
Network Interface Cards as First-Class Citizens∗

W. Feng1 P. Balaji2 A. Singh1

1Dept. of Computer Science,

Virginia Tech,

{feng, ajeets}@cs.vt.edu

2Mathematics and Computer Science,

Argonne National Laboratory,

balaji@mcs.anl.gov

Abstract

Network performance has improved by over an order-of-

magnitude in the past decade. While, the overall system

architecture itself has made modification attempts to match

such growth, these changes are mostly “incremental enhance-

ments, tweaks and adjustments” that try to keep the hard-

ware control hierarchy away from the network communica-

tion path. However, we are rapidly reaching a stage where

these adjustments are no longer sufficient to allow the net-

work to realize its full capacity without being bottlenecked

by the hardware control hierarchy in the system. Thus, rather

than a “band-aid” fix to high-performancenetworking and I/O

at the compute node, in this paper we re-visit a more radi-

cal approach that elevates the network interface card from a

second-class citizen that resides out on an I/O interconnect to

a first-class citizen that resides on the system bus. In this ar-

chitecture, the network adapter would have its own cache, its

own memory, its own processing units and follows the overall

cache coherency and memory management protocols, much

like what a regular CPU does. This architecture takes a step

beyond existing system architectures and allows for direct

communication data management without having to coordi-

nate with the north bridge on every access.

1 Introduction

As we move to multi-petascale and exascale computing sys-

tems, massive-scale computing systems, consisting of hun-

dreds of thousands to millions of processing units, are be-

ing assembled. For these processing units to efficiently com-

municate with each other and present themselves as one

large supercomputer, the network communication infrastruc-

ture should be fast, efficient, and scalable.

In order to meet such growing demands, network perfor-

mance has improved by more than an order of magnitude over

the past decade. While the overall system architecture itself

has made modified to try to match the growing capabilities

of these networks, these changes are mostly incremental en-

hancements or adjustments that try to keep the hardware con-

trol hierarchy away from the network communication path.

∗This work was supported in part by the Virginia Tech Foundation and

the Mathematical, Information, and Computational Sciences Division sub-

program of the Office of Advanced Scientific Computing Research, Office of

Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357.

However, as communication latencies approach a microsec-

ond and bandwidths reach tens of gigabits per second, these

adjustments are no longer sufficient. As such, rather than

further “band-aid” fixes to high-performance networking and

I/O, we need more radical approaches to re-design the overall

system architecture for improved communication capability.

Stage 1: System Architecture (Shared Bus Networks):

Traditional system architectures consist of network adapters

being connected to I/O buses that are shared with other de-

vices. These I/O buses connect to an I/O controller hub (i.e.,

Southbridge)which, in turn, would be connected to the North-

bridge through a high-speed channel. Finally, the Northbridge

with an integrated memory controller could direct data to

memory. That is, data has to traverse three steps before it

could reach memory. In this architecture (Figure 1(a)), net-

work data has no direct access to the CPUs themselves before

going into memory.

Stage 2 System Architecture (Dedicated I/O Intercon-

nects): As network speeds grew beyond a gigabit per sec-

ond, system designers realized that the aforementioned archi-

tecture was too restrictive for high-speed network devices to

perform effective communication. Thus, they upgraded the

architecture to get rid of the last step in the hardware con-

trol hierarchy and connect network adapters directly to the

Northbridge using dedicated point-to-point links, much like

the I/O controller hub used to be traditionally connected (Fig-

ure 1(b)). Technologies such as PCI Express (PCIe) and cave-

mode Hypertransport (HT) made these architectures possi-

ble, allowing network adapters to connect to the Northbridge

with speeds matching those of current memory bandwidths.

However, even this upgraded system architecture lagged be-

hind the demands of rapidly increasing system sizes in two

areas: (i) network data still had to pass through the North-

bridge before it could be transferred to memory, which means

that memory access was still based on an access negotiation

and hardware direct memory access (DMA) model, and (ii)

network data still did not have access to go directly to the

processors, much like the stage 1 architecture.

Stage 3 System Architecture (Direct Cache Access): Re-

cently, network hardware vendors and system architects have

been pushing for the next upgrade to system architectures to

better support network devices in the form for direct cache

access (DCA) architectures. While the hardware layout of

the DCA architecture is very similar to that of the previous

1



Figure 1: Four System Architectural Stages: (a) Shared Bus Networks; (b) Dedicated I/O Interconnects; (c) Direct Cache Access;

(d) Networks as First-Class Citizens

2



generation architecture, it makes one valuable addition—in

this architecture, network adapters can directly access CPUs

and directly write to their caches instead of having to write to

memory (Figure 1(c)). This improves access latency, as data

movement is not limited by memory bandwidth and data does

not have to be fetched to the CPU cache after it arrives over

the network.

Stage 4 System Architecture (Networks as First-Class Cit-

izens): In this generation of architecture, which is not cur-

rently available, we envision that a network adapter would sit

on par with the other CPUs in the system; the network adapter

would have its own cache, its own memory, its own pro-

cessing units and would follow the overall cache coherency

and memory management protocols, much like what a reg-

ular CPU does. This architecture takes a step beyond direct

cache access and allows for a similar mechanism but with-

out having to coordinate with the Northbridge on every ac-

cess (Figure 1(d)). Such a mechanism would allow network

communication to be truly bounded only by the network pro-

tocol and communication stack rather than the coordination

overhead involved in current architectures’ hardware control

hierarchy.

To date, there have been several projects that have looked at

memory-integrated network interfaces. Of particular note is

the research of Mukherjee et al. [10] and Feng [2].

However, in the commercial sector, such work does not exist.

The most closely related work is the Communciation Stream-

ing Architecture (CSA) from Intel [4, 8], which elevated the

NIC to a first-class citizen by connecting it directly to the

memory controller hub, i.e., Northbridge, and which was later

subsumed by PCI Express. However, in both cases — CSA

and PCI Express, neither treat the NIC as a first-class citizen

as neither are integrated with the memory subsystem and ac-

cess architecture. Instead, both CSA and PCI Express hold

onto their network-I/O access roots.

We believe that this may be the time to re-visit these ideas

once again. In addition to integrating the NIC into the mem-

ory subsystem, we want to introducemore powerful, network-

specific, processing capabilities to the NIC and treat the NIC

as a network co-processor. However, we will avoid the trap of

putting an actual CPU on the NIC as on-card CPUs typically

add overhead, increase latency, and in many cases, decrease

peak bandwidth available to the application, because an ac-

tual CPU is a generalized compute processor rather than a

task-specific network processor.

In general, the advantages gained by moving the NIC to the

system bus include lower latency, higher bandwidth, and the

ability to run a cache-coherency protocol over the NIC so

that data movement is provided automatically by the mem-

ory management system. This would allow application pro-

grammers to focus on parallelizing programs (by hiding the

details of managing parallelism and data locality from the pro-

grammer) rather than burdening them with managing explicit

data movement into and out of a computing node. The disad-

vantages include the loss of explicit control over data move-

ment to/from the network and the non-standard interface to

the NIC. (With the NIC on the I/O bus, there are several stan-

dard interfaces, e.g., PCI for PCs.) However, bridges from

the system bus are possible. An example of such a bridge is

Intel’s Accelerated Graphics Port, which provides a fast and

dedicated pipe to a graphics accelerator.

2 Design of a Memory-Integrated NIC

Here we study different aspects of the network interface card

(NIC) in order to better understand what design decisions

need to be made to support a memory-integratedNIC, as sum-

marized in Table 1.

Virtualize User Addressing of the NIC. This issue has

been recently addressed by research into OS-bypass proto-

cols [13, 3, 9, 11, 14, 5]. In order to virtualize the NIC to a

user process, address translation and protection must be pro-

vided. Address translation allows a user process to access the

NIC through virtual addresses while protection isolates user

processes from each other. But rather than virtualizing the

NIC via the operating system (OS), it is virtualized through

virtual memory hardware for better performance. Thus, we

can dramatically improve the performance of accessing NIC

memory via virtual memory by having the OS map NIC

memory pages directly into user space and then having the

virtual memory hardware translate these memory-mapped

virtual addresses to appropriate physical address in the NIC

memory.

Cached NIC Registers. Network messages can be cached

in CPU and NIC caches (like regular cacheable memory),

thereby, in general, increasing the effective host-to-network

bandwidth, decreasing the effective host-to-network latency,

and reducing traffic on the system bus by taking advantage

of spatial and temporal locality. Currently, NIC registers are

not cached because no coherency protocol is run over the I/O

bus. Furthermore, CPU access to NIC memory often have

side effects unlike normal cacheable memory.

Cache-Block Transfers. Network messages can be transferred

between the CPU cache, NIC cache, and main memory via

cache-block transfers rather than DMA transfers. This allows

messages to be moved in a single cache-block transfer and

avoids incurring the DMA initiation and teardown overhead

of multiple (and bursty) DMA transfers of a few bytes at a

time.

Memory-Based Queue. The API to the NIC can be designed

as a memory-based queue rather than an explicit data-

movement primitive to/from the NIC. The current practice

3



I/O Access Memory Access

Device on I/O bus Memory on system bus

Indirect via OS Direct via protected user access

Uncached NIC regsters Cached NIC registers

Ad-hoc data movement Cache block transfers

Explicit data movement via API Memory-based queue

Notification via interrupts Notification via cache invalidation

Limited device memory Plentiful memory

No out-of-order access and speculation Out-of-order access and speculation

Table 1: Transforming NIC Access from I/O Access to Memory Access

of using data-movement primitives to move information

to/from the NIC couples CPU involvement with the NIC. By

using a memory-based queue API, we can decouple the CPU

from the NIC, thus freeing the CPU to do useful work while

network communication is occurring; and sending/receiving

packets simply amounts to writing/reading queue memory. In

addition, we avoid the side effects of explicit data movement

by treating NIC queue accesses as side-effect-free memory

accesses. The potential disadvantage of this approach is that

the user no longer has knowledge of how data is actually

moved between the CPU and the NIC (although a counter-

argument would be that the user does not have knowledge of

how data is actually moved between the CPU and memory

either).

Notification via Cache Invalidation. The CPU can be notified

of NIC events indirectly via cache invalidation rather than

directly via heavyweight interrupts which pollute the cache

or directly via polling which wastes CPU cycles which could

be better spent on computation.

Virtual Memory as an Automatic Overflow Buffer. The

memory on a NIC may overflow when bursts of network

messages arrive at the NIC. However, with the NIC being

treated as a network co-processor and CPU peer, a cache

replacement policy to main memory could buffer these mes-

sages automatically without any CPU intervention. However,

the gain of having plentiful buffer space comes at the cost of

additional run-time overheads.

Out-of-Order Accesses and Speculative Loads. Out-of-order

accesses and speculative loads on a CPU’s accesses to a

NIC (like side-effect-free regular memory accesses) are

possible. This is of exceptional importance to the run-time

software and hardware community as it not only allows for

the potential re-ordering of compute-based instructions but

also allows for the potential re-ordering of network-based

instructions in a dynamic pipeline. Currently, this cannot be

done because I/O buses do not adequately support multiple

outstanding transactions whereas the system bus does; side

effects in NICs often force NIC accesses to be performed

in-order; and NICs do not provide any rollback mechanisms

if the CPU’s speculation is incorrect.

3 Related Work

There are several research directions that relate to networks

as first class citizens. We discuss some of them here.

Point-to-Point Interconnects for Network Device Connec-

tivity: In some ways, there have already been some research

directions that try to alleviate network interface cards to a

pseudo-first-class-citizen like status by connecting to them

through dedicated point-to-point links instead of shared I/O

buses. PCI Express (PCIe) [12] was introduced by Intel in

2004 as a structured point-to-point links that connected either

directly to the memory controller or through a series of cross-

bar switches. This allowed network adapters to plug directly

at the end of the PCIe link and use the fabric in a dedicated

manner. The hypertransport consortium [1] went a step fur-

ther to utilize a similar idea, but to have a unified point-to-

point fabric that not only connected the process/memory sys-

tem to the network adapter, but also to the other processors.

Thus, communication between processors was as fast as that

with the network adapter. Intel QuickPath [7] utilizes similar

ideas for the Intel-based platforms.

While all of these research directions attempt to alleviate the

network adapter’s position to that of the CPU with respect to

the communication overhead between the CPU and the NIC,

there are still several issues in which a NIC is not considered

on-par with the CPU, primarily with respect to access rights

to memory and cache regions, as identified in this paper.

Direct Cache Access Capabilities for Networks: Another

technology that allows NICs to have an improved access to

CPU cache is direct cache access [6]. The short version of

this technology is that instead of writing data to memory, net-

work adapters would be allowed to directly write data into

a processor cache. This allows applications to avoid fetch-

ing from memory for small and critical data that just arrived

from another remote node. While this is a step-up for network

adapters, they still have to follow regular access-request pro-

4



tocols unlike CPUs which follow more sophisticated cache

coherence logic between themselves.

4 Concluding Remarks

As network performance continues to increase, small tweaks

and adjustments to the system architecture to allow the net-

work to sustain its performance potential are no longer suffi-

cient. In this paper we revisited a more radical approach to

system architecture that elevates the network interface card

from a second-class citizen that resides out on an I/O inter-

connect to a first-class citizen that resides on the system bus.

We presented various details of this architecture, including is-

sues, pitfalls, and various solutions.

References

[1] HyperTransport Consortium. http://www.hypertransport.org.

[2] W. Feng. Network interface cards as first-class citizens. Invited Talk,

The Ohio State University, 1999.

[3] http://www.hippi.org/cST.html. Scheduled transfer protocol (st), (st is

also being commercially promoted as part of gsn), 1996–present.

[4] http://www.intel.com/design/network/events/idf/csa.htm. Communica-

tion streaming architecture (csa), 2003–2004.

[5] http://www.viarch.org. Vi architecture, 1998–1999.

[6] R. Huggahalli, R. Iyer, and S. Tetrick. Direct Cache Access for High

Bandwidth Network I/O. In ISCA, 2005.

[7] Intel. http://www.intel.com/technology/quickpath.

[8] Intel Corporation. Communication streaming architecture — reduc-

ing the pci network bottleneck. White Paper, Intel Corporation, 2003.

Available online (4 pages).

[9] M. Lauria and A. Chien. High-performance messaging on worksta-

tions: Illinois fast messages (fm) for myrinet. In Proceedings of Super-

computing ’95, November 1995.

[10] S. S. Mukherjee and M. D. Hill. Making network interfaces less pe-

ripheral. IEEE Computer, 31(10):70–76, October 1998.

[11] S. Pakin, V. Karamcheti, and A. Chien. Fast messages (fm): Efficient,

portable communication for workstation clusters and massively-parallel

processors. IEEE Concurrency, 5(2):60–73, April-June 1997.

[12] PCI-SIG. http://www.pcisig.com/specifications/pciexpress/base2.

[13] I. R. Philp and Y. Liong. The scheduled transfer (st) protocol. In Pro-

ceedings of Workshop on Communication, Architecture, and Applica-

tions for Network-based Parallel Computing, January 1999.

[14] H. Tezuka, A. Hori, Y. Ishikawa, andM. Sato. Pm: An operating system

coordinated high-performance communication library. In Proceedings

of High-Performance Computing and Networking ’97, pages 708–717,

April 1997.

5


