes per cluster node is not
identical. The idea is illustrated in Figure 1 which shows a
situation with 1, 5, 2, 1, 1, 1, … processes on the nodes.

Träff (2009) observed that regular collective commu-
nication problems (such as the all-gather problem) induce
corresponding irregular problems over the set of nodes in
a clustered system. In Figure 1 the regular all-gather
problem, when viewed over the set of processes (each
process contributes data of the same size), becomes an
irregular all-gather problem when viewed over the set of

i 0=

p 1–∑

maxi 0=
p 1–

Fig. 1 The linear ring algorithm on a cluster of SMP nodes with different number of MPI processes per node. The
processes are (virtually) ranked such that one process at each node receives data from another node, and one proc-
ess sends data to another node in each round.

60 COMPUTING APPLICATIONS

nodes (each node contributes data of size equal to the
sum of the data sizes contributed by the processes on the
node). If the communication capabilities of processors
and nodes in a cluster are similar (for instance, single
ported), an algorithm for solving a regular problem on a
clustered system (with possibly different number of proc-
esses per cluster node) can therefore be converted into an
algorithm for solving its irregular counterpart over a set
of processors. This is done by letting each processor sim-
ulate the actions of a whole node in the clustered algorithm.
Since the linear ring algorithm solves the regular all-gather
problem on a clustered system, the observation can be
exploited to convert the clustered linear ring algorithm into
an algorithm for the irregular all-gather problem.

We now consider the irregular all-gather problem over
a set of processes. The data of process i of size mi is asso-
ciated with a virtual cluster node, and divided into bi =
max(1, mi/B) blocks of size at most B. This corre-
sponds to the number of virtual processes on the virtual
node, and each block is associated with a virtual proces-
sor in the node. The total number of blocks is b = bi
(note that b ≥ p). Each actual process with data size mi
simulates the role of a virtual cluster node with bi virtual
processors. In each round a new block of size at most B is
received by each virtual process and a known block of
size at most B is sent. The virtual processes simulated by
actual process i of course do not have to actually send
and receive blocks among themselves, therefore each
actual process in each communication round sends and
receives a block from two other actual processes. Each
actual process terminates as soon as it has received all
blocks from the other processes. By these observations
the linear ring algorithm with regular blocks of size (at
most) B solves the irregular all-gather problem in

(1)

instead of p – 1 communication rounds. In the following
let i′ be a process with b = bi.

The resulting, pipelined (or blocked) ring algorithm is
illustrated in Figure 2. Compared with the linear ring, the

advantage of the pipelined ring algorithm is that (more)
regular blocks are sent and received in each round, for a
total time of O(rB). A small value for B increases the
number of start-ups, and a large value increases the pos-
sible round-up error. Therefore, a proper balancing must
be applied to find an optimal value for the block size
parameter. We note that for extremely irregular all-gather
problems where only one process has all of the data, the
pipelined ring algorithm is equivalent to a linear broad-
cast pipeline. For regular problems where mi = m′ for all
i, the block size B can be set to m′, in which case the
algorithm becomes identical to the standard, linear ring.
Thus, by choosing B properly, the pipelined ring algo-
rithm should never perform worse than the linear ring
algorithm.

2.3 Implementation Improvements

As described the algorithm divides all contributed data
into blocks of size B, which determines the number of
blocks bi = max(1, mi/B) to be sent by each process.
Another possibility would be to divide the mi data into bi
roughly even-sized blocks of size at most B. With the
first possibility where each process may have a partially
full block of size mi mod B, we note that for such par-
tially full blocks, only actual data have to be sent and
received (again see Figure 2). In particular, the empty
blocks that arise for processes with mi = 0 are neither sent
nor received. Let z denote the number of such processes.
This latter observation can be used to reduce the number
of communication rounds for the case where 0 < z < p – 1
(that is, at least two processes with mi > 0 and at least one
process with mi = 0). Assume that process i in the ring is
preceded by z′ processes that contribute no data. In the first
z′ rounds of the algorithm, process i does not receive any
actual blocks, and consequently does not have to send any
of these blocks further on after round bi when all non-zero
blocks of process i have been sent. Effectively, if bi > z′ the
number of rounds have been reduced by z′ + 1; other-
wise, it is by z′ + 1 – bi since in this case process i stands
idle for z′ + 1 – bi rounds before the next actual block is
received and can be sent further on.

Fig. 2 The clustered, linear ring algorithm viewed as a pipelined (blocked) algorithm for solving the irregular all-
gather problem. For each process, the data mi is divided into blocks of some maximum block size B (partially full
blocks are partially colored). Process i starts sending block j + k – 1 and receiving block j – 1. After r rounds (see
equation (1)) all processes have gathered all of the data.

i 0=

p 1–∑

r maxi 0=
p 1– b bi–() b mini 0=

p 1– bi–= =

i′ maxi 0=
p 1–

61IRREGULAR ALL-GATHER PROBLEMS

The maximal reduction in the number of rounds is
achieved by organizing the ring such that bi > z′ for all
processes i as far as this is possible. In this case the number
of rounds needed for an arbitrary process i with mi > 0 to
have delivered all of its blocks to all other processes in
the ring can be calculated as follows. Process, say 0, has
to send b0 blocks in a pipelined fashion. The first block is
delivered to the last process after p – 1 rounds (assuming
that this is the block that is piped through the ring), and
the remaining b0 – 1 blocks require another b0 – 1 rounds
plus the number of rounds incurred by blocks at interme-
diate processes in the ring. For all intermediate processes
a saving due to empty processes of bi – (zi + 1) rounds is
achieved, thus a total delay in the pipelining of the blocks
of process 0 of (b1 – z1 – 1) + (b2 + z2 – 1) + … rounds is
incurred (where b1, b2, … are the processes with mi > 0).
This gives

since

An easy, reasonable solution is to place the p – z proc-
esses with mi > 0 equidistantly with z′ = z/(p – z)
processes with mi = 0 in between. Assuming that bi > z′
for all processes with mi > 0, the total number of rounds
is therefore

This improvement is illustrated in Figure 3.
As for the linear ring for the regular problem, the pipe-

lined ring for the irregular problem can also be imple-
mented to run with full bandwidth utilization on clusters
of SMP nodes. As shown in Figure 1 the processes are
reranked such that one (actual) process per node sends to
a process on another node (call this the last process), and
one (actual) process per node receives from a process on
another node (call this the first process). Node internal
processes are ordered such that the last processes have
mi > 0. With this the nodes start sending actual blocks
immediately in the first round of the algorithm.

2.4 Determining an Optimal Block Size

The number of blocks and the number of processes with
mi = 0 together determine the number of rounds and the
number of start-up latencies of the algorithm, and the size
of the blocks determines the time of each round. Imbal-
ance is caused by partial blocks. Furthermore, the best
possible block size depends on the concrete communica-
tion capabilities of the underlying system. We can there-
fore only roughly indicate how a best block size can be
determined.

• For regular problems with all mi = m′ we take B = m′.
The algorithm will coincide with the standard, linear
ring algorithm which performs optimally for large
problems.

• If z = p – 1 the irregular all-gather problem degener-
ates into a broadcast problem, and the algorithm into
a linear pipeline. The block size should be chosen
accordingly.

• Otherwise we try to minimize the time needed for b – z –
1 + z′ communication rounds with z′ = z/(p – z) .
Assuming that mi/B needs rounding up for half of the
p – z processes with mi > 0 we can simplify mi/B
to m/B + (p – z)/2 for a total number of rounds of m/B
+ (p + z)/2 – 1 + z/(p – z) . With an appropriate cost
model we can use this to estimate the best value of B.
Assuming, for instance, linear communication costs,
where sending and receiving messages of size m′ takes
time α + βm′, the estimated total running time is

Fig. 3 Reduction in the number of communication rounds by placing processes with non-zero data equidistantly
among the processes contributing no data. The actual number of rounds required in this example is 9, whereas r is
11, an improvement of 2 rounds.

b0 1 p 1–() b1 z1 1––() b2 z2 1–+() …+ + + +–

mi

B

i 0=

p 1–

∑ 
 
 

p 1–() p z–() z z0–()––+=

mi

B

i 0=

p 1–

∑ 
 
 

1 z0+– b z 1 z0+––= =

mi

B

i 0=

p 1–

∑ 
 
 

b z.–=

mi

B

i 0=

p 1–

∑ 
 
 

1– z
p z–
----------- .+

i 0=

p 1–

∑

62 COMPUTING APPLICATIONS

Minimizing this term gives an (approximated) optimal
block size of

(2)

3 Experimental Evaluation

The pipelined, irregular all-gather algorithm has been used
to implement the MPI_Allgatherv collective within (or
on top of) MPI implementations for different target sys-
tems. We have benchmarked these MPI_Allgatherv
implementations with the following distributions of con-
tiguous data over the p MPI processes. A base count c
(which is varied over some interval) is used as a seed for
the following distributions:

1. Regular: all mi = c are identical, therefore m = pc.
2. Broadcast: m0 = c, all other mi = 0, therefore m = c.
3. Spike: similar to broadcast but all processes con-

tribute some data, m0 = c/2 and mi = c(1/2(p – 1)),
therefore m = c.

4. Half full: m = 2c, and m = 0, therefore
m = pc.

5. Linearly decreasing: mi = 2c((p – 1 – i)/(p – 1)),
therefore m = pc.

6. Geometric curve: m = c(p/i log p) for i = 1,
2, 4, … and j = {0, …, i – 1}, therefore m = pc.

In distributions (2) and (3) the same total amount of
data m = c is gathered by all processes, so similar running
times can be expected (comparable to the regular distri-
bution with p times smaller data size). The case for distri-
butions (1), (4), (5) and (6) is analogous, where the total
amount of data is m = pc.

We compare our implementations of the new MPI_
Allgatherv algorithm with implementations of the
standard linear ring algorithm that is still used in many
MPI libraries (Thakur et al., 2004). The reported running
times are minimum times for the last process to finish
over a (small) number of iterations (Gropp and Lusk,
1999). For the pipelined algorithm, the implementations
as reported here did not attempt to compute an optimal
block size. Rather the block size was fixed in the algo-
rithm or determined from the outside. We include experi-
ments showing the effects of the choice of block size on
the performance achieved with the new algorithm.

3.1 Results on an NEC SX-8 Vector System

The pipelined ring has been implemented for MPI/SX for
the NEC SX-series of parallel vector computers. It has been
benchmarked with the distributions described above on 30
SX-8 nodes at HLRS in Stuttgart, with 1 and 8 MPI proc-
esses per node, respectively. Selected results are shown
in Figure 4.

For the extreme broadcast distribution (2) the pipe-
lined ring outperforms the standard linear ring by more
than a factor of 10 on 30 SX-8 nodes. For 32 MB with a
fixed block size B of 1 MB an improvement of a factor of
(32 × 29)/(29 + 31) ≈ 15 would have been the best possi-
ble. Significant improvements can also be observed for the
other distributions. Note that the standard ring algorithm is
twice as slow on the broadcast (2) as on the spike distribu-
tion (3), which is in accordance with the analysis, since
m0 = c for broadcast and m0 = c/2 for spike. The pipelined
algorithm performs similarly on both. The performance
of the standard ring and the pipelined ring are similar for
the regular (1) and the half full (4) distributions. Running
on a randomly permuted communicator instead of MPI_
COMM_WORLD gives almost identical results. This is a
desirable property of an algorithm for a symmetric (i.e. non-
rooted) collective operation such as MPI_Allgatherv
(Träff et al., 2007).

3.2 Results on a Linux Cluster with InfiniBand

To show the effect of the block size B, the algorithm has
also been integrated into NEC’s MPI/PC version and eval-
uated on an Intel Xeon based SMP cluster with Infini-
Band interconnect. The running time is compared to the
standard, non-pipelined algorithm for B = 32, 64, 128,
512, and 1,024kB. Results are shown in Figure 5. For the
spike distribution (3) the pipelined algorithm is faster for
all block sizes. However, the best block size depends not
only on the size of the problem but also on the distribu-
tion of data over the processes. This can be seen in the
case of the decreasing distribution (5) where a too small
block size makes the pipelined algorithm perform worse
than the standard ring. We also observed that even for
regular distributions (1) blocking into smaller blocks
than mi (e.g. B = 1,024 kB) can sometimes improve per-
formance.

3.3 Results on a Linux Cluster with Gigabit
Ethernet

We ran the benchmarks on a Linux cluster at Argonne
National Laboratory with 24 nodes, each with two dual-
core 2.8 GHz AMD Opteron CPUs (total of 4 cores per
node or 96 cores in the system), and Gigabit Ethernet. We
used MPICH2 1.0.7 as the MPI implementation. Selected

b z 1–– z′+() α βB+()

m B⁄ p z+
2

----------- 1 z
p z–
-----------+–+

 
 
 

α βB+().=

B m
α
β
--- 1

p z+() 2⁄ 1 z p z–()⁄+–
--.=

2 i 2⁄ 2 i 2⁄ 1+

i 1– j+

63IRREGULAR ALL-GATHER PROBLEMS

Fig. 4 Results (left to right, top to bottom) for distributions (2), (3), (5) and (6) on an NEC SX-8 with 30 nodes and 1
MPI process per node, and distributions (2) and (3) with 8 MPI processes per node. A fixed block size B = 1 MB has
been used. The base data size is the base count c multiplied by the size of an MPI_INT.

64 COMPUTING APPLICATIONS

results are shown in Figures 6 and 7. For small problem
sizes, the pipelined algorithm performs only slightly better
than the standard algorithm, but as problem size increases,
the difference in performance becomes considerable. Fig-
ure 7(right) shows the distribution of communication and
idle times for the two algorithms.

As expected, the standard linear ring algorithm suffers
because many processes remain idle for a long time,
whereas in the pipelined algorithm, communication is
more balanced. To show this, we collected traces of the
program execution and plotted them using the Jumpshot

tool, as shown in Figure 8. The penalty due to idle time
incurred by the standard algorithm is clearly visible as
the lighter bars.

3.4 Results on SiCortex

Benchmarks were also performed on a SiCortex 5832
system at Argonne National Laboratory. This machine
has 972 nodes, each with 6 cores, for a total of 5,832
processors. The nodes are connected by a Kautz graph
network. Ten of the processors (60 cores) of the system

Fig. 5 Results from a Linux Xeon/InfiniBand cluster with 16 × 2 processes with spike (left) and linearly decreasing
(right) distributions, and block size B = 32, 64, 128, 512, and 1,024 kB compared with the non-pipelined (standard
ring) algorithm.

Fig. 6 Results with 96 processes on Linux cluster. Left: Spike distribution. Right: Geometric curve distribution. A
fixed block size B = 32 kB was used. “Base data size” is the value of the parameter c determining the data size per
process in the distributions.

65IRREGULAR ALL-GATHER PROBLEMS

at Argonne are pre-assigned for system management
tasks; our experiments utilized the remaining 5,772 cores
available.

While the system is shipped with a binary version of the
vendor native MPI implementation (based on MPICH2),
we did not have access to a working source code. Hence,
we implemented both the original as well as the pipelined
all-gather algorithms on top of MPI, instead of within the
MPI stack. This adds a small amount of overhead due to
additional function calls, but that is negligible for large
problems. This was confirmed by comparing the perform-
ance of the original algorithm on top of MPI against the
internal implementation of the vendor native MPI stack;

the performance difference was insignificant (results not
shown here).

Figure 9 shows the results for a test run with a geomet-
ric curve distribution on 5,772 processors. The pipelined
algorithm significantly outperforms the standard algo-
rithm as the message size increases.

3.5 Results on IBM Blue Gene/P

Finally, we performed the tests on up to 16 racks of the
IBM Blue Gene/P at Argonne National Laboratory (65,536
cores). The native implementation of MPI_Allgatherv
in the Blue Gene/P’s MPI library uses a very fast hard-

Fig. 7 Linux cluster. Left: Geometric curve distribution with varying number of processes. Right: Communication
versus idle time in the extreme case of broadcast distribution.

Fig. 8 Jumpshot plot of the program trace on a Linux cluster for several iterations of allgatherv with broadcast dis-
tribution. Left: Non-pipelined algorithm. Right: Pipelined algorithm. Light shading is idle time, dark shading is com-
munication time.

66 COMPUTING APPLICATIONS

ware-supported algorithm for simple cases including con-
tiguous data communication or pre-defined communicators
(such as MPI_COMM_WORLD). However, as the communi-
cation patterns become more complex (e.g. derived
datatypes used over split communicators that involve
only a subset of processes), the native MPI implementation
falls back to MPICH2’s default collective implementation.
As discussed in this paper, this default implementation
lacks the proposed pipelining capability.

Figure 10 shows the performance comparison for one
such case: MPI_Allgatherv using a derived datatype
that uses a non-contiguous list of bytes to be communicated
over a sub-communicator that involves all processes in
MPI_COMM_WORLD except the last process. Clearly,

the pipelined algorithm significantly outperforms the
original algorithm even on this machine.

4 Concluding Remarks

We have described a simple, pipelined ring algorithm for
large, irregular all-gather problems. The algorithm has
been implemented within different MPI libraries and
benchmarked on various systems, and in all cases showed
considerable improvements over a commonly used linear
ring algorithm for problems with significant irregularity
in the individual message sizes. We have indicated how
to estimate a best possible block size as a function of the
number of processes with no data contribution and the

Fig. 9 Results for the geometric curve distribution with 5,772 processes on the SiCortex machine and a fixed block
size of B = 32 kB. “Message size” is the value of the parameter c determining the data size per process in the distri-
butions.

Fig. 10 Results for the geometric curve distribution on Blue Gene/P with a fixed block size of B = 32 kB: (left) against
message size with a fixed system size of 65,536 processes; (right) against system size with a fixed message size of 64
bytes. “Message size” is the value of the parameter c determining the data size per process in the distributions.

67IRREGULAR ALL-GATHER PROBLEMS

distribution of such processes. Analytic block size com-
putation is however also dependent on the communica-
tion cost model, and will thus vary from system to system.
We leave it as future work to experiment in this direction.
On regular problem instances the pipelined algorithm
performs similarly to the linear ring, which is bandwidth
optimal for that case. Ring algorithms can likewise be
implemented to be largely independent on process
placement in a SMP system. This is an important prop-
erty for users expecting (self-)consistent performance of
their MPI library (Träff et al., 2007).

Acknowledgments

This paper is a revised version of the conference presen-
tation “A simple, pipelined algorithm for large, irregular
all-gather problems” that appeared in “Recent Advances in
Parallel Virtual Machine and Message Passing Interface.
15th European PVM/MPI Users’ Group Meeting (Lecture
Notes in Computer Science, Vol. 5205), Springer, 2008,
pp. 84–93”. This work was supported in part by the Math-
ematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Depart-
ment of Energy, under Contract DE-AC02-06CH11357.

Authors’ Biographies

Jesper Larsson Träff received an M.Sc. in computer sci-
ence in 1989, and, after 2 years at the industrial research
center ECRC in Munich, a Ph.D. in 1995, both from the
University of Copenhagen. After postdoc positions at the
Max-Planck Institute for Computer Science and Techni-
cal University of Munich, he has since 1998 been work-
ing at the NEC Laboratories Europe in Sankt Augustin,
Germany. His interests are broadly in the design and effi-
cient implementation of parallel programming interfaces.

Andreas Ripke is working as a Research Scientist at the
NEC Laboratories Europe in Sankt Augustin, Germany.
His focus is on the implementation of the MPI for PC
clusters.

Christian Siebert holds a Diploma in Computer Science
from the Chemnitz University of Technology. Since 2007
he has been working at the NEC Laboratories Europe in
Sankt Augustin, Germany. His main research interests are
MPI and other parallel programming interfaces, especially
in collective operations in relation to parallel applications.

Pavan Balaji holds a joint appointment as an Assistant
Computer Scientist at the Argonne National Laboratory
and as a research fellow of the Computation Institute at
the University of Chicago. His research interests include

high-speed interconnects, efficient protocol stacks, parallel
programming models and middleware for communication
and I/O, and job scheduling and resource management. He
has nearly 60 publications in these areas and has delivered
more than 60 talks and tutorials at various conferences
and research institutes.

Rajeev Thakur is a Computer Scientist in the Mathe-
matics and Computer Science Division at Argonne
National Laboratory. He is also a Fellow in the Computa-
tion Institute at the University of Chicago and an Adjunct
Associate Professor in the Department of Electrical Engi-
neering and Computer Science at Northwestern Univer-
sity. He received a Ph.D. in Computer Engineering from
Syracuse University. His research interests are in the area
of high-performance computing in general and particu-
larly in parallel programming models and message-pass-
ing and I/O libraries.

William Gropp is the Paul and Cynthia Saylor Profes-
sor in the Department of Computer Science and Deputy
Directory for Research for the Institute of Advanced Com-
puting Applications and Technologies at the University of
Illinois in Urbana-Champaign. He received his Ph.D. in
Computer Science from Stanford University in 1982 and
worked at Yale University and Argonne National Labora-
tory. His research interests are in parallel computing,
software for scientific computing, and numerical meth-
ods for partial differential equations.

References

Balaji, P. et al. (2007). Nonuniformly communicating noncon-
tiguous data: a case study with PETSc and MPI. In 21th
International Parallel and Distributed Processing Sympo-
sium (IPDPS 2007), pp. 1–10.

Benson, G. D. et al. (2003). A comparison of MPICH allgather
algorithms on switched networks. In Recent Advances in
Parallel Virtual Machine and Message Passing Interface.
10th European PVM/MPI Users’ Group Meeting (Lecture
Notes in Computer Science, Vol. 2840). Berlin: Springer,
pp. 335–343.

Bruck, J. et al. (1997). Efficient algorithms for all-to-all com-
munications in multiport message-passing systems. IEEE
Trans. Parallel Distrib. Syst. 8: 1143–1156.

Gropp, W. and Lusk, E. (1999). Reproducible measurements of
MPI performance characteristics. In Recent Advances in Par-
allel Virtual Machine and Message Passing Interface. 6th
European PVM/MPI Users’ Group Meeting (Lecture Notes in
Computer Science, Vol. 1697). Berlin: Springer, pp. 11–18.

Hedetniemi, S. M., Hedetniemi, T. and Liestman, A. L. (1988).
A survey of gossiping and broadcasting in communication
networks. Networks 18: 319–349.

Krumme, D. W., Cybenko, G. and Venkataraman, K. N.
(1992). Gossiping in minimal time. SIAM Journal on
Computing 21: 111–139.

68 COMPUTING APPLICATIONS

Mamidala, A. R., Vishnu, A. and Panda, D. K. (2006). Efficient
shared memory and RDMA based design for mpi_allgather
over InfiniBand. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface. 13th European
PVM/MPI Users’ Group Meeting (Lecture Notes in Com-
puter Science, Vol. 4192). Berlin: Springer, pp. 66–75.

MPI Forum (2008). MPI: A Message-Passing Interface Stand-
ard. Version 2.1. http://www.mpi-forum.org.

Thakur, R., Gropp, W. D. and Rabenseifner, R. (2004). Improv-
ing the performance of collective operations in MPICH.
Int. J. High Perform. Comput. Appl. 19: 49–66.

Träff, J. L. (2006). Efficient allgather for regular SMP-clusters.
In Recent Advances in Parallel Virtual Machine and Mes-

sage Passing Interface. 13th European PVM/MPI Users’
Group Meeting (Lecture Notes in Computer Science, vol.
4192). Berlin: Springer, pp. 58–65.

Träff, J. L. (2009). Relationships between regular and irregular
collective communication operations on clustered multi-
processors. Parallel Process. Lett. 19: 85–96.

Träff, J. L., Gropp, W., and Thakur, R. (2007). Self-consistent
MPI performance requirements. In Recent Advances in
Parallel Virtual Machine and Message Passing Interface.
14th European PVM/MPI Users’ Group Meeting (Lecture
Notes in Computer Science, Vol. 4757). Berlin: Springer,
pp. 36–45.

