
Minimizing MPI Resource Contention in
Multithreaded Multicore Environments

Dave Goodell,1 Pavan Balaji,1 Darius Buntinas,1

Gábor Dózsa,2 William Gropp,3 Sameer Kumar,2

Bronis R. de Supinski,4 Rajeev Thakur,1

goodell@mcs.anl.gov

ANL,1 IBM,2 UIUC/NCSA,3 LLNL4

September 21, 2010

Overview

MPI Background
MPI Objects
MPI & Threads

Näıve Reference Counting
Basic Approach
An Improvement

Hybrid Garbage Collection
Algorithm
Analysis

Results
Benchmark and Platform
The Numbers

2

MPI Objects

Most MPI objects are opaque objects

Created, manipulated, and destroyed via handles and
functions

Object handle examples: MPI_Request, MPI_Datatype,
MPI_Comm

MPI types such as MPI_Status are not opaque (direct
access to status.MPI_ERROR is valid)

In this talk, object always means an opaque object

3

The Premature Release Problem

Example

MPI_Datatype tv;

MPI_Comm comm;

MPI_Request req;

MPI_Comm_dup(MPI_COMM_WORLD, &comm);

MPI_Type_vector(..., &tv);

MPI_Type_commit(&tv);

MPI_Irecv(buf, 1, tv, 0, 1, comm, req);

MPI_Comm_free(&comm);

MPI_Type_free(&tv);

... arbitrarily long computation ...

MPI_Wait(&req);

This is a premature release. comm and tv are still in use at
user-release time

4

The Premature Release Problem

Example

MPI_Datatype tv;

MPI_Comm comm;

MPI_Request req;

MPI_Comm_dup(MPI_COMM_WORLD, &comm);

MPI_Type_vector(..., &tv);

MPI_Type_commit(&tv);

MPI_Irecv(buf, 1, tv, 0, 1, comm, req);

MPI_Comm_free(&comm);

MPI_Type_free(&tv);

... arbitrarily long computation ...

MPI_Wait(&req);

This is a premature release. comm and tv are still in use at
user-release time

4

The Premature Release Problem

Example

MPI_Datatype tv;

MPI_Comm comm;

MPI_Request req;

MPI_Comm_dup(MPI_COMM_WORLD, &comm);

MPI_Type_vector(..., &tv);

MPI_Type_commit(&tv);

MPI_Irecv(buf, 1, tv, 0, 1, comm, req);

MPI_Comm_free(&comm);

MPI_Type_free(&tv);

... arbitrarily long computation ...

MPI_Wait(&req);

This is a premature release. comm and tv are still in use at
user-release time

4

User Convenience, Implementer Pain

Supporting the “simple” case is trivial:

– MPI_Type_vector 7→ malloc

– MPI_Type_free 7→ free

The more complicated premature release case requires more
effort, typically reference counting.

5

Terminology Note

To minimize confusion, let us refer to functions like
MPI_Type_free as user-release functions and their
invocation as user-releases.

ref means “reference”

6

MPI Reference Counting Semantics

MPI objects must stay alive as long as logical references to
them exist. Usually corresponds to a pointer under the
hood.

Objects are born with only the user’s ref.

The user can release that ref with a user-release (e.g.
MPI_Comm_free)

MPI operations logically using an object may acquire a
reference to that object, which is then released when
finished.

An MPI object is no longer in use and eligible for
destruction when there are no more references to the object.

7

MPICH2 Objects

All MPICH2 objects are allocated by a custom allocator
(not directly by malloc/free).

All objects have a common set of header fields.

We place an atomically-accessible, reference count
(“refcount”) integer field here.

This field is initialized to 1 on object allocation.

8

The Näıve Algorithm

(A, B, and C are opaque MPI objects)

1. If A adds a ref to B, atomically increment B’s reference
count.

2. If ownership of a ref to B changes hands from A to C,
don’t change B’s reference count.

3. If A releases a ref to B, atomically decrement and test B’s
reference count against zero. If zero, deallocate the object.

9

Reference Counting Example

Example

refcount
tv comm

- - MPI_Datatype tv;

- - MPI_Comm comm;

- - MPI_Request req;

- 1 MPI_Comm_dup(MPI_COMM_WORLD, &comm);

1 1 MPI_Type_vector(..., &tv);

1 1 MPI_Type_commit(&tv);

2 2 MPI_Irecv(buf, 1, tv, 0, 1, comm, req);

2 1 MPI_Comm_free(&comm);

1 1 MPI_Type_free(&tv);

1 1 ... arbitrarily long computation ...

0 0 MPI_Wait(&req);

10

Downsides

Example

MPI_Request req[NUM_RECV];

for (i = 0; i < NUM_RECV; ++i)

MPI_Irecv(..., &req[i]); // ATOMIC{++(c->ref_cnt)}

MPI_Waitall(req); // for NUM_RECV: ATOMIC{--(c->ref_cnt)}

Different threads running on different cores/processors will
fight over the cache line containing the ref count for the
communicator and datatype.

Even the waitall will result in NUM_RECV atomic decrements
for each shared objects.

11

An Improvement

Many codes (and benchmarks) don’t use user-derived
objects.

Predefined objects (MPI_COMM_WORLD, MPI_INT, etc) are
not explicitly created in the usual fashion.

Their lifetimes are bounded by MPI_Init and
MPI_Finalize and cannot be freed.

Upshot: simply don’t maintain reference counts for
predefined objects.

Easy to implement in MPICH2; completely removes
contention in the critical path.

Doesn’t help us at all for user-derived. . .

12

An Improvement

Many codes (and benchmarks) don’t use user-derived
objects.

Predefined objects (MPI_COMM_WORLD, MPI_INT, etc) are
not explicitly created in the usual fashion.

Their lifetimes are bounded by MPI_Init and
MPI_Finalize and cannot be freed.

Upshot: simply don’t maintain reference counts for
predefined objects.

Easy to implement in MPICH2; completely removes
contention in the critical path.

Doesn’t help us at all for user-derived. . .

12

An Improvement

Many codes (and benchmarks) don’t use user-derived
objects.

Predefined objects (MPI_COMM_WORLD, MPI_INT, etc) are
not explicitly created in the usual fashion.

Their lifetimes are bounded by MPI_Init and
MPI_Finalize and cannot be freed.

Upshot: simply don’t maintain reference counts for
predefined objects.

Easy to implement in MPICH2; completely removes
contention in the critical path.

Doesn’t help us at all for user-derived. . .

12

One Man’s Trash. . .

Problem: MPI_Comm and MPI_Datatype refcount
contention (possibly others too, MPI_Win)

Communicators/datatypes/etc are usually long(ish) lived.

MPI_Requests are frequently created and destroyed.

Suggests a garbage collection approach to manage
communicators, etc.

13

Definitions

GCMO Garbage Collection Managed Object. These are
long-lived, contended objects: communicators,
datatypes, etc.

Transient Short-lived, rarely contended objects: requests

G` The set of live GCMOs, must not be deallocated

Ge The set of GCMOs eligible for deallocation

T The set of transient objects

14

High Level Approach

Disable reference counting on GCMO objects due to
transient objects. Other refcounts remain!

Add a live/not-live boolean in the header of all GCMOs.

Maintain T , G`, and Ge somehow (we used lists)

At creation, GCMOs are added to G`. Refcount starts at 2
(user ref and garbage collector ref).

When a GCMO’s refcount drops to 1, move it to Ge.

Periodically run a garbage collection cycle (next slide).

15

Garbage Collection Cycle

1. lock the allocator if not already locked

2. Reset: Mark every g ∈ Ge not-live.

3. Mark: For each t ∈ T , mark any referenced GCMOs (eligible
or not) as live.

4. Sweep: For each g ∈ Ge, deallocate if g is still marked
not-live.

5. unlock the allocator if we locked it in step 1

16

Garbage Collection Example

refcount
tv comm

- - MPI_Datatype tv;

- - MPI_Comm comm;

- - MPI_Request req;

- 2 MPI_Comm_dup(MPI_COMM_WORLD, &comm);

2 2 MPI_Type_vector(..., &tv);

2 2 MPI_Type_commit(&tv);

2 2 MPI_Irecv(buf, 1, tv, 0, 1, comm, req);

2 1 MPI_Comm_free(&comm);

1 1 MPI_Type_free(&tv);

1 1 ... arbitrarily long computation ...

1 1 MPI_Wait(&req);

0 0 // something triggers GC cycle

17

Analysis

When |Ge| > 0, collection cycle cost bound, fixed # GCMO
refs per transient object: O(|Ge|+ |T |)
When |Ge| > 0, cycle cost bound, variable # GCMO refs
per transient object: O(|Ge|+ ravg|T |)
|G`| is not present in bound =⇒ GC performance penalty
only for “prematurely” freed GCMOs and outstanding
requests.

18

When to Collect?

MPI_Finalize, obviously

Collection at new GCMO allocation time makes sense.

Flexible here: could be probabilistic, could be a function of
memory pressure, could be a timer.

GCMO creation is not usually expected to be lightning fast,
won’t be in most inner loops.

We already hold the allocator’s lock.

GCMO user-release time is an option, but makes less sense.

19

Benchmark

node0

node1

node2

node3

node4

MPI_THREAD_MULTIPLE

benchmarks and applications are
rare/nonexistent.

We wrote a benchmark based on
the Sequoia Message Rate
Benchmark (SQMR).

Each iteration posts 12
nonblocking sends and 12
nonblocking receives, then calls
MPI_Waitall.

10 warm-up iterations, then time
10,000 iterations, report average
time per message.

All are 0-byte messages.

20

Test Platform

ALCF’s Surveyor Blue Gene/P system.

4 – 850 MHz PowerPC cores

6 bidirectional network links per node, arranged in a 3-D
torus

multicore, but unimpressively so

network-level parallelism is the key here, a serialized network
makes this work pointless

21

Message Rate Results — Absolute

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 1 2 3 4

M
e
s
s
a
g
e
 R

a
te

 (
m

ill
io

n
s
 p

e
r

s
e
c
o
n
d
)

threads

strategy / object-type
naive / built-in

no-predef / built-in
GC / built-in

no-predef / derived
GC / derived

22

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 1 2 3 4

M
e
s
s
a
g
e
 R

a
te

 (
m

ill
io

n
s
 p

e
r

s
e
c
o
n
d
)

threads

strategy / object-type
naive / built-in

no-predef / built-in
GC / built-in

no-predef / derived
GC / derived

0

5

10

15

20

25

30

35

40

 1 2 3 4

L
2
 C

a
c
h
e
 M

is
s
e
s
 P

e
r

T
h
re

a
d
-O

p

threads

strategy / object-type
naive / built-in

no-predef / built-in
GC / built-in

no-predef / derived
GC / derived

Summary

MPI specifies clear semantics for opaque object lifetimes
that map trivially to reference counting.

Reference counting with multithreading is usually expensive
due to cache line contention.

Suppressing refcounts for predefined objects
(MPI_COMM_WORLD) is cheap and safe. Doesn’t help
user-defined objects.

Hybrid refcount+GC can pull the performance bottleneck
out of the critical path.

Hybrid scheme is fairly easy to retrofit into an existing
refcount mechanism.

24

Questions?

Questions?

25

(backup slides)

26

Memory Consistency Implementation Issues

PPC has a relaxed memory consistency model
bad case (relaxed Store-Store ordering):

Example

Thread 0 Thread 1
1 req->comm=C

2

mem_barrier(lwsync)

3 MPI_Comm_free(C)

4 // (--ref)==0, now eligible

5 MPI_Comm_create(C)

6 // run GC cycle, free C

7
8 // use freed req->comm

BAD!SAFE

memory barrier seems unnecessary on x86/x86 64 (only
Store-Load order violated, plus atomics are full barriers)

27

Memory Consistency Implementation Issues

PPC has a relaxed memory consistency model
bad case (relaxed Store-Store ordering):

Example

Thread 0 Thread 1
1 req->comm=C

2

mem_barrier(lwsync)

3 MPI_Comm_free(C)

4 // (--ref)==0, now eligible

5 MPI_Comm_create(C)

6 // run GC cycle, free C

7
8 // use freed req->comm BAD!

SAFE

memory barrier seems unnecessary on x86/x86 64 (only
Store-Load order violated, plus atomics are full barriers)

27

Memory Consistency Implementation Issues

PPC has a relaxed memory consistency model
bad case (relaxed Store-Store ordering):

Example

Thread 0 Thread 1
1 req->comm=C

2 mem_barrier(lwsync)

3 MPI_Comm_free(C)

4 // (--ref)==0, now eligible

5 MPI_Comm_create(C)

6 // run GC cycle, free C

7
8 // use freed req->comm

BAD!

SAFE

memory barrier seems unnecessary on x86/x86 64 (only
Store-Load order violated, plus atomics are full barriers)

27

	MPI Background
	MPI Objects
	MPI & Threads

	Naïve Reference Counting
	Basic Approach
	An Improvement

	Hybrid Garbage Collection
	Algorithm
	Analysis

	Results
	Benchmark and Platform
	The Numbers

	Backup Slides

