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Abstract—With the ever-increasing numbers of cores per node
in high-performance computing systems, a growing number of
applications are using threads to exploit shared memory within
a node and MPI across nodes. This hybrid programming model
needs efficient support for multithreaded MPI communication.
In this paper, we describe the optimization of one aspect of a
multithreaded MPI implementation: concurrent accesses from
multiple threads to various MPI objects, such as communicators,
datatypes, and requests. The semantics of the creation, usage,
and destruction of these objects implies, but does not strictly
require, the use of reference counting to prevent memory leaks
and premature object destruction. We demonstrate how a naı̈ve
multithreaded implementation of MPI object management via
reference counting incurs a significant performance penalty. We
then detail two solutions that we have implemented in MPICH2
to mitigate this problem almost entirely, including one based on
a novel garbage collection scheme. In our performance experi-
ments, this new scheme improved the multithreaded messaging
rate by up to 31% over the naı̈ve reference counting method.

I. INTRODUCTION

Although MPI is the dominant programming model for

large-scale systems, most researchers expect some hybrid

programming model that uses threads within MPI processes to

emerge as a result of the trend towards ever wider multicore

nodes. Initially, this hybrid model may conform to a relatively

simple MPI usage model in which only one thread invokes

MPI functions (i.e., the MPI_THREAD_FUNNELED level of

thread support). However, we anticipate that applications will

eventually invoke MPI functions from several threads con-

currently (i.e., the MPI_THREAD_MULTIPLE level of thread

support). Thus, MPI implementations must evolve to provide

efficient messaging from multiple threads.

Several barriers exist to providing this support. Some bar-

riers involve basic issues for threaded programming such as

ensuring that the code is reentrant and restricting access to

certain low-level routines to one thread at a time. Other

issues arise from MPI semantics. We explore one such issue:

reference counting of MPI opaque objects.

In this paper we review the object lifetime management

requirements imposed on MPI implementations by the MPI

standard and illustrate the typical implementation based on

reference counting. We make several contributions:

• Discussion of the limitations of this naı̈ve solution;

• Design of two solutions, including one based on a novel

garbage collection scheme;

• The implementation of these solutions in MPICH2;

• A simple experimental study to capture the performance

upper bound for any reference counting mechanism

within MPICH2 based on an implementation that per-

forms no reference counting;

• Performance results for our reference counting solutions.

Overall, our results demonstrate that the solutions improve

performance over the naı̈ve implementation by up to 31%

on our test platform. Furthermore, our algorithm is scalable

in the number of threads and objects, whereas the naı̈ve

implementation is fundamentally nonscalable.

The rest of this paper is organized as follows. Section II

discusses the MPI semantics that suggest reference counting.

We then discuss details of MPICH2 relevant to any reference

counting implementation in Section III. We present the naı̈ve

implementation in Section IV and our advanced solutions in

Section V. In Section VI we discuss our performance results.

II. MPI OBJECT SEMANTICS

The MPI standard [1] specifies several object types, in-

cluding MPI_Request, MPI_Datatype, and MPI_Comm.

The user references and manipulates these opaque types only

through handle values and function calls. Each object type has

associated functions that create, manipulate, and free instances

of the objects. For example, an MPI_Datatype can be cre-

ated with MPI_Type_vector, used in a call to MPI_Send,

and scheduled for destruction by MPI_Type_free.

Unless otherwise stated, we use the terms MPI object or

object to imply opaque objects accessed via handles, and

not directly manipulated objects such as MPI_Status. To

minimize confusion with the standard C language function

free and the “cost” definition of the word “free,” we refer

to MPI functions such as MPI_Comm_free as user-release

functions and their invocations as user releases.

Most user releases are straightforward invocations of func-

tions that include the word “free,” although user releases

of MPI_Request objects are more complex. While a call

to MPI_Request_free serves as the user release of a



MPI_Type_vector( ..., &tv );

MPI_Type_commit( &tv );

MPI_Comm_dup( ..., &comm );

MPI_Irecv( buf,1,tv,0,1,comm, &req );

MPI_Comm_free( &comm );

MPI_Type_free( &tv );

... arbitrarily long computation

MPI_Wait( &req, &status );

Fig. 1. Valid Releasing of MPI Objects While They Are Still Needed

persistent request, the completion of other requests also serves

as their user releases. Technically, correct MPI programs

perform user releases of all objects, including through com-

pletions of requests, although many applications choose not

to release objects with lifetimes through the invocations of

MPI_Finalize, similar to programs that do not free all heap

memory prior to exiting.

MPI semantics allows user releases before the lifetime

of the object is completed. For example, users may invoke

MPI_Request_free for a nonblocking send request be-

fore the send is guaranteed to have completed. Similarly,

users can invoke MPI_Comm_free on a communicator and

MPI_Type_free on a datatype before all requests that use

those objects are completed. Thus, MPI semantics imply in-

ternal references for MPI implementations. In particular, each

request typically implies internal references to a communicator

and a datatype.

Figure 1 illustrates a valid MPI program that creates a data-

type and communicator, initiates a receive using MPI_Irecv,

and then performs user releases of the datatype and communi-

cator. In this example, the datatype and communicator must be

retained internally until the MPI_Wait on the request returned

by the MPI_Irecv completes. An MPI implementation must

retain these objects until all internal references are no longer

needed, at which point it should reclaim the resources associ-

ated with the objects.

Failure to reclaim the resources associated with objects

results in an implementation that will use all available memory

prior to the completion of many long running applications.

As described in Section IV, the most obvious solution uses a

reference count mechanism. Each use increments the reference

count, and each user release decrements it. In multithreaded

environments, some mechanism must ensure that the incre-

ments and decrements are atomic.

Performing reference count updates nonatomically leads to

errors. MPICH2 thread tests failed about 50% of the time

with reference counts updated with ++ and --, instead of

with either lockfree equivalents or in a special critical section.

However, our results presented in Section VI demonstrate that

these naı̈ve mechanisms to ensure correct reference counting

significantly reduce performance compared to the single thread

implementation. Thus, we need a solution that correctly and

efficiently manages the object semantics in the presence of

multiple threads. This paper explores such solutions.

III. MPICH2 INTERNALS BACKGROUND

MPICH2 [2] uses a custom memory allocator and integer-

valued object handles to manage opaque MPI objects. The

custom memory allocator provides several advantages, includ-

ing enhanced performance and memory safety. By allocating

objects via direct and indirect blocks, in a fashion similar

to a UNIX file system inode, MPICH2 can assign an index

value to each object. This object storage index is used as one

value in a bit-field tuple of (storage-area, mpi-type, storage-

index) that composes the object’s handle value.1 The mpi-

type field indicates the MPI object type, such as MPI_Comm,

MPI_Datatype or MPI_Request, to which the handle

refers. The storage-area field indicates whether the underlying

object is predefined and possibly stored specially, in a direct

block array or in an array accessible via an indirect block.

In addition to this common object allocation layer used for

all MPI objects, MPICH2 provides another small optimization

above this layer for MPI_Request objects [3]. In general, an

MPI implementation must allocate a request object for each

communication operation such as MPI_Send or MPI_Recv.

Similarly to high-performance multithreaded memory alloca-

tors, MPICH2 uses a thread-local pool of request objects to

minimize object allocation mutex contention at high message

rates. When the pool is empty and an object must be allocated,

the thread acquires the allocation critical section and allocates

a batch of requests to fill the pool. When a particular thread

must free a request object, it returns the request to the thread-

local pool. This approach provides performance benefits by

amortizing the cost of acquiring the mutex over many requests

(typically 128). It also provides improved cache locality for

request objects because it prevents one thread from easily

obtaining another thread’s LIFO allocated request.

IV. NAÏVE MANAGEMENT OF MPI OBJECT LIFETIMES

Naı̈vely, we can manage MPI object lifetimes through

a simple reference counting scheme, well known in many

contexts [4], [5], [6] since at least 1960 [7]. This section

specifically describes the original MPICH2 implementation.

Our discussions with other MPI implementers indicate that

minor variations on this scheme are currently the most com-

monly used approach.

All MPI objects contain an integer reference count field

that is appropriately aligned for atomic access on the current

architecture. MPICH2 initializes this field to 1 when the

object is allocated. At this point, the calling function has the

sole reference to the new object. We subsequently adjust the

reference count as follows:

1) Every time a function or object adds a new reference to

an object, we increment its reference count atomically

via a macro.

2) If a reference changes ownership from one function

or object to another, the reference count remains un-

changed.

1Predefined MPI datatypes such as MPI_INT are handled slightly differ-
ently in order to encode type size as an additional optimization.



3) Upon a user release or completion of an internal refer-

ence, we use an atomic macro to decrement the object’s

reference count and test whether it is now zero, in which

case we reclaim the resources associated with the object.

The initial reference (e.g., resulting from routines like

MPI_Comm_create) is actually the application’s reference.

Any other code in the object creation path that must retain a

reference to the object after the application may have freed

the object must add a reference of its own.

Let us examine this approach in the context of the code from

Figure 1. After MPI_Type_vector and MPI_Comm_dup,

the reference counts of both the datatype and the commu-

nicator are 1 for the sole references held by the user. The

MPI_Irecv call creates the MPI_Request with a reference

count of 1 and increments the reference counts of the datatype

and communicator to 2. The additional references are internal

references held by the request. The subsequent user release op-

erations reduce both reference counts to 1. All reference counts

remain unchanged during the application’s computation phase.

The MPI_Wait call releases the remaining reference on each

request, datatype, and communicator. As each reference count

drops to zero, the corresponding object is deallocated.

We can provide atomicity of reference count updates via a

single global mutex, a mutex used for all reference counts, a

mutex for reference counts by object type, a mutex for each

specific object, or hardware-dependent atomic instructions.

We usually prefer hardware-dependent atomic instructions,

when available, because they provide fine granularity while

consuming little or no additional space in the object. Most

systems implement their system mutexes via these atomic in-

structions; and, thus, using those mutexes introduces additional

overhead. One notable exception to this case is the dedicated

lock-box hardware provided on IBM’s Blue Gene/P, which

provides comparable mutex performance without the usual

lwarx/stwcx atomic instructions.

This approach provides several benefits. First, it is straight-

forward: a programmer must follow rules that are easy to re-

member and to apply to new code. Second, it does not require

special language support or a runtime system to implement

it. Virtually all MPI implementations are written in the C

language, which does not perform garbage collection. Software

does exist [8], [9] to add garbage collection support in C, but

these packages often incur unacceptable space performance,

experience “embarrassing pauses,” and consume limited thread

resources. These characteristics are generally undesirable but

are unacceptable in high-performance computing contexts.

Third, the scheme works with a mixture of pointers and integer

handles, such as MPICH2 uses. Fourth, it always reclaims

memory as soon as possible; objects do not linger beyond

their final usage.

This approach has two minor downsides. First, it requires

more programmer effort and is more error prone than true

garbage collection such as provided by the Java programming

language and runtime environment [10]. Second, it provides no

protection against object leaks caused by circular references,

although they do not occur in MPICH2 in practice.

However, the naı̈ve reference counting approach incurs a

significant performance cost. MPI_Request objects typically

hold references to MPI_Comm and MPI_Datatype objects.

These request objects are transient and result in frequent

reference count updates to communicator and datatype objects.

If multiple threads make communication calls at high fre-

quency using shared communicators and types, the contention

for the shared object reference counts can greatly degrade

performance. Worse, this pattern typically scales poorly as

the number of threads accessing the same shared objects

increases. Depending on a number of architectural factors such

as the cache coherency protocol, the exact set and fairness of

atomic assembly instructions available, and thread scheduling

policies, performance can fall off rapidly as thread counts

increase.

V. TWO IMPROVED SOLUTIONS

To mitigate the aforementioned performance problems with

the naı̈ve solution, we developed two superior solutions.

A. Suppression of Predefined Object Reference Counts

We derive our first improved reference counting solution

from two observations. First, predefined MPI objects such

as MPI_COMM_WORLD are neither explicitly allocated nor

deallocated by MPI programs. The lifetime of these objects

always spans from the call to MPI_Init to the call to

MPI_Finalize. Second, many MPI programs use only

predefined communicators and datatypes.

Thus, a simple solution for a broad set of benchmarks

and applications is to suppress reference counting completely

on predefined communicator and datatype objects (such as

MPI_COMM_WORLD and MPI_INT). MPICH2 request objects

reference only these two object types, although we can easily

apply this technique to other classes of objects. Reference

counting still occurs for other object types as in the naı̈ve

solution and for all user-derived objects.

We easily implemented this suppressed reference counting

in MPICH2. Because the handle value encodes both the mpi-

type and storage-area, we can test for predefined MPI_Comm

and MPI_Datatype objects with just a few inexpensive

integer shifting and masking operations. Other MPI imple-

mentations that use pointers as handle values require only a

dereference to access an is_predefined Boolean field in

the object.

B. Reference Counting with Garbage Collection Hybridization

A more comprehensive solution to the MPI object life cycle

problem involves a limited form of garbage collection for

heavily contended object classes. We refer to these objects

with potential for heavy contention as garbage collection-

managed objects (GCMOs). Under this scheme, when ref-

erences to GCMOs are acquired by a transient object, such

as an MPI_Request, a pointer to the GCMO is stored but

the reference count in the referent object is not manipulated.

When the transient object is deallocated, the pointer field

to the referent GCMO is cleared. GCMOs still follow the



naı̈ve reference counting rules outlined in Section IV for

nontransient references, such as when one datatype is derived

from another datatype, with one key exception: reference

counts for freshly allocated objects start with a value of 2

instead of 1. The extra reference is logically held by the

garbage collector.

Example: We explain the behavior of our garbage collection

scheme with the help of an example: its effect on the code in

Figure 1. After MPI_Type_vector and MPI_Comm_dup,

the reference count of both tv and comm is 2. One reference

is held by the user, and the other reference is held internally by

the garbage collector. The MPI_Irecv call does not alter the

reference count of either object, although it does create the

MPI_Request object, req. This request is still reference

counted in the naı̈ve fashion, starting with one user reference

and one or more internal references. During the user releases

on the next two lines, the reference counts for comm and then

tv both fall to 1.

At this point the application enters an arbitrarily long com-

putation phase. Both comm and tv remain allocated during

this period, a necessary behavior because of the pending non-

blocking request. The MPI_Wait call releases both the user

reference and all internal references to the request object,

deallocating the request prior to the function’s return. The

communicator and datatype, however, remain live with a

reference count of 1 that is held exclusively by the garbage

collector.

At some later point in the program’s execution (such as

in another datatype or communicator creation function, or

in MPI_Finalize), the MPI library will initiate a garbage

collection cycle. Upon examining the set of outstanding re-

quests and eligible datatypes/communicators, the collector will

determine that tv and comm are both safe to reclaim and will

deallocate them.

The following algorithm describes our approach more for-

mally.

Algorithm: Let T be the set of all allocated transient objects

that will serve as our root set. At allocation, GCMOs are

placed into the live set of GCMOs, Gℓ. When the reference

count of a GCMO, g1 ∈ Gℓ, falls to 1, only the garbage

collector and some (possibly empty) set of transient objects,

T1 ⊆ T , hold references to g1. At this point, g1 is moved from

Gℓ to Ge, the set of GCMOs that are potentially eligible for

reclamation.

The garbage collection algorithm is based on the traditional

mark-and-sweep approach [11] and is detailed in Figure 2.

We chose mark-and-sweep because it is simple to understand

and to implement; in particular it does not suffer from the

incompatibilities with the C language and high-performance

computing environments that are typical of copying (some-

times called scavenging) collectors [8].

Several conditions can trigger the start of a garbage col-

lection cycle. The application’s call to MPI_Finalize

is one such condition. Other conditions are a matter of

policy decision; however, object creation functions such as

MPI_Comm_create and MPI_Type_vector make ex-

let Ge ← the set of GCMOs referenced solely by the

collector;

let T ← the set of all allocated transient objects (e.g.

MPI_Requests);

enter ALLOCATION critical section;

/* assumes |Ge| available in O(1) time */

if |Ge| < 0 then

/* no GCMOs can be freed by this

cycle */

return;

end

/* initially assume all GCMOs in Ge are

not live */

for g in Ge do

mark_not_live(g);

end

/* mark phase - scan transient objects

and mark GCMOs */

for t in T do

/* t may hold multiple refs, e.g.

MPI_Comm/Datatype/Win */

for g in t do

mark_live(g);

end

end

/* sweep phase - GCMOs that are not

marked live can be reclaimed */

for g in Ge do

if ¬ is_live(g) then

deallocate(g);

end

end

exit ALLOCATION critical section;

Fig. 2. The Garbage Collection Algorithm

cellent choices due to the existing required interaction with

the object allocator. This also provides such functions the

opportunity to reclaim memory if an insufficient amount is

available to allocate new objects due to objects in Ge that

would be successfully reclaimed by a garbage collection cycle.

A thread initiates a garbage collection cycle by acquiring the

mutex that protects object allocation. This approach prevents

interference between garbage collection and object allocation.

It also enables scanning of any relevant internal data structures

used in the object allocator.

Discussion: This hybrid approach of reference counting

plus garbage collection appears to be a nearly optimal solution

to the MPI object lifetime problem. It eliminates virtually

all of the contention present in the naı̈ve approach, fully

and correctly implements the semantics of MPI objects, and

is relatively simple to implement in an existing reference

counted code base. The only added cost is a certain amount of

additional memory that is technically eligible to be returned



to the object allocation pool but is instead kept live by the

garbage collector. This amount will vary significantly with

application behavior, implementation decisions, and tunable

collection policy parameter values.

Unlike many garbage collection schemes, this approach

requires no additional threads or other asynchronous mech-

anisms such as signal handlers. This feature is particularly

important in current HPC environments where thread counts

may be constrained and context switches can be extremely

disruptive to application performance [12].

In our implementation the set Ge is maintained as a singly

linked list of objects, but this data structure choice is not

specifically required by the algorithm. Similarly, T may be

implicitly maintained by directly inspecting memory pools or

more explicitly via a linked list data structure.2

Assuming that both T and Ge are maintained via O(n)
traversal data structures, such as linked lists, then the cost of

a garbage collection cycle is bounded by O(|Ge| + |T |). If
the number of GCMOs referenced by each t ∈ T is not fixed,

then the upper bound becomes O(|Ge|+ ravg|T |), where ravg
is the average number of references held in each transient

object. Note that Gℓ is not present in either of these bounds.

The algorithm is sensitive only to the number of outstanding

transient objects and the number of GCMOs eligible for

reclamation. Objects kept live by nontransient references have

no impact on cycle time.

Clearly, if there are no eligible GCMOs (|Ge| = 0), then
a cycle cannot free any objects. If |Ge| can be evaluated in

O(1) time, such as when tracked by a simple counter, then the

marking phase may be easily skipped and the bound becomes

piecewise:
{

O(|Ge|+ |T |), if |Ge| > 0
O(1), if |Ge| = 0

The question of when to initiate garbage collection cycles

involves another implementation decision. MPI_Finalize is

a necessary time to collect garbage objects, as it is guaranteed

to be the last call to the MPI library (modulo calls like

MPI_Finalized) in a valid MPI program. All commu-

nication is guaranteed to be complete by the end of this

routine, so all MPI objects may be reclaimed at this point.

In our implementation, MPI object creation functions such as

MPI_Comm_create also trigger garbage collection cycles

when |Ge| grows larger than some threshold. We choose

this threshold statically, but could easily calculate a dynamic

threshold instead. Another possible collection point is the cor-

responding user-release function such as MPI_Comm_free.

The primary advantage of collection at this point is to mini-

mize |Ge|; however, this reduces the number of user-release

operations over which the collection cycle cost is amortized.

We did not specifically experiment with this collection point.

2Implementation note: one must ensure that ∀t ∈ T , references to GCMOs
stored in t must be cleared upon allocation or deallocation when objects are
recycled. Otherwise leaks may occur because of a false reference. If objects
are not directly recycled, such as from malloc, then the GCMO reference
fields must be reset upon allocation to ensure correctness.

Implementations must maintain T (and the value of |T | if
used to make GC policy decisions) in a manner that does not

incur overhead, similar to the reference counting overhead we

are working to avoid. For example, keeping track of |T | by
atomically incrementing or decrementing a shared counter on

every modification of T would incur a severe performance

penalty. As mentioned in Section III, MPICH2 currently uses

a thread-local storage optimization [3] to manage request

allocation. This optimization eliminates virtually all contention

from request allocation.

VI. PERFORMANCE EXPERIMENTS

In this section, we first review the current state of mul-

tithreaded MPI benchmarking and explain our “Neighbor

Message Rate Benchmark” that we use in our evaluation. We

then present performance results on an IBM Blue Gene/P

system. These results demonstrate that the our hybrid refer-

ence counting garbage collection approach attains substantial

performance across the range of thread counts available on

this system.

A. Benchmark Selection

The average number of cores per node in HPC systems

is on the rise, providing greater potential for multithreading

than ever before. Despite MPI’s dominance as a program-

ming model, however, few application benchmarks or real

applications utilize the MPI_THREAD_MULTIPLE level of

support. The reason is primarily the causality dilemma of

high performance MPI_THREAD_MULTIPLE support. Ap-

plications do not utilize MPI_THREAD_MULTIPLE because

MPI implementations do not often support it well (in terms of

correctness and performance). However, MPI implementations

do not support it well not only because implementing such

support is difficult but also because applications do not use

it. Hence, no canonical benchmark or application currently is

suitable for examining the impact of our work. The NAS Paral-

lel Benchmarks (NPB) [13] are commonly used to demonstrate

application impact for message-passing programs; however,

they are not multithreaded. The NAS Parallel Benchmarks

Multi-Zone (NPB-MZ) [14] variants do use MPI+threads (via

OpenMP), but they only use the MPI_THREAD_FUNNELED

level of thread safety.

Several microbenchmarks are available to quantify MPI

multithreaded performance at the MPI_THREAD_MULTIPLE

level. The OSU Micro-Benchmarks (OMB) [15] include a

multithreaded ping-pong benchmark, osu latency mt. Its de-

scription is as follows:

The multi-threaded latency test performs a ping-

pong test with a single sender process and multiple

threads on the receiving process. In this test the

sending process sends a message of a given data size

to the receiver and waits for a reply from the receiver

process. The receiving process has a variable number

of receiving threads (set by default to 2), where

each thread calls MPI_Recv and upon receiving a

message sends back a response of equal size. Many
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Fig. 3. Neighbor Message Rate Benchmark Communication Pattern

iterations are performed and the average one-way

latency numbers are reported.

While a valid measurement that occasionally may provide

interesting data, this test primarily measures receive-side per-

formance, including the degree of overall parallelism available

in the entire networking stack. If a given platform does not

provide parallelism between two processes at the operating

system or network level, then overhead reductions in the MPI

stack will be negligible when measured with this benchmark.

Obtaining overall and network-level parallelism on a variety

of platforms is beyond the scope of this paper.

None of these benchmark options satisfactorily captures

the performance impact of the MPI object lifetime problem.

Therefore we derive our own benchmark based on message

rate measurements to quantify the impact of our optimizations.

B. The Neighbor Message Rate Benchmark

We posit that overall high-performance support for

MPI_THREAD_MULTIPLE will be achieved by eliminating

the numerous loosely related or unrelated implementation

problems imposed by the intersection of the MPI Standard and

architectural concerns. Many of these are still open problems,

such as a providing a high-performance multithreaded receive

queue implementation. The MPI object lifetime problem dis-

cussed in this paper is one such problem for which we provide

a solution. Any one of these problems has the potential to

completely serialize MPI_THREAD_MULTIPLE performance,

hiding the impact of solutions to other problems.

To this end we present a minor variation on our threaded

message rate benchmark [3] that sends and receives messages

bidirectionally in order to provide the most parallel and effi-

cient baseline possible. This benchmark measures the aggre-

gate message rate for N threads in a single MPI process, each

sending to and receiving from a corresponding peer process

on a separate node. That is, if N threads are communicating
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on node0, then there will be N other nodes: node1 through

nodeN. This communication pattern is illustrated in Figure 3.

On our experimental platform, an IBM Blue Gene/P sys-

tem, the baseline threaded message rate performance is best

when access to network hardware is not serialized. The most

straightforward way to achieve this situation is for each thread

to communicate with a separate neighbor node. We dub this the

“Neighbor Message Rate Benchmark.” For the Blue Gene/P

architecture, N is limited to 4 threads per node.

Each iteration of the test involves each thread posting 12

nonblocking receives and 12 nonblocking sends from/to the

peer thread followed by a call to MPI_Waitall to complete

the requests. Each thread executes 10 warm-up iterations

before timing 10,000 more iterations. All messages sent and

received in this paper are zero bytes long in order to minimize

the impact of data transfer times on the measurements. The

benchmark reports the total number of messages sent divided

by the elapsed time in seconds. This value is not intended to

measure application-like performance; it is primarily useful

for differential performance comparisons between different

implementation techniques on the same platform and avoids

some of the well-knownmicrobenchmarking pitfalls [16], [17].

C. Blue Gene/P Performance Evaluation

Figure 4 shows the message rates achieved on an IBM

Blue Gene/P system at Argonne National Laboratory when

using the various strategies described in Sections IV and V.

Garbage collection clearly outperforms the other strategies by

a substantial margin, sending and receiving approximately 1.6

million messages per second with four threads. All strategies

fail to achieve optimal speedup because developing an MPI

implementation that scales linearly with the number of threads

is still an open problem. The absolute numbers do not matter as

much as the performance relative to the naı̈ve approach, shown

in Figure 5. With four threads the garbage collection scheme

outperforms the naı̈ve approach by approximately 31%.

All strategies perform at least slightly worse when derived

objects (from MPI_Comm_dup and MPI_Type_vector)

are used. The MPI implementation must perform a small
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amount of additional work to use and maintain user-derived

objects when compared with predefined objects such as

MPI_INT or MPI_COMM_WORLD. We note, however, that

the performance of our garbage collection method when user-

derived objects are used is nearly indistinguishable from the

performance it attains with predefined objects.

Figure 5 clearly illustrates the increasing performance gap

between the naı̈ve approach and our improved techniques. In

the case of garbage collection versus the naı̈ve approach, this

gap grows from 10% at one thread to 31% at four threads.

The lack of scalability in the naı̈ve approach is primarily a

consequence of the increasing cache coherency contention,

demonstrated in Figure 6. This figure plots the average number

of L2 cache misses per communication operation (MPI_Send

or MPI_Recv) per thread when running the message rate

benchmark. With four threads the L2 cache miss counts for

the naı̈ve approach are approximately 1.5 times greater than

for the garbage collection case.

VII. RELATED WORK

We previously considered MPI implementation thread safety

requirements [18], briefly touching on MPI reference counting

semantics. We also proposed a small suite of benchmarks

for evaluating overall threaded MPI performance [19]. While

those benchmarks provide useful ways to quantify overall

threaded MPI implementation performance, they do not pro-

vide a “torture test” for threaded MPI performance as our

neighbor message rate benchmark does. Many other experi-

mental multithreaded MPI implementations exist [20], [21],

[22], [23], [24].

Valois introduced lockfree reference counting (LFRC) [4]

in order to deal with the ABA problem3 in his lockfree data

structure algorithms. While we are not specifically dealing

with the ABA problem here, LFRC provides the basis for the

naı̈ve implementation discussed in Section IV. Detlefs et al.

further focused on LFRC as a memory reclamation technique

for lockfree data structures [6].

Hart et al. provide an excellent comparison [25] of the

LFRC, hazard-pointer-based reclamation, epoch-based recla-

mation, and quiescent-state-based reclamation memory recla-

mation schemes. Modulo LFRC, these approaches are not

directly comparable with our techniques because they deal pri-

marily with lockfree data structure manipulations, especially

for read-mostly workloads in an operating system context.

However, we might be able to use one or more of these

techniques in concert with our scheme and known concurrent

garbage collection algorithms [26] in order to provide a

lockfree or nearly lockfree version of the algorithm from

Figure 2.

Treumann [27] recently proposed adding a facility to the

MPI standard that would allow users to assert certain program

behavior for an MPI implementation. Such a mechanism could

conceivably be used by the user to promise the implementation

that premature user releases (such as shown in Figure 1)

would not occur in a given program. Such a facility might

permit implementations to deallocate MPI objects immediately

at user release time without maintaining reference counts or

performing garbage collection. However, users would have

to update application code to use the new facility, which is

clearly not preferable to the seamlessly available performance

improvements discussed in Section V.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented the first in-depth discussion and analysis

of MPI object lifetime management issues. The naı̈ve solution

to this problem was then detailed along with two superior

solutions. One improved solution is a novel hybrid of the

naı̈ve reference counting solution and garbage collection. This

garbage collector achieves nearly optimal performance by

entirely removing operations from the messaging performance

critical path. We presented several experiments that illustrate

the performance benefits of our algorithm. In particular, a mes-

sage rate benchmark demonstrated that our approach improved

3The ABA problem occurs when using the compare-and-swap (CAS)
atomic operation to manipulate pointers. If a pointer changes values from
A to B and then back to A again between the time that pointer is read and
then manipulated with CAS, the CAS will succeed, often corrupting the data
structure. A particularly nasty variant occurs when objects are recycled: A is
supplanted by B, A’s referent object is freed and then reallocated immediately
by another thread, and then the “new” A object supplants B.



performance of support for MPI_THREAD_MULTIPLE by

31% with four threads.

Treumann’s assertions [27] deserve study as another possi-

ble solution to the MPI object lifetime problem. We intend to

examine them in the future.

Our approach is susceptible to deadlock in the presence

of thread failures or cancellations. In the future we intend to

develop a lockfree or nearly lockfree version of our approach,

possibly by using one or more of the techniques described by

Hart et al. [25].

We also intend to study policy decisions and implemen-

tation issues in the garbage collection algorithm presented

in Section V. Data structure choices and threshold selection

both have the potential to affect garbage collection cycle times

substantially. Moreover, we intend to port the implementation

of our algorithm to other platforms in order to measure the

performance impact of different architectural concerns such

as cache coherency protocol, memory hierarchy design, and

number of cores.
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