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Abstract. Commercial HPC applications are often run on clusters that
use the Microsoft Windows operating system and need an MPI imple-
mentation that runs efficiently in the Windows environment. The MPI
developer community, however, is more familiar with the issues involved
in implementing MPI in a Unix environment. In this paper, we discuss
some of the differences in implementing MPI on Windows and Unix,
particularly with respect to issues such as asynchronous progress, pro-
cess management, shared-memory access, and threads. We describe how
we implement MPICH2 on Windows and exploit these Windows-specific
features while still maintaining large parts of the code common with the
Unix version. We also present performance results comparing the per-
formance of MPICH2 on Unix and Windows on the same hardware. For
zero-byte MPI messages, we measured excellent shared-memory latencies
of 240 and 275 nanoseconds on Unix and Windows, respectively.

1 Introduction

Historically, Unix (in its various flavors) has been the commonly used operating
system (OS) for high-performance computing (HPC) systems of all sizes, from
clusters to the largest supercomputers. In the past few years, however, Microsoft
Windows has steadily increased its presence as an operating system for running
HPC clusters, particularly in the commercial arena. Commercial applications
in areas such as computational fluid dynamics, structural analysis, materials,
industrial design and simulation, seismic modeling, and finance run on Windows
clusters. Windows has also made inroads at the very high end of the spectrum.
For example, the Dawning 5000A cluster at the Shanghai Supercomputer Center
with 30,720 cores and running Windows HPC Server 2008 achieved more than
200 TF/s on LINPACK and ranked 10th in the November 2008 edition of the
Top500 list [16].

Since the vast majority of HPC applications use MPI as the programming
model, the use of Windows for HPC clusters requires an efficient MPI imple-
mentation. Given the historical prevalence of Unix in the HPC world, however,
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the MPI developer community tends to have more expertise in implementing
and tuning MPI on Unix platforms. In this paper, we discuss some of the issues
involved in implementing MPI on Windows and how they differ from commonly
used approaches for Unix. We particularly focus on issues such as asynchronous
progress, process management, shared-memory access, and threads.

The MPICH implementations of MPI (both the older MPICH-1 and the
current MPICH2 implementations) have supported both Unix and Windows for
many years. Here we describe how we implement MPICH2 to support both Unix
and Windows efficiently, taking advantage of the special features of Windows
while still maintaining a largely common code base. We also present perfor-
mance results on the Abe cluster at the National Center for Supercomputing
Applications (NCSA, University of Illinois), where we ran MPICH2 with Unix
and Windows on the same hardware.

The rest of this paper is organized as follows. In Section 2, we provide an
overview of MPICH2 and its internal architecture. In Section 3, we discuss some
of the differences in implementing MPI on Windows and Unix. Performance
results are presented in Section 4. We discuss related work in Section 5 and
conclude in Section 6 with a brief look at future work.

2 Background
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Fig. 1. MPICH2 architecture

MPICH2 [8] is a high-performance
and widely portable implemen-
tation of MPI. It supports the
latest official version of the MPI
standard, MPI 2.2 [7]. MPICH2
has a modular architecture that
is designed to make it easy
to plug in new network de-
vices, process managers, and
other tools (see Figure 1). This
design enables anyone to port
MPICH2 easily and efficiently
to new platforms.

A key feature of MPICH2 is a scalable, multinetwork communication subsys-
tem called Nemesis [3]. Nemesis offers very low-latency and high-bandwidth com-
munication by using efficient shared memory operations, lock-free algorithms,
and optimized memory-copy routines. As a result, MPICH2 achieves a very low
shared-memory latency of around 240–275 ns. We have developed an efficient
implementation of Nemesis for Windows.

An MPI library typically requires thread services (e.g., thread creation, mu-
tex locks), shared-memory services (for intranode communication), internode
communication services (e.g., TCP/IP sockets), and OS process-management
services. The APIs for these features can differ among operating systems and
platforms. For portability, MPICH2 uses an internal abstraction layer for these



services, which can be implemented selectively on different OS platforms. MPICH2
also includes a portable library for atomic operations, called OPA (Open Portable
Atomics) [14], which provides OS-independent atomic primitives, such as fetch-
and-increment and compare-and-swap. In addition, we have developed a runtime
system that can launch MPI jobs on clusters with any flavor of Unix or Windows.

As a result, MPICH2 can run efficiently on both Windows and Unix operating
systems while maintaining a largely common code base.

3 Implementing MPI on Windows versus Unix

From the MPI perspective, Windows and Unix are just different OS flavors,
providing similar operating system services. However, a high-performance imple-
mentation of MPI on the two OS flavors can differ significantly. These differences
can make building a widely portable, high-performance library a huge challenge.
In this section, we discuss some of the functionality differences between the two
operating systems and the corresponding challenges and benefits.

3.1 Asynchronous Progress

Windows supports an asynchronous model of communication, in which the user
initiates an operation and the operating system ensures progress on the operation
and notifies the user when the operation is completed. In Nemesis on windows
we provide asynchronous internode communication by using an I/O completion
object, exposed by the OS as a completion port, with TCP/IP sockets. To initiate
communication, Nemesis posts a request to the kernel for the operation and
waits for a completion event. When the request is completed, the kernel queues
a completion packet on the completion port associated with the I/O completion
object.

MPI implementations on Unix systems typically use nonblocking progress
to implement internode communication using TCP/IP sockets. In this case, the
library polls for the status of a socket and processes the requested/pending
operation. Nonblocking progress differs from asynchronous progress, in which the
OS performs the requested operation on the user’s behalf. Nonblocking progress
is typically implemented on Unix systems by using the POSIX poll system call.

Nonblocking progress is generally inefficient compared with asynchronous
progress because of deficiencies in poll. It also requires the MPI implemen-
tation to do more work than with asynchronous progress where some work is
offloaded to the operating system. The poll system call requires the set of socket
descriptors to be polled to be contiguous in memory. This restriction increases
bookkeeping and reduces scalability of libraries that allow for dynamic connec-
tions or that optimize memory allocated for the socket descriptors by dynam-
ically expanding it. When poll returns, indicating the occurrence of an event,
the user must search through the entire set of descriptors to find the one with the
event. Some operating systems provide event-notification mechanisms similar to
completion ports on Windows, for example, epoll in Linux and kqueue in BSD.



However, these mechanisms are not widely portable across the various flavors of
Unix. In Nemesis, we use an asynchronous internode communication module for
Windows and a nonblocking internode communication module for Unix systems.

Another MPI feature that can take advantage of asynchronous services is
generalized requests, which allow users to define their own nonblocking opera-
tions that are represented by MPI request objects. MPI specifies that the user is
responsible for causing progress on generalized requests. On Unix, the user may
be required to use an external thread. Windows allows users to register callback
functions with asynchronous OS calls; this mechanism allows a user library to
use generalized requests without needing an external thread to cause progress
on the operations.

3.2 Process Management

Process management in MPI typically involves providing a mechanism to launch
MPI processes and setting the appropriate runtime environment for the processes
to be able to connect to each other.

Launching MPI Jobs On Unix systems that do not have an external job
launcher, MPI process managers typically use fork to launch processes locally
and network protocols such as SSH to launch processes remotely. These network-
protocol agents assume the existence of a standalone daemon process on each
node that can interact with the remote protocol agent. Since Windows does
not natively provide a network-protocol mechanism similar to SSH, we need a
distributed process-management framework with standalone manager daemons
on each Windows node.

When launching MPI jobs, the remote MPI processes must be launched with
the user’s credentials. When using a network protocol such as SSH, the protocol
provides this service. On Windows, however, the process-manager daemon must
do this job. In MPICH2, we have implemented a process manager, called SMPD,
that provides process-management functionalities to MPI jobs on both Windows
and Unix systems. On Windows, the standalone SMPD daemon impersonates the
user launching the job by using the user’s credentials. Where available, SMPD
can also use technologies such as Active Directory and the job scheduler in
Windows HPC Server 2008 to manage user credentials and launch MPI jobs.

Managing MPI Processes Once the MPI processes are launched, the process
manager is responsible for managing them. It must provide information to the
processes so that they can connect to each other; handle stdin, stdout, and
stderr; and handle termination and shutdown. SMPD provides these features
using a communication protocol that is independent of the data model used
by the individual nodes of a cluster. This allows users to run MPI jobs on a
heterogeneous cluster containing both Unix and Windows nodes.



3.3 Intranode Communication

MPI implementations typically use some form of shared-memory communica-
tion for communicating between MPI processes running on a single node. Neme-
sis uses lock-free shared-memory queues for improving scalability and reducing
overhead for intranode communication [3]. The use of these queues reduces the
intranode communication latency for small messages and is particularly effective
when the communicating processes share CPU data caches. When they do not,
however, the performance often degrades.

An MPI implementation can also use OS services that allow users to trans-
fer data directly between the memories of two processes. This approach can
improve performance for large-message transfers among processes that do not
share a cache. A variety of standard and nonstandard methods for doing so are
available on Unix [2]. Windows provides an OS service for directly accessing the
address space of a specified process, provided the process has appropriate secu-
rity privileges. For small messages, however, we observed that this service has
more overhead than the lock-free shared-memory queues in Nemesis. Therefore,
we use the remote-copy method only for large messages in Nemesis on Windows.

3.4 Threads

The MPI standard clearly defines the interaction between user threads and MPI
in an MPI program [5]. The user can request a particular level of thread support
from the MPI implementation, and the implementation can indicate the level
of thread support provided. On both Windows and Unix, MPICH2 supports
the MPI_THREAD_MULTIPLE level, which allows any user thread to make MPI
calls at any time. This feature requires some thread-locking mechanisms in the
implementation in order to make it thread safe.

Unix platforms typically use a POSIX threads (Pthreads) library, whereas
Windows has its own version of threads. MPICH2 uses an OS-independent
thread-abstraction layer that enables it to use different threads libraries and
thread-locking mechanisms portably. The default version of MPICH2 uses a
global lock to control access to an MPI function from multiple threads. A thread
calling an MPI function tries to obtain this global lock and then releases the
lock after completing the call or before blocking on an OS request. When a
lock is released, a thread waiting for the global lock gets access to the lock and
performs progress on its MPI communication. We are also developing a more
efficient version of MPICH2 that supports finer-grained locks [1].

4 Experimental Evaluation and Analysis

In this section, we evaluate the different strategies discussed in the paper and
compare the results. We ran all tests on the Abe cluster at NCSA, which has both
Unix and Windows nodes. Each node consists of 2 quad-core Intel 64 (Clover-
town) 2.33 GHz processors with a 2x4 MB L2 cache, 4x32 K L1 cache, and 8 GB



RAM. The Unix nodes ran Linux 2.6.18 and used Intel C/C++ 10.1 compilers.
The Windows nodes were installed with Windows Server 2008 HPC Edition SP2
and the Visual Studio 2008 compilers. On both Unix and Windows, we com-
piled MPICH2 with aggressive optimization and disabled error checking of user
arguments. The interconnection network used was gigabit Ethernet.

4.1 Asynchronous Progress

We compared asynchronous and nonblocking progress by calculating the amount
of overlap of communication and computation with the two strategies. To mea-
sure the performance of nonblocking progress on Windows, we implemented a
version of Nemesis that uses the select system call since it is more portable
across various versions of Windows than poll. The default version of Nemesis
on Windows uses asynchronous progress with I/O completion ports.
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Fig. 2. Time spent in the MPI library
(MPI time) and time available for user
computation (Compute time) when us-
ing asynchronous progress (iocp) versus
nonblocking progress (select) on Win-
dows for internode communication

We measured communication la-
tency and bandwidth by using an
MPI version of the popular Net-
PIPE benchmark [11], called NetMPI,
which performs a nonblocking receive,
a blocking send, and an MPI_Wait
multiple times in a loop. We modi-
fied the benchmark to perform several
nonblocking sends and receives at a
time and used MPI_Testall to test
for their completion without block-
ing. Between calls to MPI_Testall,
we performed some computation for
≈250 ns. The less time spent by the
MPI implementation in MPI_Testall,
the more time available to the user to
perform computation.

Figure 2 shows the breakdown of
the time spent within the MPI library
and the time available for the user’s computation when sending a message by
using asynchronous progress versus nonblocking progress. As expected, asyn-
chronous progress results in less time being spent within the MPI library and
more time available for user computation. The reason is that with asynchronous
progress the MPI library delegates the reading/writing of data from/to TCP/IP
sockets to the OS, whereas with nonblocking progress the library polls for events
and then performs the read/write. When I/O is delegated to the OS, the library
has little work to do and quickly returns to the application.

4.2 Intranode Communication

In this experiment, we compared the intranode communication performance us-
ing lock-free shared-memory queues and direct remote-memory access for large



messages. We also compare the intranode performance of MPICH2 on Windows
and Unix for small and large messages. We used the Ohio State University (OSU)
microbenchmarks [15] to measure latency and bandwidth in all cases.
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We have implemented a read re-
mote virtual memory (RRVM) mod-
ule in Nemesis that performs re-
mote memory access for large mes-
sages (≥16 KB) on Windows. Fig-
ure 3 shows the intranode commu-
nication bandwidth when using lock-
free shared-memory queues versus
RRVM on Windows. We considered
two cases, one where the communi-
cating processes shared a 4 MB L2
cache and another case where the pro-
cesses were launched on cores that do
not share a data cache. We observe
that the shared-memory queues per-
form better than the RRVM module
for some message sizes when the pro-
cesses share a data cache. However the RRVM module delivers a better overall
performance because it performs significantly better when the processes don’t
share a cache.

The jagged graph in the shared-cache case is because at 16 KB, the double-
buffering scheme used for communication runs out of L1 cache. The performance
again improves from 128 KB because Nemesis switches to a different protocol
that allows pipelining of messages. The bandwidth then drops at 2 MB because
the double-buffering scheme runs out of L2 cache. We will investigate whether
tuning some parameters in Nemesis can help smoothen the curve.

Figure 4 shows the intranode communication latency for small messages and
bandwidth for large messages on Windows and Unix. The latency results on
the two operating systems are excellent (240 ns on Unix and 275 ns on Win-
dows for zero-byte MPI messages) and comparable (only ≈35 ns apart for small
messages). For small messages, we use lock-free shared-memory queues for in-
tranode communication on both systems. Therefore, we observe a performance
degradation on both Unix and Windows for small messages when the commu-
nicating processes do not share a cache. For large messages, the bandwidth on
Unix degrades substantially when the processes do not share a cache, whereas
on Windows the performance is good in both cases because of the use of direct
copy.

4.3 Internode Communication

We also studied MPI internode communication performance using TCP on both
Windows and Unix. We measured the latency and bandwidth for internode com-
munication by using the OSU microbenchmarks. Figure 5 shows the results.
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Fig. 4. Intranode communication latency and bandwidth on Windows and Unix

We observe that, in these experiments, MPICH2 on Unix performs better than
MPICH2 on Windows, with respect to both latency and bandwidth. We are in-
vestigating the cause of the difference, but we expect that further tuning and
optimization of the Nemesis TCP module for Windows will eliminate the perfor-
mance gap. We note that these microbenchmarks measure only point-to-point
communication performance, whereas overall application performance depends
also on the scalability of the underlying communication subsystem and the abil-
ity to overlap communication with computation. We expect the Windows version
to have good overall application performance because the asynchronous model
with completion ports is scalable and supports overlap. To verify this, we plan
to conduct experiments with applications as described in Section 6.

4.4 Cost of Supporting Thread Safety

The MPI library incurs some overhead to support multiple user threads. To mea-
sure this overhead, we modified the OSU micro-benchmark to use MPI_Init_
thread instead of MPI_Init and measured the latency for intranode communi-
cation with MPI_THREAD_SINGLE and MPI_THREAD_MULTIPLE. Note that, in both
cases, the program has only one thread, but in one case support for multithread-
ing is disabled and in the other it is enabled, requiring the implementation to
acquire thread locks in case multiple threads make MPI calls.

Figure 6 shows the overhead as the percentage increase in latency over the
MPI_THREAD_SINGLE case when multithreading is enabled. We observe that the
overhead is significantly lower on Windows than on Unix. The Unix version uses
Pthread mutex locks for thread safety; the Windows version uses intraprocess
locks (critical sections). We note that, on Windows, we initially used interprocess
thread locks (mutexes), but their performance was much worse. By switching
to intraprocess locks (critical sections), the performance improved significantly.
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Intraprocess locks are sufficient for Nemesis because it uses lock-free shared-
memory queues for interprocess communication.

5 Related Work
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Although MPI implementations have
traditionally been developed on Unix,
several MPI implementations are now
available on Windows. Microsoft and
Intel have developed MPI implemen-
tations for Windows [6, 10], which
are both derived from MPICH2.
DeinoMPI [4] is another implementa-
tion of MPI, derived from MPICH2,
for Windows. In addition, Open MPI
has recently added support for Win-
dows [13]; and MPI.NET [9] is an im-
plementation that provides C# bind-
ings for Microsoft’s .NET environ-
ment.

6 Conclusions and Future Work

We have discussed several issues in implementing MPI on Windows and com-
pared them with approaches on Unix. We have also discussed how we imple-
mented MPICH2 to exploit OS-specific features while still maintaining a largely
common code base. Performance results with both Windows and Unix on the



same hardware demonstrate that the performance of MPICH2 on both operating
systems is comparable. We observed some difference in internode communication
performance, which we plan to investigate and optimize on Windows. MPICH2
takes advantage of the asynchronous communication features in Windows, which
enable applications to overlap communication with computation.

Windows HPC Server 2008 introduced a new low-latency RDMA network
API, called Network Direct [12], that enables applications and libraries to use
the advanced capabilities of modern high-speed networks, such as InfiniBand.
We plan to implement a Nemesis module for Network Direct and study the
performance of MPICH2 with high-speed networks on Windows. We also plan
to evaluate application-level performance with MPICH2 on Windows, including
commercial MPI applications at large scale.
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