
DOI 10.1007/s00450-009-0090-8

S P E C I A L I S S U E P A P E R

CSRD (2009) 23: 133–142

ProOnE: a general-purpose protocol onload engine
for multi- and many-core architectures

P. Lai · P. Balaji · R. Thakur · D. K. Panda

Published online: 6 May 2009
© Springer-Verlag 2009

Abstract Modern high-end computing systems utilize spe-
cialized offload engines to enhance various aspects of their
processing. For example, high-speed networks such as In-
finiBand, Quadrics and Myrinet utilize specialized hard-
ware to offload network processing to help improve per-
formance. However, such hardware units are expensive, and
their manufacturing complexity increases exponentially de-
pending on the number and complexity of tasks they off-
load. On the other hand, the proliferation of multi- and
many-core processors into the general desktop and laptop
markets is increasingly driving their cost down due to the
economies of scale. To take advantage of the obvious ben-
efits of multi/many-core architectures, we propose, design
and evaluate ProOnE, a general purpose Protocol Onload
Engine. ProOnE utilizes a small subset of the available cores
on a multi-core CPU to “onload” various tasks in a ded-
icated manner instead of “offloading” them to specialized
hardware. The general purpose processing capabilities of
multi-core architectures allow ProOnE to be designed in
a flexible, extensible and scalable manner, while benefiting

P. Lai (�) · D. K. Panda
Department of Computer Science and Engineering,
Ohio State University,
Columbus, OH USA
e-mail: laipi@cse.ohio-state.edu

D. K. Panda
e-mail: panda@cse.ohio-state.edu

P. Balaji · R. Thakur
Mathematics and Computer Science Division,
Argonne National Laboratory,
Argonne, IL USA

P. Balaji
e-mail: balaji@mcs.anl.gov

R. Thakur
e-mail: thakur@mcs.anl.gov

from the reducing costs of general-purpose CPUs. In this pa-
per, we onload onto ProOnE, several tasks relevant to com-
munication sub-systems such as MPI that are too complex
for current hardware offload engines to support, and demon-
strate significant benefits in terms of overlap of computation
and communication and improved application performance.

Keywords Protocol offload/onload · Many-core ·
Multi-core

1 Introduction

High-end computing systems have benefited from the use
of specialized accelerators [27] to improve their perform-
ance and scalability for many years. Network sub-systems
were among the early adopters of such techniques, pro-
viding hardware-based solutions for intelligent communi-
cation offloading. GigaNet [7] was one of the earliest net-
work offload solutions for the Virtual Interface Architecture
(VIA) [1]. The early generations of Myrinet [2] used simi-
lar network processing solutions with specialized hardware.
This trend was continued to modern high-speed networks,
including InfiniBand [8], Quadrics [3] and TCP or iWARP
offload engines [6].

While such hardware-based offload engines have contin-
ued to grow in performance and complexity, the requirement
for even more advanced processing has grown as well. For
example, with systems scaling to hundreds of thousands of
cores available today, more and more complex tasks such
as advanced network processing and data center services
are required to be offloaded. However, the manufacturing
complexity of such hardware units increases exponentially
with the number and complexity of tasks they offload. As
an instance, various communication processing tasks, such

1 3

134 Lai et al.

as zero-copy Rendezvous communication which is common
for popular programming models like Message Passing In-
terface (MPI) [17], are too complicated for current hard-
ware to handle, especially given the various corner cases
supported by the MPI standard. Similarly, aspects of fault
detection and process management also increase hardware
complexity tremendously, thus making pure hardware off-
load solutions expensive and inflexible.

On the other hand, multi- and many-coreprocessors are be-
ing increasingly deployed in clusters and even widely used in
desktops and laptops. Quad-core and Hex-core processors are
quickly gaining ground in many applications. In fact, more
than 80% of the systems in the November 2008 ranking of
the Top500 supercomputers [12] belonged to the multi/many-
core processor family. Future generation systems are getting
further augmented with not only multiple cores per processor,
but also with multiple hardware threads (SMTs) per core, as
illustrated by the Intel eXtreme [4] and SUN Niagara [5] fam-
ilies of processors that promise to support up to 2048 threads
within a single physical node in the near future.

Consequently, to take advantage of the obvious benefits
of multi-core architectures, we propose, design and evalu-
ate a general purpose Protocol Onload Engine, named as
ProOnE. ProOnE dedicates a small subset of the available
cores on a multi-core equipped node to “onloading” com-
plex tasks while still utilizing the features provided by hard-
ware “offload” engines. In other words, as the example il-
lustrated in Fig. 1, ProOnE utilizes the existing offloaded
features, but extends them by onloading more complex
functionality that cannot be easily offloaded. The general
purpose processing capabilities of multi-core architectures
allow ProOnE to be designed in a flexible, extensible and
scalable manner, while benefiting from the reducing costs.
We present details of the design for the intra-node and inter-
node communication interfaces, synchronization handshake
between ProOnE and application processes, and various
other aspects of the ProOnE design.

Further more, as a case study, we use ProOnE to onload
complex communication tasks relevant to MPI. We spe-
cially focus on onloading the Rendezvous protocol for large
message communication and present the design issues and

Fig. 1 Hybrid onload-offload architecture with ProOnE

our solutions. Our experimental results show that ProOnE
can improve MPI communication significantly, allowing al-
most full overlap between communication and computation
and close to 100% application availability for large mes-
sage communication. We also demonstrate the resilience
of ProOnE to process skew which is a major concern in
large-scale systems, and illustrate significant application-
level benefits as well.

The rest of this paper is organized as follows. In Sect. 2,
we discuss the related work. Then we describe the design
including the general ProOnE infrastructure and MPI Ren-
dezvous protocol onload design in Sect. 3. We analyze the
experimental results in Sect. 4, and summarize conclusions
and possible future work in Sect. 5.

2 Related work

The idea of protocol onloading is not new. There has been
a lot of work that focusses on onloading different com-
putation and communication related tasks such as TCP/IP
processing in data centers [14, 23], MPI collective oper-
ations [25], and distributed data management [30]. There
has also been work that compares onloading and offloading
based solutions for network communication [22]. However,
all of this existing literature takes ad hoc approaches for on-
loading specific tasks relevant to their environment. In this
paper, on the other hand, we propose a general purpose pro-
tocol onload engine that can onload any task using a few
of the many available cores. Different tasks can be added
to ProOnE using task-specific plugins, making it a central
framework that allows all of the existing research and more
to be plugged in.

There has also been a lot of research on improving
communication and computation overlap and asynchronous
progress for the MPI Rendezvous protocol. R. Brightwell
et al. analyzed the impact of communication and compu-
tation overlap [15] providing theoretical insights into this
problem. Sancho et al. further quantified this for large-scale
applications in [24]. Amerson et al. improved asynchronous
progress with an interrupt based approach [13] and an event-
driven MPI library was also designed to improve the com-
munication responsiveness in [21]. In [28] and [20], the
authors improved communication progress for zero-copy
communication using interrupts and helper threads. Our
work complements these efforts by utilizing a few cores on
the system to provide the required computation and commu-
nication overlap, which in turn can be used by the existing
MPI libraries.

Using helper threads to allow for communication progress
has also been studied in [29] and the Myri-10G MX proto-
col [2]. However, these approaches primarily focus on the
communication tasks and are not generic for all tasks. They

1 3

ProOnE: a general-purpose protocol onload engine for multi- and many-core architectures 135

need to be extended by taking into account more aspects in
HPC, which is the objective ProOnE targets.

Thus, in summary, our work in this paper is orthogonal
and complementary to the existing work in that we fo-
cus on designing a general purpose onload engine for on-
loading any protocol (task), e.g., communication protocol,
middleware-specific tasks and application-specific tasks.

3 Designing a protocol onload engine

In this section, we describe the design of ProOnE. We first
present the general infrastructure, and then take the Ren-
dezvous protocol in MPI as an example to illustrate how to
onload a particular protocol.

3.1 The ProOnE infrastructure

In parallel applications, all processes are inter-related, with
each following the pattern of interleaved computation and
communication. If a part of this work is to be onloaded
by ProOnE, the application processes and the ProOnE pro-
cesses need to be considered as a whole, instead of sep-
arately. Figure 2 shows the overall architecture for a sys-
tem with four cores on each node where some of the cores
are used by ProOnE in a dedicated manner (typically, only
a small subset of cores is used by ProOnE). Each ProOnE
process runs as a daemon that executes a part of the work
for one or more application processes. To design such an in-
frastructure, we need to consider two aspects, namely, (i) the
local intra-node communication and synchronization, and
(ii) the inter-node communication.

3.1.1 Intra-node communication interface

We used a shared-memory based approach for intra-node
communication and synchronization because of its simpli-
city. Specifically, an application or ProOnE process puts
requests, signals or completions into shared memory regions
from which other application or ProOnE processes can read.
To reduce overhead, these requests or completions are man-

Fig. 2 Architecture of ProOnE-equipped system

aged as queues. Hash functions are used to locate the free
shared memory blocks. As shown in Fig. 2, each ProOnE
process allocates one shared memory region which is used
for the communication with all other processes on the same
node.

3.1.2 Inter-node communication interface

The inter-node communication in Fig. 2 goes through the
traditional network messaging. Since each ProOnE process
may need to communicate with any remote ProOnE or ap-
plication process, there could be a large number of network
connections needed. As a performance and resource usage
tradeoff, these connections can be established either upon
launching of the application processes or on demand.

3.1.3 ProOnE runtime infrastructure

Considering the above requirements, we designed the run-
time infrastructure for ProOnE as follows.

ProOnE processes: Each ProOnE process performs three
tasks during initialization: (i) creates its own communica-
tion shared memory, (ii) attaches to the shared memory
created by other ProOnE processes, and (iii) listens to and
accepts connection requests from remote processes.

When a ProOnE process is initialized (e.g., ProOnE pro-
cess 0 on node 0 in Fig. 2), it first creates or attaches to
(if one has been created) a global shared memory accord-
ing to a predefined shmem key. This global shared memory
is used to exchange process-specific information; we do not
include this in Fig. 2 since it is not used after initialization.
Then the ProOnE process creates its own communication
shared memory (e.g., ShMem 0) and writes the correspond-
ing address ID into the global shared memory where other
processes can read from. After that, it reads the address IDs
of other ProOnE processes’ communication shared mem-
ory (e.g., ShMem 1) to which it can attach. Finally, ProOnE
processes listen on predefined ports, waiting for connect re-
quests from remote processes. For network connections that
are setup during initialization, we use a client-server model
to build all-to-all connections among ProOnE processes.

It is to be noted that each ProOnE process creates only
one shared memory region. All the local ProOnE or appli-
cation processes will attach to this shared memory, but will
use different offsets to read or write different segments. An
alternative is to create one shared memory for each of the
other processes. Both approaches are quite light-weight, so
we used the first approach in our design due to its simplicity.

Application processes: Upon launch, each application
process performs a ProOnE-specific initialization (by link-
ing to a ProOnE client-side library). During initialization,
it attaches to the global shared memory, reads all the ad-
dress IDs of the communication shared memory regions

1 3

136 Lai et al.

and attaches to them. For example, in Fig. 2, application
process 0 on node 0 reads address IDs of ShMem 0 and
ShMem 1 and attaches to them, respectively. Each applica-
tion process then sends connect requests to remote ProOnE
processes. The initialization completes after all the connect
requests are accepted. Here we choose to establish all the
network connections before the main application routine
starts, but this can be easily extended to be done on demand
as well.

3.2 Onloading MPI rendezvous

ProOnE is a general purpose onload engine that can be uti-
lized to onload various tasks. In this section, we target MPI
as a case study and onload its Rendezvous protocol. First
we describe the asynchronous progress problem of the Ren-
dezvous protocol in most MPI implementations [10]. We
then present the details of our design, discuss the critical
design issues and describe our solutions.

3.2.1 Communication progress in MPI rendezvous

Many MPI designs [10, 18] utilize a Rendezvous protocol
for communicating large messages. Rendezvous is typically
a three-step protocol. First, the sender sends a RTS (re-
quest to send) message to the receiver. On receiving this, the
receiver ensures it has enough buffer to accommodate the in-
coming data and sends a CTS (clear to send) message to the
sender. On receiving the CTS, the sender can send the actual
data.

An important but elusive issue in the Rendezvous proto-
col design is its inability to achieve efficient computation
and communication overlap [15]. Specifically, the perform-
ance of Rendezvous heavily depends on the skew between
the sender and the receiver. For example, as shown in Fig. 3,
when the receiver calls an MPI_Irecv, if it cannot find
any matching RTS, the receive buffer is posted and the ap-
plication can continue with its computation. Only when the
computation completes and the receiver makes another MPI
call, it finds the RTS and then sends back CTS. Similarly,
when the CTS arrives at the sender, if the sender is still busy

Fig. 3 Effect of process skew on Rendezvous protocol

with its computation, it has to wait for the computation to
complete before sending the actual data. Thus, the delay in
detecting control messages eventually results in large out-
of-sync communication between the sender and the receiver,
which leads to overall loss of performance.

Recent work [20, 28] has addressed this issue mainly by
using hardware supported one-sided communication such as
RDMA operations. However, the benefits of RDMA-based
overlap are limited to specific cases. For example, at least
one of the sender or the receiver has to be ready for commu-
nication. If both are not (e.g., when the sender calls a non-
blocking send, the receiver calls a non-blocking receive and
both perform computation), then the communication can be
delayed. Similarly, while there are existing network stacks
with message matching capabilities (MX Myri-10G [2] and
Quadrics QsNet [3]), they perform such matching only for
simple cases. For more complicated cases, these stacks can-
not perform any asynchronous progress.

On the other hand, the issues are much simpler with
ProOnE, since such processing is performed on a gen-
eral purpose CPU core. ProOnE processes are fully used
for handling Rendezvous processing in a dedicated man-
ner, so they can detect control messages in a timely man-
ner and consequently better asynchronous progress can be
obtained.

3.2.2 Design overview

As mentioned earlier, the basic idea of onloading Ren-
dezvous protocol is to hand over the Rendezvous negotiation
to ProOnE. All the control messages are sent to ProOnE pro-
cesses, so we not only need to design the logic in ProOnE,
but also have to adjust the communication flow inside MPI.
Suppose MPI process 0 intends to send a large message to
MPI process 1, and proone 0 and proone 1 are their associ-
ated onload engines, respectively. Figure 4a and b illustrates
the interactions in two situations, involving the following
data structures:

SEND/RECV requests: These contain information about
MPI send/recv calls, such as tag, source/destination rank
etc. They are generated by the MPI processes and passed to
ProOnE through shared memory.

RTS/CTS messages: These are the MPI control messages
that ProOnE processes receive.

CMPLT notifications: These are created by ProOnE pro-
cesses upon finishing sending or receiving data, in order to
inform MPI processes about the completion.

Shared memory segments: The above three structures
may be stored in a shared memory region between a pair of
ProOnE process and MPI process, so this region is divided
into three segments for each purpose.

ProOnE Request queue: ProOnE processes maintain
SEND and RECV requests as queues.

1 3

ProOnE: a general-purpose protocol onload engine for multi- and many-core architectures 137

Fig. 4 Communication/hand-
shake protocol: a receiver arrives
earlier, b receiver arrives late

Using these structures, ProOnE processes execute three
types of work: send or receive messages, write messages or
read requests through shared memory, and perform auxiliary
functions such as message matching.

3.2.3 Communication/handshake protocol

In Fig. 4 we present the flow of handshake among the MPI
sender, MPI receiver and their associated ProOnE processes.

When the sender has a large message to send, it posts
a SEND request into shared memory (step 1) where its asso-
ciated onload engine proone 0 will read from. It then sends
an RTS to the receiver’s associated ProOnE proone 1 (step
2). proone 1 detects this message and tries to match it with
an existing RECV request by searching the request queue
and the requests newly posted in shared memory which are
not enqueued yet (step 3). There are two resulting cases ac-
cording to the arrival order of the sender and receiver, i.e.,
the receiver arrives earlier or late. In the first case (Fig. 4a),
proone 1 finds a matched RECV request, so it sends CTS
back to proone 0 (step 4). In the second case (Fig. 4b),
proone 1 does not find a match, so it posts the received RTS
into shared memory (step 4). Later, when the receiver per-
forms an MPI call, it will get matched with this RTS (step
5) and send a CTS to proone 0 (step 6). Here, either the
MPI receiver or its onload engine proone 1 sends a CTS to
proone 0 so that it will be detected in time. When proone
0 receives a CTS, it matches it with the SEND request.
With these steps, the Rendezvous negotiation has completed.
The following data transmission can be handled by either
MPI or ProOnE. We choose the latter one due to its poten-
tial for slightly larger overlap (step 5 in Fig. 4a and step 7
in Fig. 4b). At the end, ProOnE processes post CMPLT in
shared memory to notify MPI processes about the send/recv
completion.

3.2.4 Design issues and solutions

In this section, we discuss several design issues and our so-
lutions in incorporating them into MPICH2.

Message Matching: In MPICH2, a RTS is matched with
a RECV request based on a tuple (src_rank, context_id,

Fig. 5 False message matching

tag). However, in the context of ProOnE, there will be false
matching if we still use this criteria.

According to the MPI specification [17], a receiver is
allowed to post a buffer larger than the actual data size.
Thus, the receive buffer size alone is not sufficient to de-
cide whether MPI would use a short message eager proto-
col or the large message Rendezvous protocol. To handle
this, in our design, any MPI_Irecv with a large buffer posts
a RECV request to ProOnE if no existing match is found
(Fig. 4b). At the same time, the RECV request is also en-
queued into the MPICH2’s posted request queue1 in case it
turns out that the message is small and the sender uses the
eager protocol. Now both MPICH2 and ProOnE have the
same RECV request, which introduces false matching. For
example, as shown in Fig. 5a, MPI processes 0 and 1 issue
two send and receive requests respectively, all of which have
the same matching tuple of (0,0,0). The correct semantic
should be that first message is matched with the first RECV
at ProOnE side and the second message with second RECV
at MPI side. Unfortunately, when MPI process 1 receives
the second message with a matching tuple of (0,0,0), it gets
matched with the first RECV. Similarly, in Fig. 5b, the sec-
ond message (RTS) will be falsely matched with the first
RECV request in ProOnE process 1.

One possible solution to this problem is to force the MPI
and ProOnE processes to synchronize before matching, but

1 Posted request queue contains the arrived receive requests that have
not been matched yet.

1 3

138 Lai et al.

this introduces undesirable high overhead. Our approach is to
add one more field, i.e., a sequence number, on each channel,
to the matching tuple. A channel is decided by the original
matching tuple. Take Fig. 5a as an example. The second send
has the matching tuple (0,0,0,1) while the first RECV has the
matching tuple (0,0,0,0), so they will not be matched.

Another problem with message matching is that one
RTS may be matched with multiple RECV requests. Within
a node, one ProOnE process could be associated with mul-
tiple MPI processes that may post RECV requests targeting
to receive from the same source. These requests can have the
same matching tuple. The ProOnE process cannot differen-
tiate among them when performing match. To address this
problem, we include the destination rank to the matching
tuple as well. Therefore, the final matching tuple contains
(src_rank, dst_rank, context_id, tag, sequence_num). The
sequence number is increased per group of the first four
elements. It is to be noted that more complex mechanisms
are required for wild-card matching and will be investigated
in future work.

Shared Memory Contention: Shared memory is a criti-
cal section resource, and we use semaphores to avoid con-
tention on it for a pair of MPI process and ProOnE process.

As mentioned in Sect. 3.2.2, a shared memory region is
divided into three segments. A natural question is whether
to use separate locks. In our approach, we do not use sepa-
rate locks. The segment containing SEND or RECV requests
and the segment containing RTS messages must be bound to-
gether using one lock. As an example, suppose an MPI_Irecv
arrives and the MPI process searches the RTS message seg-
ment for any matched RTS, while at the same time, the asso-
ciated ProOnE process receives the corresponding RTS and
checks the SEND and RECV request segment for a match-
ing RECV request. It is possible that both of them cannot find
a match if the segments are locked independently. Thus, they
would post a RECV request and an RTS, respectively, assum-
ing that the later on the other side will handle the matching.
This pair of RECV request and RTS, then, would be left un-
matched forever. A simple solution is to lock the two seg-
ments together so that a pair of MPI and ProOnE processes
cannot try matching simultaneously.

Memory Mapping: As mentioned in Sect. 3.2.3, in the
current implementation data messages are sent and received
by ProOnE. At the sender side, ProOnE reads data from the
MPI process’ sending buffer and sends it out; and at the
receiver side, ProOnE writes the received data into MPI pro-
cess’ receiving buffer. Generally there are two approaches
allowing a ProOnE process to access the buffer in MPI
processes. One is the user-level shared memory-based ap-
proach [16]. The other is the kernel direct-copy method [19].
We use the second approach due to its lower overhead. MPI
processes perform the kernel-level mapping and wrap the
mapping information in the SEND/RECV requests. While

the kernel context-switch introduces some overhead, it is
negligible for large messages.

4 Experimental results

In this section, we present a comprehensive analysis of the
experimental results. First we evaluate the ProOnE based
Rendezvous protocol in terms of computation/communica-
tion overlap, program progress and the process skew im-
pact. Then, we evaluate ProOnE in the context of two pop-
ular scientific application kernels: matrix multiplication and
2D Jacobi sweep. For all the experiments, we use the basic
MPICH2 without ProOnE as the baseline for comparison. We
use the legend of “Original” referring to the basic MPICH2,
and the legend of “ProOnE” for our design with ProOnE.

Experimental Testbed: Our test bed consists of 64 nodes
with dual quad-core (8 cores in total) Xeon processors and
4 GB memory, running RHEL4 U4 with the kernel 2.6.9.34.
The nodes are connected by InfiniBand DDR cards, but we
use IPoIB (TCP/IP over IB) as the network transport as our
approach is independent of the transport and does not assume
any specific features from the network stack. For all the ex-
periments with ProOnE, we use one core (by setting CPU
affinity) on each node to run ProOnE daemon.

4.1 Computation and communication overlap

In this section we evaluate the capability of the ProOnE-
based Rendezvous protocol design to overlap computation
with communication. The benchmark is similar to that sug-
gested in [28]; overlap is defined as the ratio of the compu-
tation time over the total time (computation and communi-
cation).

Sender-side overlap: Figure 6a presents the sender-side
overlap performance using a message size of 256 KB. With
ProOnE, as computation time increases, the overlap ratio
becomes larger as longer computation time provides bet-
ter opportunity to overlap communication. In fact, when the
computation time is larger than 600 µs, ProOnE can provide
almost full overlap, while vanilla MPICH2 can only provide
an overlap of less than 0.6. This is because when the MPI
process is busy with computation, its associated ProOnE
daemon can proceed with communication simultaneously;
however, in MPICH2, the sender process cannot perform
any communication during the whole computation period.
In Fig. 6b, we show a similar measurement by using 1 MB
messages; we observe a similar trend, except that the full
overlap is achieved at a higher computation time. This is be-
cause the higher communication time for transferring 1 MB
messages requires longer computation for efficient overlap.

Receiver-side overlap: The receiver overlap performance
is shown in Fig. 7a and b. We see a similar trend as the

1 3

ProOnE: a general-purpose protocol onload engine for multi- and many-core architectures 139

Fig. 6 Sender overlap performance: a 256 KB message, b 1 MB message

Fig. 7 Receiver overlap performance: a 256 KB message, b 1 MB message

sender-side overlap, except that a higher computation time
is needed to achieve good overlap. We attribute it to the
overhead of kernel-level memory mapping and copy. As
mentioned in Sect. 3.2.4, we use ProOnE to send and receive
data in the current implementation. It involves the overhead
of a kernel memory copy at both sender and receiver. While
the sender’s performance is affected by the overhead only
at sender side, receiver’s performance suffers from the over-
head at both sides, resulting in longer communication time
and worse overlap.

4.2 Impact of process skew

In this section we evaluate the impact of process skew on
Rendezvous asynchronous progress. Our benchmark con-
sists of a pair of MPI processes performing bidirectional
communication. Each process initiates a MPI_Irecv and
a blocking MPI_Send. After that, they compute for some
time W, and finally call MPI_Wait. In this way, the skew
is introduced, as for a pair of send and receive, the receive
call arrives earlier than the send call. This whole process is

repeated for 1000 iterations. We average the total time on ei-
ther side with varying W and show the results using message
size of 1 M in Fig. 8.

Fig. 8 Progress performance with process skew

1 3

140 Lai et al.

Fig. 9 Availability performance at sender: a Availability percentage, b Overhead

In MPICH2, receiving calls at both sides arrive earlier
and thus cannot make progress until the computation com-
pletes and Wait is called. Thus the computation on the
sender and the receiver is serialized and the total time in-
cludes both. On the other hand, ProOnE can start the data
transfer as soon as one pair of send and receive arrives, so
the total time is not affected by skew and includes only its
own computation time.

4.3 Application availability

To measure application availability and overhead, we used
the Sandia Benchmark [26] (SMB). Figure 9a and b show
the sender’s availability percentage and overhead with in-
creasing message sizes. For small messages, both ProOnE
and MPICH2 exhibit high availability (around 91%) and
low overhead. However, performance deteriorates rapidly in
MPICH2 when the message size is larger than 1 KB. On
the other hand, because of the independent asynchronous
progress capability, ProOnE provides almost full availabil-
ity and very low overhead for medium and large messages
(≥ 8 KB). Note that here we use 4 KB as the Rendezvous
protocol threshold, so there is degradation for messages of
2 KB and 4 KB where ProOnE is not utilized. At the receiver
side, we noticed a similar performance trend, but the results
are not included here due to the space constraints.

4.4 Application performance

In this section we evaluate our design with two popular
application kernels widely used in many scientific and en-
gineering applications.
Matrix Multiplication: The kernel uses Cannon’s algo-
rithm and employs MPI for inter-node communication and
OpenMP [11] for intra-node communication. We use four
nodes with one MPI process on each and measure the com-

Fig. 10 Matrix multiplication with varying problem size

pletion time with varying problem sizes (matrix sizes), as
shown in Fig. 10. As shown in the figure, ProOnE performs
much better especially for larger problem sizes. We further
measured this benefit with different cost ratios. Figure 11
illustrates the normalized execution time for a square ma-
trix of 1024 elements on different system configurations.
NxM means N nodes with M cores on each node used, so
larger M indicates relatively lower percentage of resources
in the system used for ProOnE. We see that ProOnE pro-
vides consistent benefits with decreasing percentage of addi-
tional cost. This presents the promising future for applying
ProOnE in applications with inexpensive multi-/many-core
processors.

The second application we evaluated is a 2D Jacobi
sweep [9]. In this application, on each iteration every pro-
cess initiates the exchange of boundary data with all the
neighbors, and then performs computation on the internal
data. Upon receiving all the boundary data, it also per-
forms computation on the received data. We use nonblock-

1 3

ProOnE: a general-purpose protocol onload engine for multi- and many-core architectures 141

Fig. 11 Matrix multiplication with varying system configuration

Fig. 12 Jacobi sweep with varying boundary data size

ing send/recv calls to initiate the boundary data exchange
and use MPI_Waitall after the internal data computation to
complete these operations. Figure 12 illustrates the time for
MPI_Waitall on a 4 ×4 process grid (4 nodes with 4 MPI
processes on each). We observe that the design with ProOnE
has much smaller waiting time than the design without
ProOnE, offering increasing benefits with larger boundary
data. This shows that ProOnE can effectively drive the com-
munication progress and thus provide significant improve-
ment on the overall application performance.

5 Conclusions and future work

As high-end computing systems rapidly scale to very large
clusters, traditional protocol offload engines have to offload
more and more complex tasks to meet the performance and
scalability requirements. However, the hardware offloading

is quite expensive and inflexible due to its manufacturing
complexity. On the other hand, the increasing deployment of
multi- and many-core processors offers new opportunities to
“onload” these tasks. In this paper we presented the design
of a general purpose Protocol Onload Engine (ProOnE) that
utilizes a small subset of the available cores on a multi-core
equipped node to “onload” complex tasks. Additionally, we
utilized ProOnE to onload the Rendezvous protocol in MPI
and incorporated this into MPICH2. From our evaluations,
we find that the ProOnE-based MPI design provides almost
full communication/computation overlap, close to 100% ap-
plication availability, good resilience to process skew, and
significant application level benefits in matrix multiplication
and Jacobi method applications.

For future work, we plan to study the performance and
scalability of applying ProOnE in large scale systems and
investigate its benefits in other scientific and engineering ap-
plications. We also intend to use ProOnE for other protocols
such as enterprise data-center tasks and file system tasks.

Acknowledgement This work was supported in part by the Na-
tional Science Foundation Grant #0702182, and the Mathematical,
Information, and Computational Sciences Division subprogram of
the Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357; DOE grants #DE-FC02-06ER25749 and #DE-FC02-
06ER25755; NSF grants #CNS-0403342, #CPA-0702675 and #CCF
0833169.

References

1. http://en.wikipedia.org/wiki/Virtual_Interface_Architecture
2. http://www.myri.com/myrinet/overview/
3. www.quadrics.com/
4. http://www.intel.com/products/processor/core2XE/
5. http://www.sun.com/processors/niagara/
6. Chelsio TOE. http://www.chelsio.com/
7. Giganet clan. http://www.emulex.com/
8. InfiniBand Trade Association. http://www.infinibandta.com
9. Jacobi Method. http://en.wikipedia.org/wiki/Jacobi_method

10. MPICH2. http://www.mcs.anl.gov/research/projects/mpich2/
11. OpenMP. http://openmp.org/wp/
12. Top 500 SuperComputer Sites. http://www.top500.org/
13. Amerson G, Apon A (2004) Implementation and design analysis

of a network messaging module using virtual interface architec-
ture. In: International Conference on Cluster Computing

14. Regnier G, Minturn D, McAlpine G, Saletore V, Foong A (2003)
ETA: experience with an Intel Xeon processor as a packet pro-
cessing engin. In: Proceedings of the 11th Symposium on High
Performance Interconnects (HOTI’03)

15. Brightwell R, Underwood KD (2004) An analysis of the impact
of MPI overlap and independent progress. In: Proceedings of the
18th annual international conference on Supercomputing, March
2004

16. Chai L, Hartono A, Panda DK (2006) Designing high perform-
ance and scalable MPI intra-node communication support for
clusters. In: The IEEE International Conference on Cluster
Computing

17. MPI Forum (1993) MPI: A Message Passing Interface

1 3

http://en.wikipedia.org/wiki/Virtual{hbox {protect elax protect edef ptm{pcr}protect xdef X1/ptm/m/n/8.5 {X1/ptm/m/n/8.5 }X1/ptm/m/n/8.5 size@update enc@update char "5F}}Interface{hbox {protect elax protect edef ptm{pcr}protect xdef X1/ptm/m/n/8.5 {X1/ptm/m/n/8.5 }X1/ptm/m/n/8.5 size@update enc@update char "5F}}Architecture
http://www.myri.com/myrinet/overview/
http://www.intel.com/products/processor/core2XE/
http://www.sun.com/processors/niagara/
http://www.chelsio.com/
http://www.emulex.com/
http://www.infinibandta.com
http://en.wikipedia.org/wiki/Jacobi{hbox {protect elax protect edef ptm{pcr}protect xdef X1/pcr/m/n/8.5 {X1/ptm/m/n/8.5 }X1/pcr/m/n/8.5 size@update enc@update char "5F}}method
http://www.mcs.anl.gov/research/projects/mpich2/
http://openmp.org/wp/
http://www.top500.org/

142 Lai et al.

18. Gropp W, Lusk E, Doss N, Skjellum A. A high-performance,
portable implementation of the MPI. Technical report, Argonne
National Laboratory and Mississippi State University

19. Jin H-W, Sur S, Chai L, Panda DK (2007) Lightweight Kernel-
Level Primitives for High-performance MPI Intra-Node Commu-
nication over Multi-Core Systems. In: IEEE International Confer-
ence on Cluster Computing (poster presentation)

20. Kumar R, Mamidala AR, Koop MJ, Santhanaraman G, Panda DK
(2008) Lock-free asynchronous rendezvous design for MPI Point-
to-point communication. In: EuroPVM ’08

21. Majumder S, Rixner S, Pai VS (2004) An event-driven architec-
ture for mpi libraries. In: Computer Science Institute Symposium

22. Ortiz A, Ortega J, Daz AF, Prieto A (2008) Comparison of on-
loading and offloading strategies to improve network interfaces.
In PDP. IEEE Computer Society, 2008.

23. Regnier G, Makineni S, Illikkal R, Minturn D, Huggahalli R,
Newell D, Cline L, Foong A. TCP onloading for data center
servers. IEEE Comput 37(11):48–58

24. Sancho JC, Barker KJ, Kerbyson DJ, Davis K (2006) Quantifying
the potential benefit of overlapping communication and computa-

tion in large-scale scientific applications. In: ACM/IEEESC 2006
Conference (SC’06)

25. Sancho JC, Kerbyson DJ, Barker KJ (2007) Efficient offloading
of collective communications in large-scale systems. In: IEEE
International Conference on Cluster Computing

26. Sandia National Laboratories. Sandia MPI Micro-Benchmark
Suite. http://www.cs.sandia.gov/smb/

27. Shivam P, Chase JS (2003) On the elusive benefits of protocol
offload. In: SIGCOMM’03 Workshop on NICELI

28. Sur S, Jin H-W, Chai L, Panda DK (2006) RDMA read based ren-
dezvous protocol for MPI over InfiniBand: design alternatives and
benefits. In: Symposium on PPOPP, March 2006

29. Trahay F, Brunet E, Denis A, Namyst R (2008) A multithreaded
communication engine for multicore architectures. In: Interna-
tional Parallel and Distributed Processing (IPDPS)

30. Vaidyanathan K, Lai P, Narravula S, Panda DK (2008) Optimized
distributed data sharing substrate in multi-core commodity clus-
ters: A comprehensive study with applications. In: International
Symposium on Cluster Computing and the Grid (CCGrid), May
2008

1 3

http://www.cs.sandia.gov/smb/

	1 Introduction
	2 Related work
	3 Designing aprotocol onload engine
	3.1 The ProOnE infrastructure
	3.1.1 Intra-node communication interface
	3.1.2 Inter-node communication interface
	3.1.3 ProOnE runtime infrastructure

	3.2 Onloading MPI rendezvous
	3.2.1 Communication progress in MPI rendezvous
	3.2.2 Design overview
	3.2.3 Communication/handshake protocol
	3.2.4 Design issues and solutions

	4 Experimental results
	4.1 Computation and communication overlap
	4.2 Impact of process skew
	4.3 Application availability
	4.4 Application performance

	5 Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

