
Designing Energy Efficient Communication
Runtime Systems for Data Centric Programming

Models
Abhinav Vishnu #1, Shuaiwen Song #2, Andres Marquez #1,

Kevin Barker #1, Darren Kerbyson #1, Kirk Cameron #2 and Pavan Balaji #3

#1 High Peformance Computing Group,
Pacific Northwest National Lab

902 Battelle Blvd, Richland, WA

#2 Scalable Performance Lab,
Department of Computer Science,

Virginia Polytechnic Institute,
Blacksburg, VA

#3 Mathematics and Computer Science Division,
Argonne National Lab, Argonne, IL

Abstract—The insatiable demand of high performance com-
puting is being driven by the most computationally intensive
applications such as computational chemistry, climate modeling,
nuclear physics, etc. The last couple of decades have observed
a tremendous rise in supercomputers with architectures ranging
from traditional clusters to system-on-a-chip in order to achieve
the petaflop computing barrier. However, with advent of petaflop-
plus computing, we have ushered in an era where power
efficient system software stack is imperative for execution on
exascale systems and beyond. At the same time, computationally
intensive applications are exploring programming models beyond
traditional message passing, as a combination of Partitioned
Global Address Space (PGAS) languages and libraries, providing
one-sided communication paradigm with put, get and accumulate
primitives. To support the PGAS models, it is critical to design
power efficient and high performance one-sided communication
runtime systems.

In this paper, we design and implement PASCoL, a high
performance power aware one-sided communication library us-
ing Aggregate Remote Memory Copy Interface (ARMCI), the
communication runtime system of Global Arrays. For various
communication primitives provided by ARMCI, we study the
impact of Dynamic Voltage/Frequency Scaling (DVFS) and a
combination of interrupt (blocking)/polling based mechanisms
provided by most modern interconnects. We implement our
design and evaluate it with synthetic benchmarks using an
InfiniBand cluster. Our results indicate that PASCoL can achieve
significant reduction in energy consumed per byte transfer
without additional penalty for various one-sided communication
primitives and various message sizes and data transfer patterns.

I. INTRODUCTION

The last couple of decades have observed a tremendous rise
in the design and development of highly scalable applications

for a broad spectrum of scientific domains - computational
chemistry, weather and ocean modeling, national security
to life sciences. The computational requirements of these
applications have provided significant momentum to rise of
petaflop-plus computing [1]. However, as we move forward to
the next step of exascale computing, energy consumptions of
systems is expected to be a significant hindrance in naively
increasing the computational power by another three orders
of magnitude. For example, the U.S. Department of Energy
estimates that in order to be able to sustain an exaflop machine,
its power consumption cannot be more than 10-fold that of
current petaflop machines. That is, we need to achieve a
1000-fold increase in performance, while allowing the power
consumption to increase by only 10-fold [2].

Different computational domains have different power ef-
ficiency characteristics. For instance, many nuclear physics
and computational fluid dynamics applications rely on tightly
coupled models based on MPI [3], [4], where processes in
a system compute and synchronize with each other every
few time steps. Such domains make power efficiency through
frequency/voltage scaling of individual processors tricky be-
cause of their tightly coupled nature. Some researchers have
looked at power efficiency techniques in these domains [5].
On the other hand, application domains such as computational
chemistry rely on Partitioned Global Address Space (PGAS)
models such as Global Arrays [6] that decouple data manage-
ment from process synchronization - thus, each process can
asynchronously get, put or update data in a globally shared
address space.

The primary focus of this paper is to identify the character-



istics of PGAS based applications - specifically in the compu-
tational chemistry domain - that provide us with unique capa-
bilities for power and energy efficiency. Hence, we design and
implement a “P”ower “A”ware one-“S”ided “Co”mmunication
“L”ibrary (PASCoL) based on Aggregate Remote Memory
Copy Interface (ARMCI) [7], which is one of the most popular
runtime libraries used in various PGAS models including
Global Arrays [6] and Co-Array Fortran.

Our implementation is evaluated using synthetic communi-
cation benchmarks, which show that we can reduce the overall
energy consumption per byte data transfer significantly for
various communication primitives and data transfer patterns
without incurring significant overhead. The proposed work
will be available in an open source manner with ARMCI in
upcoming releases.

The rest of the paper is organized as follows. In section II,
we present the approaches for power conservation. In sec-
tion III, we present an overview of computational chemistry
with Global Arrays [6] and ARMCI [7]. In section IV, we
present the PASCoL design. In section V, we present the
performance evaluation of PASCoL using micro-benchmarks
and benchmarks. We present the related work in section VI.
We conclude and present our future directions in section VII.

II. OVERVIEW OF POWER CONSERVATION APPROACHES
FOR HIGH PERFORMANCE SYSTEMS

Multiple researchers are exploring smart utilization of power
and energy for large scale high performance clusters with
parallel applications. Some researchers have applied power
efficient strategies at the architectural level to the whole
supercomputer. For instance, IBM Blue Gene series [8] and
Green Destiny [9] use low frequency processors to build
energy efficient systems. However, this approach requires
a large amount of low power processors to achieve better
energy consumption (As an example, Blue Gene/P consists
of 73,728 quad core processors and consumes 2.3 MW of
power [8]). For saving system power more efficiently and
flexibly, Power Modes [10] technique using integrated power-
aware components has been provided for fine-grained control
for high performance systems, such as low-power setting for
network card, spinning down for disk drives when they are
not in use, making systems sleep or remotely shut down
components by smart external power devices like PDUs, etc.
The challenge is that performance decreases during the mode
switch and various low-power operations. While we explore
power reduction approaches, high performance is of utmost
priority to the HPC community, and we design PASCoL
to minimize the performance penalty, while maximizing the
energy efficiency.

Using software to dynamically control the power states
of system level components has become one of the most
popular techniques for power-aware computing. Dynamic
voltage/frequency scaling (DVFS) is being widely used for
reducing system power consumption during specific phases
of parallel applications. Studies like [11], [12], [13], [14],
[15] have applied DVFS to reduce CPU power consumption

and discussed the tradeoffs between performance and energy
efficiency. At node level, DVFS enables several levels (P-
states) of frequencies that can be switched during runtime.
Low and high power states are corresponding to low and high
CPU performance utilization. DVFS can be used to scale CPU
frequency down during certain phases like communication to
save power where computation is not intensive. It is also possi-
ble to apply DVFS to memory modules [16] and network con-
nections [17] but they are not common approaches. PASCoL
combines DVFS methodology and improved communication
mechanisms to achieve power-aware one-sided communication
for various communication patterns.

III. COMPUTATIONAL CHEMISTRY WITH GLOBAL ARRAYS
AND ARMCI

A vast majority of the computational chemistry applications
including the most popular NWChem [18] application are
based on the Global Arrays (GA) [6] framework. The GA pro-
gramming model provides an efficient and portable “shared-
memory” programming interface for distributed-memory com-
puters. Each process in a Multiple Instruction Multiple Data
(MIMD) parallel program can asynchronously access logical
blocks of physically distributed dense multi-dimensional ar-
rays, without need for explicit co-operation by other processes.
Unlike other shared-memory environments, the GA model
exposes to the programmer the distributed memory characteris-
tics of the high performance computers and acknowledges that
access to a remote portion of the shared data is slower than
to the local portion. The locality information for the shared
data is available, and a direct access to the local portions of
shared data is provided. GA internally uses ARMCI [7], as
the communication runtime system.

The ARMCI [7] communication runtime system provides a
general-purpose, efficient, and widely portable remote memory
access (RMA) operations (a.k.a. one-sided communication)
optimized for contiguous and non-contiguous (strided, scat-
ter/gather, I/O vector) data transfers. In addition, ARMCI
includes a set of atomic and mutual exclusion operations.
ARMCI exploits native network communication interfaces and
system resources (such as shared memory) to achieve the best
possible performance of the remote memory access/one-sided
communication. Optimized implementations of ARMCI are
available for the Cray Portals, Myrinet (GM and MX) [19],
Quadrics [20], Giganet (VIA) and InfiniBand (using Open-
Fabrics and Mellanox Verbs API) [21]. It is also available
for leadership class machines including Cray XT4/XT5 and
BlueGene/P [22].

While each ARMCI [7] process is an Single Program
Multiple Data (SPMD) process, we differentiate in the ter-
minology between processes on the same node to facilitate
the implementation of one-sided communication primitives.
The process with the lowest rank in the node is called master
and the rest of the processes on a node are called clients.
The master process creates a thread, referred to as the data
server. All processes contribute a part of their memory to a
shared-memory pool on each node. The data server exposes



this shared-memory region to other processes in the system as
a globally visible address space.

The basic communication model of ARMCI is based on
communication between the clients and the data server - there
is no direct client-to-client communication. Many modern
networks such as InfiniBand, Myrinet, Blue Gene/P and Cray
XT provide direct hardware based one sided communication
for contiguous messages. In such cases, the client can directly
read/write data from the address space exposed by the data
server using network hardware primitives and without dis-
turbing the data server at all. However, when atomic updates
to the data or non-contiguous communication is required,
many network hardware implementations do not provide full
hardware support to achieve that. In such cases, the data server
needs to actively receive data from the client process and
manipulate it as required. In other words, depending on the
communication pattern, the data server might or might
not need to be active.

Another important characteristic of computational chemistry
applications such as NWChem is the granularity in which they
access data. Since GA explicitly exposes the NUMA model
of the distributed memory, most scalable modules within
NWChem access data in a coarse-grained nature. That is,
they either fetch large amounts of data for computing, or
pipeline data with other computation. Thus, these applications
are typically not small-message latency bound, but rather
rely on asynchronous communication and bulk data transfer
capabilities. This characteristic becomes important when seen
in the light of network behavior. Specifically, most networks
require applications to explicitly initiate communication and
then wait for it to complete. The application can wait for com-
pletion of the communication in one of two ways - polling or
event/interrupt based. In the polling approach, the application
would keep querying the network to see if the communication
has completed and thus is heavy on CPU usage, but very
good for small-message latency. In the event/interrupt based
approach, the application asks the network to wake it up when
the communication completes and goes to sleep; this approach
is typically not very heavy on CPU usage, but not very good
for small-message latency, though comparable to the polling
based approach for larger messages. Given that most com-
putational chemistry applications rely on coarse-grained
data access we might be able to expect an interrupt-driven
approach to give equivalent performance as a polling-based
approach, while providing more opportunities for energy
efficiency.

IV. APPROACHES FOR ENERGY OPTIMIZATION

In this section, we present the PASCoL design. We begin
with a discussion on mechanisms for energy efficiency and
their applicability to one-sided communication protocols. This
is followed by discussion on efficient communication protocols
for contiguous and non-contiguous data transfer. We also
briefly present the optimizations for data server, which is
involved during multiple phases of various communication
primitives, as discussed in the background section.

ClientData Server Master Process

Fig. 1. Communication Structure in ARMCI

A. Mechanisms for Energy Efficiency

There are multiple complimentary mechanisms available for
designing energy efficient one-sided communication protocols:

• Interrupt based execution allows multiple stages of com-
munication protocols to transition using event driven
mechanisms. As an alternative to polling, which is typ-
ically used in high performance computing applications,
this method allows much better CPU utilization, particu-
larly, if the overhead of interrupts can be controlled.

• DVFS provides energy efficiency by reducing the fre-
quency and/or voltage. Different communication pro-
tocols require varying CPU utilization during different
stages of communication primitives. Energy conservation
can be achieved using DVFS, if the overhead of voltage
and frequency scaling can be controlled.

Keeping the mechanisms discussed above in mind, we
design and implement efficient one-sided communication pro-
tocols. While our framework allows voltage scaling, due to
the limitations of our setup, we are able to use frequency
scaling only. For the rest of the article, we would use dynamic
frequency scaling (DFS).

B. Contiguous Data Transfer

As presented in section III, most modern network provide
RDMA and send/receive primitives to allow zero copy data
transfer. The primary restriction for RDMA is that the source
and destination buffer should be contiguous. Most networks
also require that the buffer be pinned (so that the network
transfers do not result in page fault(s)) and registered (for ac-
cess privileges). One-sided communication libraries including
ARMCI [7], pin and register the user buffers and exchange
the access keys (for InfiniBand [21]) during the memory
allocation phase. As a result, during the data transfer phase,
the contiguous data transfer typically results in using network
descriptor(s). Hence, for these protocols, the primary overhead
is posting a descriptor for data transfer request. Since most of
the modern networks, including InfiniBand, use Programmed
I/O (PIO) for small messages, the CPU needs to be involved
during the phase of posting the descriptor.

For contiguous data transfer with small messages, we use
DFS (scale down) after the descriptor has been posted. The
frequency scale up is performed when the data transfer has



been completed. For large messages, we use DFS at the point
of data transfer request, since doorbell mechanism is used
when posting the descriptor. The doorbell mechanism does
not require CPU involvement.

For blocking data transfer, the interrupt based mechanism
is used immediately after the descriptor has been posted. With
non-blocking data transfer, the mechanism is invoked when the
application requests Wait on the previously posted descriptors.
This ensures that the non-blocking data transfer does not incur
any additional overhead.

C. Non-Contiguous Data Transfer

ARMCI provides primitives for uniformly non-contiguous
(strided) and non-uniform non-contiguous (vector) data trans-
fer patterns. There are multiple protocols for communication
with these patterns. The simplest method is to post individual
descriptors for each data segment. However, it results in signif-
icant overhead with inefficient utilization of network concur-
rency. Networks like InfiniBand [21] also provide mechanisms
for list based data transfer, in which a list of scatter/gather
entries can be provided. However, this mechanism results in
higher context memory utilization [23].

Hence, ARMCI primarily uses copy based communication
protocol for non-contiguous data transfer. In this approach,
the user data is copied to a preregistered buffer and the
descriptor(s) are posted. Since the copy phase of the protocol
is CPU intensive, we use DFS (scale down)/interrupts or both
after the desciptor(s) have been posted.

D. Data Server

As presented in section III, the processes communicate
to the data server for different communication protocols, as
needed. The copy based protocols require communication
to the data server, while contiguous data transfer (such as
put/get) uses Remote Direct Memory Access (RDMA), by-
passing the data server completely. The data server might
need to be active, depending on whether different processes
are in computation/communication phases. They may also not
need to communicate to the data server at all. Given that
most computational chemistry applications rely on the coarse
grained data accesses, the data server may need to be active
infrequently.

To optimize the data server for energy efficiency, we use a
combination of polling/interrupts and DFS. We scale up the
frequency when an interrupt is received (in case of interrupt
driven execution) and scale down the frequency before block-
ing on an event from the network. In case of polling, we scale
down the frequency before polling on a completion queue and
scale up the frequency when a message is received on the
completion queue.

V. POWER & PERFORMANCE EVALUATION OF PASCOL

In this section, we evaluate the performance of PASCoL
with synthetic communication benchmarks designed and im-
plemented at the ARMCI [7] layer. We begin with description
of Experimental Testbed. This is followed by a discussion on

the communication patterns of different benchmarks and asso-
ciated metrics of interest. We present the evaluation of these
benchmarks using an InfiniBand [21] cluster. The description
of the experimental testbed is presented below.

A. Experimental Testbed

For the purpose of experimental evaluation, we use a cluster
- NW-ICE, hosted at Pacific Northwest National Lab. The
NW-ICE cluster has 192 compute nodes, connected with DDR
InfiniBand network adapters and switches. Each NW-ICE node
is a dual socket quad core with 2.33 GHz frequency. Each node
has 16GBytes of main memory with each core having a 32KB
cache size.

With DVFS, NW-ICE allows frequencies of 2.33 GHz and
1.9 GHz. By default all processes start at 2.33 GHz. The
dynamic scale down reduces the frequency to 1.9 GHz and
scale up increases the frequency to 2.33 GHz. The interface
for changing the frequencies is through a memory resident file
system. We expect much higher improvements in performance
more frequency settings.

B. Performance Evaluation Methodology

In this section, we present the performance of PASCoL with
multiple synthetic communication benchmarks. The bench-
marks perform communication to all processes with displaced
ring communication [23]. The displaced ring communication
is defined with MPI two-sided semantics. The one-sided
version uses Put, Get and Accumulate primitives provided by
ARMCI [7] to achieve a similar objective.

However, unlike MPI All-to-all personalized exchange, this
benchmark does not necessary maintain stepwise data ex-
change between various communication phases. Hence, the
communication pattern achieves a similar objective as MPI
All-to-all personalized exchange, however, the characteristics
during different phases is different altogether. The pseudo code
for the benchmark using put primitive is presented here:

start timer
for j = 0 to iterations do

for i = 0 to numprocs do
dest← myid+ i
put(data) to dest
fence to dest

end for
end for
end timer

The benchmarks for Accumulate and Put Strided are imple-
mented by replacing the appropriate put calls with respective
primitive calls. For Get primitive, the fence is not needed,
since return of the Get primitive indicates the data completion
as well.

1) Evaluation Metrics: As presented above, we have con-
sidered primarily communication centric benchmarks for per-
formance evaluation of PASCoL. To capture the efficacy of our
proposed approaches, we measure the total energy consumed
for each message size of the benchmark. We normalize the
energy consumed with the overall message size, to provide an



 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a
liz

e
d

 E
n

e
rg

y
/M

B
y
te

s

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 2. ARMCI Put Performance, Energy/MBytes

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

16 64 256 1K 4K 16K 64K 256K

N
o
rm

a
liz

e
d
 L

a
te

n
c
y

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 3. ARMCI Put Performance, Latency

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a
liz

e
d
 E

n
e
rg

y
/M

B
y
te

s

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 4. ARMCI Get Performance, Energy/MBytes

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

16 64 256 1K 4K 16K 64K 256K

N
o
rm

a
liz

e
d
 L

a
te

n
c
y

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 5. ARMCI Get Performance, Latency

asymptotic value beyond which one approach performs better
than the other. This metric is referred to as Energy/Mbytes
for the rest of the section. Since the overall execution time
is critical to an end user, we also measure these values
and compare the approaches. For each of these metrics, we
normalize the values to the default case of polling.

C. Results
Figures 2 and 3 show the results for displaced ring commu-

nication with ARMCI Put benchmark on 64 processes using
normalized values with the polling implementation. We com-
pare the performance of polling with interrupts only, interrupts
with DVFS and polling with DVFS. For small messages, we
observe that polling has the best Energy/Mbytes and latency.
Since small messages are highly sensitive to latency, using
either interrupt(s) or DVFS results in significant overhead. As a
result, polling outperforms other implementations for the small
messages. We observe spikes for different implementations,
because a small change in timing for DVFS/interrupts can
significantly impact the overall overhead observed by the im-
plementation. Polling with DVFS performs worse than polling

only, while interrupts only performs worse than polling with
DVFS. The overhead incurred by interrupts with DVFS is the
highest among all approaches for small messages.

With increasing message size, the latency for multiple
approaches converges significantly (less than 5% difference).
At 16KBytes message size, we observe that the latency for all
schemes (with a slight exception to polling with DVFS), con-
verges. However, we observe that Energy/Mbytes consumption
for the interrupts with DVFS improves significantly compared
to the other schemes. Overall we observe an 8% performance
improvement in Energy/Mbytes using interrupts with DVFS
compared the default polling case, while an improvement
of 5% is observed compared to the interrupts only scheme.
For large messages, the overhead incurred by interrupts is
amortized by the overall time of data transfer. However, with
the increased data transfer time, the time for completion
increases providing higher energy efficiency for interrupts and
DVFS approach. We observe that a threshold of 16KBytes can
be used for using interrupts with DVFS without significant
performance degradation.



Figures 4 and 5 show the performance of Energy/Mbytes
and latency comparison using ARMCI get primitive. We
observe trends similar to ARMCI put communication primitive
presented above. For small messages, interrupt with DVFS
performs the worst with energy consumed per Mbyte and
latency, since the overhead incurred per message transfer
is significant for interrupts and DVFS. The interrupts only
approach performs slightly better, with polling and DVFS ap-
proach slightly worse than the polling only approach for small
messages in terms of Energy/Mbytes and observed latency. We
observe that the latency for different communication primitives
converges at 32KBytes. We observe an improvement of 7%
at 256Kbytes, however we observe a slight degradation in
performance compared to the polling at this point. We are
still investigating this observation.

Figures 6 and 7 show the performance for ARMCI Accumu-
late primitive, with Energy/Mbytes and latency, respectively.
The accumulate communication primitive involves data server
at the remote node to perform local accumulates. We observe
that around 32KBytes, the latency for different approaches
converges, while the Energy/Mbytes performance improves for
larger messages. Overall, a performance improvement of 7%
is observed using interrupts with DVFS in comparison to the
polling scheme.

Figures 8 and 9 show the performance of ARMCI Put
strided communication primitive with increasing message size
for normalized Energy/Mbytes and latency, respectively. As
presented in the design section, the strided communication
primitives are implemented using a copy based approach.
Hence, the communication protocol has a copy and data
transfer phase at the client and the data server side, each.
We observe that the threshold for using interrupt with DVFS
is around 64Kbytes, which is higher in comparison to the
contiguous data transfer. We observe an improvement of 7%
for large messages using interrupts with DVFS in comparison
to the polling scheme. With interrupts only scheme, the overall
improvement in Energy/Mbytes is 3%, while the normalized
latency converges.

For each of communication primitives discussed above, we
observe that a reduction in Energy/Mbyte can be observed
for large messages, without incurring significant overhead on
latency. As presented in section III, most computational chem-
istry applications rely on coarse grained data accesses. Hence,
there is a potential for computational chemistry applications
to benefit from the proposed design choices with PASCoL.

VI. RELATED WORK

Multiple researchers have focused on exploring accu-
rate component and system level power/energy profiling ap-
proaches. Other researchers have designed and developed
techniques to efficiently reduce the total power consump-
tion without incurring performance penalty. Above mentioned
methodologies focus on measuring the aggregate power con-
sumption of entire system or building level power [24] through
proprietary hardware [25], power panels, or empirical estima-
tions by rules-of-thumb [26]. Many studies, including both

simulations and empirical analysis, have also explored evalua-
tion of individual system components such as processor [27],
[28], memory [27], disk [29], [30], [31], motherboard [32],
CPU and system fan control [33] and interconnection net-
works [34]. Due to a high demand for fine-grained system-
wide component level power/energy profiling tools, Ge et
al., have designed and developed a power/energy/performance
profiling infrastructure - PowerPack [32] to evaluate energy ef-
ficiency and power-aware techniques for parallel applications.
Song et al., [35] have used PowerPack to study the power
characteristics of multiple suites in HPCC benchmark [36]
at a high granularity. Most of the studies mentioned above
have considered evaluation of workloads in context of sin-
gle node, considering mechanisms such as DVFS. Recently,
Kandalla et al., have presented a design for power efficient
collective communication algorithms. However, the design is
not applicable for one-sided communication primitives which
do not exhibit regular communication structure as collective
communication primitives. To facilitate this, we have designed
and implemented PASCoL, which serves this purpose.

Multiple researchers have also focused on reducing total
power consumption during runtime without incurring per-
formance penalty. One of the most common approaches to
achieve this is to save CPU power during communication
phases by applying Dynamic Voltage Frequency Scaling
(DVFS), since CPU consumes most power in system-wide
for most current architectures [32], [35]. Many researchers
have discussed the tradeoff between performance and energy
consumption for scientific applications such as NAS Parallel
Benchmark [12], [37], [38] [39], [40]. They have pointed
out the importance of efficient detection of communica-
tion regions during runtime [39], [37]. In [39], researchers
also combine DVFS with concurrency throttling technique
on multi-core systems to explore the right combination of
”switches”(frequency level and number of cores being utilized)
for saving power. Instead of locating communication phases,
work such as [41] monitors system performance counters to
estimate workload in order to predict the proper frequency
for next time interval on a single node. Researchers in [42]
and [43] propose energy saving approaches using DVFS and
CPU throttling for collective communication primitives. Liu
et al., have provided a detailed empirical study of the benefits
of power efficiency of RDMA compared to the traditional
communication protocols such as TCP/IP [44]. However, this
work has been done using verbs level interface, and does not
provide guidance for higher level communication protocols for
implementation.

None of the studies mentioned above have explored design
challenges for one-sided communication runtime systems,
while recent work has focused on designing energy efficient
collective communication primitives. To address this limitation
of state of the art research, we present PASCoL, which provide
power efficient and high performance communication runtime
system for one-sided primitives.



 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a
liz

e
d

 E
n

e
rg

y
/M

B
y
te

s

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 6. ARMCI Accumulate Performance, Energy/MBytes

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

16 64 256 1K 4K 16K 64K 256K

N
o
rm

a
liz

e
d
 L

a
te

n
c
y

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 7. ARMCI Accumulate Performance, Latency

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

16 64 256 1K 4K 16K 64K 256K

N
o

rm
a
liz

e
d
 E

n
e
rg

y
/M

B
y
te

s

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 8. ARMCI Put Strided Performance, Energy/MBytes

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

16 64 256 1K 4K 16K 64K 256K

N
o
rm

a
liz

e
d
 L

a
te

n
c
y

Message Size(Bytes)

Interrupt
Interrupt + DVFS

Polling
Polling + DVFS

Fig. 9. ARMCI Put Strided Performance, Latency

VII. CONCLUSIONS AND FUTURE WORK

The primary focus of this paper is to identify the char-
acteristics of PGAS based applications - specifically in the
computational chemistry domain - that provide us with unique
capabilities for power and energy efficiency. To supplicate this,
we have designed and implemented a power-aware one-sided
library based on Aggregate Remote Memory Copy Interface
(ARMCI) [7], which is one of the most popular runtime li-
braries used in various PGAS models including Global Arrays
and Co-Array Fortran. Our implementation is also evaluated
using synthetic communication benchmarks, which show that
we can reduce the overall energy consumption per byte data
transfer significantly for various communication primitives and
data transfer patterns without incurring significant overhead.
The proposed work will be available in an open source manner
with ARMCI in upcoming releases.

We plan to continue design and development of power aware
one-sided communication protocols for different platform and
high speed communication networks. We also plan to evaluate
the efficacy of these designs on large scale systems using

scientific applications such as NWChem [18] and Subsurface
Transport over Multiple Phases (STOMP) [45].

REFERENCES

[1] “TOP500 Supercomputing Sites,” http://www.top500.org.
[2] “Crosscutting Technologies for Computing at the Exascale,” in

http://extremecomputing.labworks.org, 2010.
[3] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-Performance,

Portable Implementation of the MPI Message Passing Interface Stan-
dard,” Parallel Computing, vol. 22, no. 6, pp. 789–828, 1996.

[4] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. L. Lusk,
W. Saphir, T. Skjellum, and M. Snir, “MPI-2: Extending the message-
passing interface,” in Euro-Par, Vol. I, 1996, pp. 128–135.

[5] C.-H. Hsu and W. chun Feng, “A Feasibility Analysis of Power Aware-
ness in Commodity-Based High-Performance Clusters,” in International
Conference on Cluster Computing, 2005, pp. 1–10.

[6] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global Ar-
rays: A Nonuniform Memory Access Programming Model for High-
Performance Computers,” Journal of Supercomputing, vol. 10, no. 2,
pp. 169–189, 1996.

[7] J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory
Copy Library for Distributed Array Libraries and Compiler Run-Time
Systems,” in Lecture Notes in Computer Science. Springer-Verlag, 1999,
pp. 533–546.

[8] I. B. Team, “Overview of the IBM Blue Gene/P project,” IBM J. Res.
Dev., vol. 52, no. 1/2, pp. 199–220, 2008.



[9] W. Feng, M. Warren, and E. Weigle, “The bladed beowulf: A cost-
effective alternative to traditional beowulfs,” Cluster Computing, IEEE
International Conference on, vol. 0, p. 245, 2002.

[10] K. W. Cameron, R. Ge, and X. Feng, “High-performance, power-aware
distributed computing for scientific applications,” Computer, vol. 38,
no. 11, pp. 40–47, 2005.

[11] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R. de Supinski,
and M. Schulz, “Bounding energy consumption in large-scale mpi
programs,” in SC ’07: Proceedings of the 2007 ACM/IEEE conference
on Supercomputing. New York, NY, USA: ACM, 2007, pp. 1–9.

[12] X. Feng, R. Ge, and K. W. Cameron, “Power and energy profil-
ing of scientific applications on distributed systems,” in IPDPS ’05:
Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Papers. Washington, DC, USA:
IEEE Computer Society, 2005, p. 34.

[13] C.-H. Hsu, U. Kremer, and M. Hsiao, “Compiler-directed dynamic
voltage/frequency scheduling for energy reduction in microprocessors,”
in ISLPED ’01: Proceedings of the 2001 international symposium on
Low power electronics and design. New York, NY, USA: ACM, 2001,
pp. 275–278.

[14] T. D. Burd and R. W. Brodersen, “Design issues for dynamic voltage
scaling,” in ISLPED ’00: Proceedings of the 2000 international sym-
posium on Low power electronics and design. New York, NY, USA:
ACM, 2000, pp. 9–14.

[15] L. Benini and G. d. Micheli, “System-level power optimization: tech-
niques and tools,” ACM Trans. Des. Autom. Electron. Syst., vol. 5, no. 2,
pp. 115–192, 2000.

[16] H. B. Fradj, C. Belleudy, and M. Auguin, “Multi-bank main memory
architecture with dynamic voltage frequency scaling for system energy
optimization,” Digital Systems Design, Euromicro Symposium on, vol. 0,
pp. 89–96, 2006.

[17] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic voltage scaling with links
for power optimization of interconnection networks,” 2003.

[18] R. A. Kendall, E. Aprà, D. E. Bernholdt, E. J. Bylaska, M. Dupuis,
G. I. Fann, R. J. Harrison, J. Ju, J. A. Nichols, J. Nieplocha, T. P.
Straatsma, T. L. Windus, and A. T. Wong, “High Performance Compu-
tational Chemistry: An Overview of NWChem, A Distributed Parallel
Application,” Computer Physics Communications, vol. 128, no. 1-2, pp.
260–283, June 2000.

[19] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic, and W. Su, “Myrinet: A Gigabit-per-second Local Area
Network,” IEEE Micro, vol. 15, no. 1, pp. 29–36, February 1995.

[20] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg, “The
Quadrics Network: High-Performance Clustering Technology,” IEEE
Micro, vol. 22, no. 1, pp. 46–57, 2002.

[21] InfiniBand Trade Association, “InfiniBand Architecture Specification,
Release 1.2,” October 2004.

[22] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen, M. E.
Giampapa, M. Blocksome, A. Faraj, J. Parker, J. Ratterman, B. Smith,
and C. J. Archer, “The Deep Computing Messaging Framework: Gen-
eralized Scalable Message Passing on the Blue Gene/P Supercomputer,”
in ICS ’08: Proceedings of the 22nd annual international conference on
Supercomputing, 2008, pp. 94–103.

[23] A. Vishnu, M. J. Koop, A. Moody, A. R. Mamidala, S. Narravula, and
D. K. Panda, “Hot-Spot Avoidance With Multi-Pathing Over InfiniBand:
An MPI Perspective,” in Cluster Computing and Grid, 2007, pp. 479–
486.

[24] LBNL, “Data Center Energy Benchmarking Case Study: Data Center
Facility 5,” 2003.

[25] IBM, “PowerExecutive,” 2007. [Online]. Available: http://www-
03.ibm.com/systems/management/director/extensions/powerexec.html.

[26] A. Bailey, “Accelerated strategic computing initiative (asci): Driving the
need for the terascale simulation facility(tsf),” in Energy 2002 Workshop
and Exposition. IEEE Computer Society, 2002.

[27] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “The design
and use of simplepower: A cycle-accurate energy estimation tool,” 2000,
pp. 340–345.

[28] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in ISCA ’00:
Proceedings of the 27th annual international symposium on Computer
architecture. New York, NY, USA: ACM, 2000, pp. 83–94.

[29] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and
R. Wang, “Modeling hard-disk power consumption,” in FAST ’03:
Proceedings of the 2nd USENIX Conference on File and Storage

Technologies. Berkeley, CA, USA: USENIX Association, 2003, pp.
217–230.

[30] D. P. Helmbold, D. D. E. Long, and B. Sherrod, “A dynamic disk spin-
down technique for mobile computing,” in MobiCom ’96: Proceedings
of the 2nd annual international conference on Mobile computing and
networking. New York, NY, USA: ACM, 1996, pp. 130–142.

[31] F. Douglis, P. Krishnan, and B. N. Bershad, “Adaptive disk spin-down
policies for mobile computers,” in MLICS ’95: Proceedings of the 2nd
Symposium on Mobile and Location-Independent Computing. Berkeley,
CA, USA: USENIX Association, 1995, pp. 121–137.

[32] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron, “Pow-
erpack: Energy profiling and analysis of high-performance systems and
applications,” IEEE Transactions on Parallel and Distributed Systems,
vol. 99, no. RapidPosts, pp. 658–671, 2009.

[33] J. Moore, J. Chase, P. Ranganathan, and R. Sharma, “Making scheduling
”cool”: temperature-aware workload placement in data centers,” in ATEC
’05: Proceedings of the annual conference on USENIX Annual Technical
Conference. Berkeley, CA, USA: USENIX Association, 2005, pp. 5–5.

[34] H.-S. W. Xinping, H. sheng Wang, X. Zhu, L. shiuan Peh, and S. Malik,
“Orion: A power-performance simulator for interconnection networks,”
2002, pp. 294–305.

[35] S. Song, R. Ge, X. Feng, and K. W. Cameron, “Energy profiling
and analysis of the hpc challenge benchmarks,” Int. J. High Perform.
Comput. Appl., vol. 23, no. 3, pp. 265–276, 2009.

[36] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi, “The hpc challenge (hpcc) bench-
mark suite,” in SC ’06: Proceedings of the 2006 ACM/IEEE conference
on Supercomputing. New York, NY, USA: ACM, 2006, p. 213.

[37] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L.
Rountree, and M. E. Femal, “Analyzing the energy-time trade-off in
high-performance computing applications,” IEEE Trans. Parallel Distrib.
Syst., vol. 18, no. 6, pp. 835–848, 2007.

[38] V. W. Freeh, F. Pan, N. Kappiah, D. K. Lowenthal, and R. Springer, “Ex-
ploring the energy-time tradeoff in mpi programs on a power-scalable
cluster,” in IPDPS ’05: Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05) - Papers.
Washington, DC, USA: IEEE Computer Society, 2005, p. 4.1.

[39] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R.
de Supinski, and M. Schulz, “Prediction models for multi-dimensional
power-performance optimization on many cores,” in PACT ’08: Pro-
ceedings of the 17th international conference on Parallel architectures
and compilation techniques. New York, NY, USA: ACM, 2008, pp.
250–259.

[40] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski,
R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga, “The NAS Parallel Benchmarks,” in The International
Journal of Supercomputer Applications, no. 3, 1991, pp. 63–73.
[Online]. Available: citeseer.ist.psu.edu/bailey95nas.html

[41] R. Ge, X. Feng, W.-c. Feng, and K. W. Cameron, “Cpu miser: A
performance-directed, run-time system for power-aware clusters,” in
ICPP ’07: Proceedings of the 2007 International Conference on Parallel
Processing. Washington, DC, USA: IEEE Computer Society, 2007,
p. 18.

[42] R. Zamani, A. Afsahi, Y. Qian, and C. Hamacher, “A feasibility analysis
of power-awareness and energy minimization in modern interconnects
for high-performance computing,” in CLUSTER ’07: Proceedings of the
2007 IEEE International Conference on Cluster Computing. Washing-
ton, DC, USA: IEEE Computer Society, 2007, pp. 118–128.

[43] S. S. Krishna Kandalla, Emilio P. Mancini and D. K. Panda, “Design-
ing Power-Aware Collective Communication Algorithms for InfiniBand
Clusters,” Technical Report, June 2010.

[44] J. Liu, D. Poff, and B. Abali, “Evaluating high performance commu-
nication: a power perspective,” in ICS ’09: Proceedings of the 23rd
international conference on Supercomputing. New York, NY, USA:
ACM, 2009, pp. 326–337.

[45] Subsurface Transport over Multiple Phases, “STOMP,”
http://stomp.pnl.gov/.


