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SUMMARY

Achieving high performance for distributed I/O on a wide-area network continues to be an elusive holy
grail. Despite enhancements in network hardware as well as software stacks, achieving high-performance
remains a challenge. In this paper, our worldwide team took a completely new and non-traditional
approach to distributed I/O, called ParaMEDIC: Parallel Metadata Environment for Distributed I/O and
Computing, by utilizing application-specific transformation of data to orders of magnitude smaller metadata
before performing the actual I/O. Specifically, this paper details our experiences in deploying a large-
scale system to facilitate the discovery of missing genes and constructing a genome similarity tree by
encapsulating the mpiBLAST sequence-search algorithm into ParaMEDIC. The overall project involved
nine computational sites spread across the U.S. and generated more than a petabyte of data that was
‘teleported’ to a large-scale facility in Tokyo for storage. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the rapid growth in the scale and complexity of scientific applications over the past few decades,
the requirements for compute, memory, and storage resources are now greater than ever before.
With the onset of petascale and exascale computing, issues related to managing such grand-scale
resources, particularly related to data I/O, need to be carefully studied. For example, applica-
tions including genomic sequence search and the emergent field of metagenomics, large-scale data
mining, data visual analytics, and communication profiling on ultrascale parallel computing plat-
forms generate massive amounts of data that needs to be managed for later processing or archival.
Adding to the complexity of this problem is the issue of resource locality. While system sizes

have certainly grown over the past few years, most researchers do not have local access to systems of
the scale required by their applications. Therefore, researchers access such large systems remotely
to perform the required computations and move the generated data to their local systems after the
computation is complete. Similarly, many applications tend to require multiple resources simul-
taneously for efficient execution. For example, applications that perform large computations and
generate massive amounts of output data are becoming increasingly common. While several large-
scale supercomputers provide either the required compute power or the storage resources, very few
provide both. Thus, data generated at one site often has to be moved to a different site for storage
and/or analysis.
In order to alleviate the issues related to moving such massive data across sites, considerable

monetary and intellectual investments have been put into high-speed distributed network connec-
tivity [1–3]. However, the utility of these investments is limited in the light of three primary
observations: (1) such infrastructure is scarce and does not provide end-to-end connectivity to a
very high percentage of the scientific community, (2) the amount of data generated by many appli-
cations is so large that even at 100% network efficiency, the I/O time for these applications can
significantly dominate their overall execution time, and (3) based on recent trends and published
results, existing distributed I/O mechanisms have not been able to achieve a very high network
utilization for ‘real data’ on high-speed distributed networks, particularly for single-stream data
transfers [4,5].
To resolve such issues on a global scale, we proposed a new, non-traditional approach for

distributed I/O known as ParaMEDIC (Parallel Metadata Environment for Distributed I/O and
Computing) [6–8]. ParaMEDIC uses application-specific semantic information to process the data
generated by treating it as a collection of high-level abstract objects, rather than as a generic byte-
stream. It uses such information to transform the data into orders of magnitude smaller metadata
before transporting it over the distributed environment and regenerating it at the target site. All data
transformation, movement, and regeneration are done while the application is executing, giving the
illusion of an ultrafast teleportation device for large-scale data over distributed environments.
At a high level, ParaMEDIC is similar to standard compression algorithms. However, the term

‘compression’ typically has the connotation that the data is processed as a generic byte-stream.
As ParaMEDIC uses a more abstract application-specific representation of the data to achieve a
much larger reduction in the data size, we use the terminology of ‘metadata transformation’ in
this case.
Because ParaMEDIC utilizes application semantics to generate metadata, it loses some porta-

bility compared to traditional byte-stream-based distributed I/O. For example, an instance of
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ParaMEDIC’s metadata transformation in the context of the mpiBLAST sequence search applica-
tion is described in Section 3.2. By giving up some portability, however, ParaMEDIC can potentially
attain tremendous savings in the amount of actual distributed I/O performed, consequently resulting
in substantial performance gains. Further, through the use of a generic framework with an application
plug-in model, different applications can use the overall framework in an easy and flexible manner.
In this paper, we demonstrate how we used ParaMEDIC to tackle two large-scale computational

biology problems—discovering missing genes and adding structure to genetic sequence databases—
on a worldwide supercomputer [9]. The overall worldwide supercomputer comprised nine different
supercomputers distributed at seven sites across the U.S. and one large-scale storage facility located
in Japan. The overall experiment consisted of sequence searching the entire microbial genome
database against itself, generating approximately a petabyte of data that was transported to Tokyo
for storage. We present several insights gained from this large-scale run, which will be valuable to
other researchers performing such large, global-scale distributed computation and I/O.

2. LARGE-SCALE COMPUTATIONAL BIOLOGY: A PEEK AT COMPUTE AND
STORAGE REQUIREMENTS

In this section we discuss different aspects of computational biology with a focus on the compute
and storage requirements of large-scale applications in this domain.

2.1. Sequence searching

With the advent of rapid DNA sequencing, the amount of genetic sequence data available to
researchers has increased exponentially [10]. The GenBank database, a comprehensive database that
contains genetic sequence data for more than 2 60 000 named organisms, has exhibited exponential
growth since its inception over 25 years ago [11]. This information is available for researchers to
search new sequences against and infer homologous relationships between sequences or organisms.
This helps a wide range of projects, from assembling the Tree of Life [12] to pathogen detection [13]
and metagenomics [14].
Unfortunately, the exponential growth of sequence databases necessitates faster search algorithms

to sustain reasonable search times. The Basic Local Alignment Search Tool (BLAST), the de facto
standard for sequence searching, uses heuristics to prune the search space and decrease search
time with an accepted loss in accuracy [15,16]. mpiBLAST parallelizes BLAST using several
techniques including database fragmentation, query segmentation [17], parallel input–output [18],
and advanced scheduling [19]. As shown in Figure 1, mpiBLAST uses a master–worker model and
performs a scatter–search–gather–output execution flow. During the scatter, the master splits the
database and query into multiple pieces and distributes them among worker nodes. Each worker
then searches the query segment against the database fragment that it was assigned. The results
are gathered by the master, formatted, and output to the user. Depending on the size of the query
and that of the database, such output generated can be large. For example, as shown in Table I,
an all-to-all search of the nucleotide database can generate as much as 30 TB of data. Thus, for
environments with limited I/O capabilities, such as distributed systems, the output step can cause
significant overheads.
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Figure 1. High-level algorithm of mpiBLAST.

Table I. Estimated output of an all-to-all NT search.

Query size (KB) Number of queries Estimated output (GB)

0–5 3305170 1139
5–50 87506 593
50–150 25960 23 555
150–200 26524 3995
>200 9840 Not run
Total 3455000 >29282

2.2. Discovering missing genes

Genome annotation is the process of associating information with a genomic sequence. Part of
this process includes determining (by computational analysis) the location and structure of protein-
encoding and RNA-encoding genes, also known as making gene calls. It is important to be as
accurate and as sensitive as possible in making gene calls: avoiding false positives and missing
real genes. Gene prediction in prokaryotes (bacteria and archaea) typically involves evaluating the
coding potential of genomic segments that are delimited by conserved nucleotide motifs. The most
widely used gene-finding programs [20,21] build a sequence model based on statistical properties
of genes known to be (very likely) real genes in a given genome. This model is then used to
evaluate the likelihood that an individual segment codes for a gene; using this method, some genes
with anomalous composition are almost always missed. Another popular method for locating genes
is to compare genomic segments with a database of gene sequences found in similar organisms.
If the sequence is conserved, the segment being evaluated is likely to be a coding gene (this is
the ‘similarity method’). Genes that do not fit a given genomic pattern and do not have similar
sequences in current annotation databases may be systemically missed.
One way to detect missed genes is to use the similarity method and compare raw genomes against

each other, as opposed to comparing a raw genome to a database of known genes [22]. If gene a
in genome A and gene b in genome B have been missed and a is similar to b, then this method
will find both. However, this involves performing an all-to-all comparison of the entire database
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against itself (in our case study, the entire microbial genome database against itself). This task is
heavily compute and data intensive, requiring thousands of compute processors and generating on
the order of a petabyte of output data that needs to be stored for processing.

2.3. Adding structure to genetic sequence databases

One of the major issues with sequence search is the structure of the sequence database itself.
Currently, these databases are unstructured and stored as a flat file, and each new sequence that is
discovered is simply appended to the end of the file. Without more intelligent structuring, a query
sequence has to be compared to every sequence in the database, forcing the best case to take just
as long as the worst case. By organizing and providing structure to the database, searches can be
performed more efficiently by discarding irrelevant portions entirely.
One way to structure the sequence database is to create a sequence similarity tree where ‘similar’

sequences are closer together in the tree than dissimilar sequences. The connections in the tree are
created by determining how ‘similar’ the sequences are to each other through sequence searches.
To create every connection, however, the entire database has to be searched against itself, resulting
in an output size of N 2 values (where N is the number of sequences in the database).

3. OVERVIEW OF PARAMEDIC-ENHANCED MPIBLAST

In our previous work [7,8], we provided a detailed description of ParaMEDIC. Here we present a
brief summary of that work.

3.1. The ParaMEDIC framework

ParaMEDIC provides a framework for decoupling computation and I/O in applications relying
on large quantities of both. Specifically, it does not hinder application computation. As the output
data is generated, however, the framework differs from traditional distributed I/O in that it uses
application-semantic information to process the data generated by treating it as a collection of
high-level application-specific objects rather than as a generic byte-stream. It uses such information
to transform the data into orders of magnitude smaller metadata before transporting it over the
distributed environment and regenerating the original data at the target site.
As shown in Figure 2, ParaMEDIC provides several capabilities, including support for data

encryption and integrity as well as data transfer in distributed environments (either directly via
Transmission Control Protocol/Internet Protocol (TCP/IP) communication or through global file-
systems). However, the primary semantics-based metadata creation is done by the application plug-
ins. Most application plug-ins are specific to each application and thus rely on knowledge of appli-
cation semantics. These plug-ins provide two functionalities: (1) processing output data generated
by the application to create metadata and (2) converting metadata back to the final output. Together
with application-specific plug-ins, ParaMEDIC also provides application-independent components,
such as data compression, data integrity, and data encryption. These can be used in conjunction
with the application-specific plug-ins or independently.
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Figure 2. ParaMEDIC architecture.

Trading Computation with I/O: The amount of computation required in ParaMEDIC is higher
than what is required by the original application. After the output is generated by the application
processes, it has to be further processed to generate the metadata, sent to the storage site, and
processed yet again to regenerate the final output. However, the I/O cost achieved can potentially
be significantly reduced by using this framework. In other words, ParaMEDIC trades (a small
amount of) additional computation for (potentially large) reduction in I/O cost. With respect to the
additional computational cost incurred, ParaMEDIC is quite generic with respect to the metadata
processing required by the different processes. For many applications, it is possible to tune the
amount of post-processing performed on the output data, with the trend being, the more the post-
processing computation, the better the reduction in the metadata size. That is, an application plug-in
can perform more processing of the output data to reduce the I/O cost.

3.2. Integration with mpiBLAST

In a cluster environment, most of the mpiBLAST execution time is spent on the search itself, since
the BLAST string-matching algorithm is computationally intensive. In comparison, the cost of
formatting and writing the results is minimal, especially when many advanced clusters are config-
ured with high-performance parallel file-systems. In a distributed environment, however, the output
typically needs to be written over a wide-area network to a remote file-system. Hence, the cost of
writing the results can easily dominate the execution profile of mpiBLAST and become a severe
performance bottleneck. By replacing the traditional distributed I/O framework with ParaMEDIC
(as shown at the top of Figure 3), we can provide a large reduction in the amount of data commu-
nication performed. For example, as we will see in Section 5, an mpiBLAST-specific instance of
ParaMEDIC reduces the volume of data written across a wide-area network by more than 2 orders
of magnitude.
Figure 3 depicts how mpiBLAST is integrated with ParaMEDIC. First, on the compute site

(the left cloud in Figure 3), once the output is generated by mpiBLAST, the mpiBLAST application
plug-in for ParaMEDIC processes this output to generate orders of magnitude lesser metadata.
Specifically, the output of mpiBLAST consists of alignment information and scores corresponding
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Figure 3. ParaMEDIC and mpiBLAST integration.

to the top matches it found for each sequence in the entire database. Thus, while the search time
largely depends on the size of the database, once the search is complete, the output only depends
on how closely the input query sequence matches the top matching sequences in the database.
Based on this observation, the metadata basically contains information identifying the top matching
sequences in the database, and not the other alignment or score information.
ParaMEDIC transfers this metadata to the storage site. At the storage site, a temporary (and

much smaller) database that contains only the top matching sequences is created by extracting the
corresponding sequence data from a local database replica. ParaMEDIC then reruns mpiBLAST at
the storage site by taking as input the same query sequence and the temporary database to generate
and write the complete output (including the alignments and scores) to the storage system. The
overhead in rerunning mpiBLAST at the storage site is small, since the temporary database that
is searched is substantially smaller, with only about 250 sequences in it, compared to the several
millions of sequences in large DNA databases.

4. PARAMEDIC ON A WORLDWIDE SUPERCOMPUTER

To accommodate the compute and storage requirements of the computational biology applications
discussed in Section 2, we utilize a worldwide supercomputer that, in aggregate, provides the
required compute power and storage resources. The worldwide supercomputer comprises nine high-
performance computing systems at seven different sites across the U.S. and a large-scale storage
facility in Japan, to create a single high-performance distributed computing system. The specifics of
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each individual system are in Table II. In the following sections, we address the issues with working
on such a large-scale distributed system that are not immediately apparent on smaller-scale systems.

4.1. Dealing with dynamic availability of compute clients and other faults

Several systems in our worldwide supercomputer operate in batch mode. Users submit jobs to
system queues and are scheduled to execute on the available resources. That is, compute resources
are not available in a dedicated manner but become available when our job is scheduled for execution
and become unavailable when our job terminates.
To handle this issue, we segment the overall work to be performed into small tasks that can

be performed independently (i.e. sequentially, concurrently, or out of order). The management of
tasks is done by a centralized server running on a dedicated resource. As each job is executed, it
contacts this server for the next task, computes the task, transforms the output to metadata, and
transmits the metadata to the storage site. This approach has two benefits. First, the clients are
completely stateless. That is, if a client job terminates before it has finished its computation or
metadata transmission to the storage site, the servers handle this failure by reassigning the task to
a different compute client. The second advantage is if the metadata corresponds to a task that is
either not received completely or is corrupted, the server just discards the data and reassigns the
task to another compute node. Thus, I/O failures are never catastrophic.

4.2. Architectural heterogeneity

One of the key impediments to large-scale distributed systems is system heterogeneity. Many
distributed systems, such as the one used in this paper, cannot obtain a homogeneous environment in
either hardware or software, and efficient use of the system requires overcoming this obstacle. The
worldwide supercomputer used in this paper contains six different processor architectures (IBM
PowerPC 970FX, IBM PowerPC 440, AMD Opteron, SiCortex MIPS64, Intel Xeon, and Intel
Itanium2), five different network interconnects (Gigabit Ethernet, 10-Gigabit Ethernet, InfiniBand,
IBM proprietary 3D toroidal network, and SiCortex Kautz graph), and eight variations of the Linux
operating system.
In order to deal with this issue, all data being transferred over the network has to be converted to

an architecture-independent format. As the total amount of data that is generated and must be moved
to the storage site is enormous, this can have a significant impact on traditional distributed I/O.
However, with ParaMEDIC, only metadata generated by processing the actual output is transferred
across the wire. As this metadata is orders of magnitude smaller as compared to the actual output,
such byte manipulation to deal with heterogeneity has minimal impact on the overall performance.

4.3. Utilizing the parallelism in compute nodes

In traditional file I/O, there are two levels of parallelism. First, multiple I/O servers are aggregated
into a parallel file-system to take advantage of the aggregate storage bandwidth of these servers.
Second, multiple compute clients, that process different tasks, write data to such file-systems in
parallel as well. Most parallel file-systems are optimized for such access to give the best perfor-
mance.
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With ParaMEDIC, there are three I/O components: (1) compute clients that perform I/O, (2)
post-processing servers that process the metadata to regenerate the original output, and (3) I/O
servers that host the file-system. Similar to the traditional I/O model, the first and third components
are already parallelized. That is, multiple streams of data being written in parallel by different
compute clients and the I/O servers parallelize each stream of data that is being written to them.
However, in order to achieve the best performance, it is important that the second component,
post-processing servers, be parallelized as well.
Parallelizing the post-processing servers adds its own overhead and complexity mainly with

respect to synchronization between the different parallel processes. To avoid this, we use an embar-
rassingly parallel approach for these servers. Each incoming stream of data is allocated to a separate
process till a maximum number of processes is reached, after which the incoming data requests are
queued till a process becomes available again. Thus, different processes do not have to share any
information and can proceed independently. The advantage of this approach is its simplicity and
the lack of synchronization required between different parallel post-processing servers. The disad-
vantage, however, is that the number of data streams generated from the post-processing servers
is equal to the number of incoming data streams. That is, if only two tasks are active at one time,
only two streams of data are written to the actual storage system. Thus, the performance might not
be optimal. However, in most cases, we expect the number of incoming streams to be sufficiently
large so as to not face such performance issues.

4.4. Handling large communication latencies with disconnected I/O

As seen in Table II, the computational sites are between 9000 and 11 000 km away from the storage
site. At these distance, communication latencies are in tens of milliseconds. Such large latencies
can severely limit the effectiveness of a synchronous remote file-systems that can be used for
distributed I/O, since each synchronization operation has to make round-trip hops on the network.
To overcome the bottleneck incurred by such high-latency, our worldwide supercomputer utilizes a
lazy asynchronous I/O approach. By caching the output data locally before performing the actual
output, clients can perform their computations while disconnected from the remote file-system.
After a substantial amount of data is generated a bulk transfer of the metadata occurs, thereby
maximally utilizing the bandwidth available between the sites and mitigating the effect of high
latency.
An issue with this approach of disconnected computation is fault tolerance. Once a task is assigned

to a compute client, the server is completely disconnected from this client. After the computation
is complete, the client reconnects and sends the generated metadata. Although, this two-phase
synchronization model is more error prone and requires additional state information in the server,
it makes the compute clients truly stateless even when the actual computation is going on.

5. EXPERIMENTS, MEASUREMENTS, AND ANALYSIS

In this paper, we use ParaMEDIC to search the entire microbial genome database against itself.
Several supercomputing centers within the U.S. perform the computation, while the data generated
is stored at a large storage resource in Tokyo. This section compares the performance of ParaMEDIC
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with vanilla mpiBLAST with respect to the amount of data communicated and the I/O time taken,
as well as the storage bandwidth utilization.

5.1. Data I/O overheads

Figure 4(left) illustrates the amount of data transmitted between the compute and the storage sites
for different number of post-processing threads, and Figure 4(right) shows the factor of reduction
in the amount of data. Each post-processing thread processes one segment of data that has the
output for 10 000 query sequences. Most segments have approximately similar output sizes, hence
the amount of data communicated over the distributed network increases linearly with the number
of segments, and hence the number of post-processing threads. ParaMEDIC, on the other hand,
processes the generated data and converts it into metadata before performing the actual transfer.
Thus, the actual data that is transferred over the network is much smaller. For example, with 288
threads, mpiBLAST communicates about 100GB of data, whereas ParaMEDIC only communicates
about 108MB—a 900-fold reduction.
We also illustrate the I/O time in Figure 5. As shown, ParaMEDIC outperforms mpiBLAST

by more than 2 orders of magnitude. This result is attributed to multiple aspects. First, given the
shared network connection between the two sites, the achievable network performance is usually
much lower than within the cluster. Thus, with mpiBLAST transferring the entire output over this
network, its performance would be heavily impacted by the network performance. Second, the
distance between the two sites causes the communication latency to be high. Thus, file-system
control messages tend to take a long time to be exchanged, resulting in further loss in performance.
Third, for mpiBLAST, since the wide-area network is a bottleneck, the number of simultaneously
transmitted data streams does not matter; communication is serialized in the network. However,
with ParaMEDIC, since the wide-area network is no longer a bottleneck, it can more effectively
utilize the parallelism in the data streams to better take advantage of the storage bandwidth available
at the storage site, as described in more detail in Section 5.2.

5.2. Storage bandwidth utilization

Figure 6(left) illustrates the storage bandwidth utilization achieved by mpiBLAST, ParaMEDIC,
and the MPI-IO-Test benchmark, which is used as an indication of the peak performance capability
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Figure 4. Data I/O overheads: (left) total amount of data communicated and (right) factor of improvement.
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Figure 6. Storage bandwidth utilization using Lustre: (left) storage utilization improvement
and (right) computation and I/O time.

of the I/O subsystem. We notice that the storage utilization of mpiBLAST is very poor compared
to ParaMEDIC. The reason is that, for mpiBLAST, the I/O is limited by the wide-area network
bandwidth. Thus, although more than 10 000 processors are performing the compute part of the
task, the network connecting the compute servers in the U.S. and the storage system in Tokyo
becomes the bottleneck.
On the other hand, ParaMEDIC uses more than 90% of the storage system capability (shown

by MPI-IO-test). When the number of processing threads is low (x-axis in the figure), ParaMEDIC
uses about half the storage capability. However, as the number of processing threads increases, the
I/O utilization of ParaMEDIC increases as well.
Figure 6(right) illustrates the percentage breakup of the time spent in ParaMEDIC’s post-

processing phase. A significant portion of the time spent is in the I/O part. This shows that in
spite of using a fast parallel file-system like Lustre, ParaMEDIC is still bottlenecked by the I/O
subsystem. In fact, our analysis has shown that in this case the bottleneck lies in the 1-Gb Ethernet
network subsystem connecting the storage nodes. Thus, we expect that even for systems with faster
I/O subsystems, ParaMEDIC will further scale up and continue to use a significant portion of the
I/O bandwidth provided.
In Figure 7(left), we remove the file-system network bottleneck and directly perform I/O on

the local nodes. Storage utilization achieved in this case is significantly higher than going over
the network. Even in this case, ParaMEDIC completely uses the storage capability with more than
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Figure 7. Storage utilization using local file-system: (left) storage utilization improvement and
(right) computation and I/O time.

90% efficiency. Figure 7(right) shows the percentage breakup of the time spent. Similar to the case
with the Lustre file-system, a significant portion of the time is still spent on I/O. Thus, again,
ParaMEDIC can be expected to scale and fully use even faster storage resources.

6. DISCUSSION

Although this paper deals only with enhancing the mpiBLAST application through ParaMEDIC, the
idea is relevant for many other applications as well. For example, applications that have natively been
built for distributed environments such as SETI@home [23] and other BOINC applications [24] can
easily use similar ideas and can benefit aspects in which such techniques are possible. In the field
of communication profiling with MPE [25], we have also done some preliminary work that uses
metadata transformation of profiled data through ParaMEDIC. Specifically, based on the observation
that most scientific applications have a very uniform and periodic communication pattern, we
perform a Fourier transform on the data to identify this periodicity and use this as an abstract block.
The metadata comprises one complete abstract block and just the differences for all other blocks.
Our preliminary numbers in this field have demonstrated between two- and fivefold reduction in
the I/O time using ParaMEDIC. Work on other application fields, including earthquake modeling
and remote visualization, is ongoing as well with promising preliminary results.

7. RELATED WORK

Efficient I/O access for scientific applications in distributed environments has been an ongoing
subject of research for various parallel and distributed file-systems [26–29]. There has also been
work on explicit data transfer protocols like GridFTP [30]. Other efforts include providing remote
data access through MPI-IO [31]. RIO [32] introduced a proof-of-concept implementation that
allows applications to access remote files though ROMIO [33]. RFS [34] enhanced the remote
write performance with active buffering, by optimizing overlap between applications computation
and I/O. Studies have also been done in translating MPI-IO calls into operations of lower level
data protocols like Logistic Network [35]. However, all these approaches deal with data as a
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byte-stream. Conversely, our approach focuses on aggressively reducing the amount of I/O data to
be communicated by taking advantage of application semantics and dealing with data as high-level
abstract units, rather than a stream of bytes.
Semantic-based data transformation is not new. Several semantic compression algorithms have

been investigated in compressing relational databases [36–38]. Leveraging the table semantics,
these algorithms first build descriptive models of the database using data mining techniques like
clustering and then strip out data that can be regenerated. In the multimedia field, context-based
coding techniques (similar to semantics-based approaches) have been widely used in various video
compression standards [39–41]. With the aid of context modeling, these techniques efficiently
identify redundant information in the media. Although sharing the same goal of reducing data to
store or transfer with ParaMEDIC, these data compression studies do not address the remote I/O
issue.
Thus, ParaMEDIC utilizes ideas from different fields to provide a novel approach for

distributed I/O.

8. CONCLUSION

Rapid growth of computational power is enabling computational biology to tackle increasingly
large problems, such as discovering missing genes and providing structure to genetic sequence
databases. As the problems grow larger, however, so does the data consumed and produced by the
applications. For many applications, the required compute power and storage resources cannot be
found at a single location, precipitating the transfer of large amounts of data across the wide-area
network. ParaMEDIC mitigates this issue by pursuing a non-traditional approach to distributed I/O.
By trading computation for I/O, ParaMEDIC utilizes application semantics information to transform
the output to orders of magnitude smaller metadata. In this paper, we presented our experiences in
solving large-scale computational biology problems by utilizing nine different high-performance
compute sites within the U.S. to generate a petabyte of data that then was transferred to a large-
scale storage facility in Tokyo using ParaMEDIC’s distributed I/O capability. We demonstrated
that ParaMEDIC can achieve a performance improvement of several orders of magnitude compared
with traditional I/O. In the future, we plan to evaluate semantic-based compression for other
applications.
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