
Improving Resource Availability by Relaxing

Network Allocation Constraints on Blue Gene/P

Narayan Desai,1 Darius Buntinas,1 Daniel Buettner,2 Pavan Balaji,1 Anthony Chan1

1 Mathematics and Computer Science Division – Argonne National Laboratory
2 Argonne Leadership Computing Facility – Argonne National Laboratory

{desai,buntinas,balaji,chan}@mcs.anl.gov, buettner@alcf.anl.gov

Abstract—High-end computing (HEC) systems have passed the
petaflop barrier and continue to move toward the next frontier
of exascale computing. As companies and research institutes
continue to work toward architecting these enormous systems,
it is becoming increasingly clear that these systems will utilize
a significant amount of shared hardware between processing
units, including shared caches, memory management engines,
and network infrastructure. While these systems are optimized
to use all of the hardware available in a dedicated manner to
achieve the best performance, in practice, the shared nature of
this hardware makes scheduling applications on it difficult and
wasteful. For example, while the IBM Blue Gene/P system has
been designed to use a torus network for efficient communication,
some of the torus links (especially those connecting different
racks) are shared between multiple racks. Thus, a job running
on one rack, might preclude another job from running on a
second rack in spite of having its compute resources completely
idle. In this paper, we assess the relative performance degradation
noticed by real applications when such shared network hardware
is completely unutilized for some cases. Our measurements
on Intrepid, one of the largest Blue Gene/P installations in
the world, demonstrate less than 5% degradation for several
leadership applications commonly run on the Intrepid system.
Further, we demonstrate that the additional scheduling flexibility
offered by not sharing such hardware can improve the overall
job turnaround time by nearly 40% in some cases.High-end
computing (HEC) systems have passed the petaflop barrier and
continue to move toward the next frontier of exascale computing.
As companies and research institutes continue to work toward
architecting these enormous systems, it is becoming increasingly
clear that these systems will utilize a significant amount of shared
hardware between processing units, including shared caches,
memory management engines, and network infrastructure. While
these systems are optimized to use all of the hardware available in
a dedicated manner to achieve the best performance, in practice,
the shared nature of this hardware makes scheduling applications
on it difficult and wasteful. For example, while the IBM Blue
Gene/P system has been designed to use a torus network for
efficient communication, some of the torus links (especially those
connecting different racks) are shared between multiple racks.
Thus, a job running on one rack, might preclude another job
from running on a second rack in spite of having its compute
resources completely idle. In this paper, we assess the relative
performance degradation noticed by real applications when such
shared network hardware is completely unutilized for some cases.
Our measurements on Intrepid, one of the largest Blue Gene/P
installations in the world, demonstrate less than 5% degradation
for several leadership applications commonly run on the Intrepid
system. Further, we demonstrate that the additional scheduling

flexibility offered by not sharing such hardware can improve the
overall job turnaround time by nearly 40% in some cases.

I. INTRODUCTION

Large-scale systems today already scale to hundreds of

thousands of processing elements. With plans under way

for exascale systems within the next decade, it is expected

that we will soon have systems that comprise more than

a million processing elements. As researchers design these

enormous systems, it is becoming increasingly clear that these

systems will utilize a significant amount of shared hardware.

This includes shared caches, shared memory and memory

management devices, and shared network infrastructure.

Such sharing is already present on systems such as the

IBM Blue Gene, which use flat network topologies (e.g.,

torus) instead of switched cluster interconnects. While this

configuration allows the network cost to increase linearly

with the system size, and not superlinearly as with switched

fabrics, it also results in a significant amount of shared

network hardware. For example, on Blue Gene/P systems,

some of the torus links (especially those connecting different

racks) are shared between multiple racks. Because of the

limited availability of these resources, the system torus can be

partitioned into smaller tori only in a limited number of ways,

resulting in partitions that cannot be wrapped into tori. Thus,

a job running on one rack might preclude another job from

running on a second rack in spite of having completely idle

compute resources. Such shared hardware makes scheduling

applications complex and can potentially waste resources.

If we were not to use such shared hardware at all, the

number of resource sharing conflicts could be significantly

decreased, potentially allowing applications to be scheduled

more effectively. However, using less network hardware than

what is available can also lead to degradation in communica-

tion performance and eventually overall application execution

time. Thus, the best approach for this situation is not at all

clear.

In this paper, we assess the relative performance degrada-

tion observed in real applications when such shared network

hardware is completely ignored for some cases. That is, in

cases where allocating a partition results in use of shared

network hardware that precludes another partition from being

functional, we disable the shared network hardware and in

effect use a mesh network on the partition, instead of a

torus network. Having fewer links available obviously impacts

communication performance. However, our experiments on

Intrepid, one of the largest Blue Gene/P installations in the

world, indicate that for several leadership applications com-

monly run on the Intrepid system this degradation is less than

5%. We also notice that the additional scheduling flexibility

enabled by this configuration can allow partition allocations to

be packed better and improve the overall job turnaround time

by nearly 40% in some cases.

The remainder of the paper is organized as follows. In Sec-

tions II and III we present background information about Blue

Gene partitioning, the expected differences in performance

between mesh and torus partitions, and the Intrepid system.

In Section IV we present related work. In Section V we show

the impact of using mesh versus torus networks on several

microbenchmarks and applications. In Section VI we make

recommendations for operators of such systems. Section VII

we discuss our conclusions and present future work.

II. OVERVIEW OF BLUE GENE/P

IBM Blue Gene systems [?], [?] are highly scalable mas-

sively parallel processing (MPP) systems. BG/P is the second

generation in the BG family. BG/P systems comprise individ-

ual racks that can be connected together; each rack contains

1024 four-core nodes, for a total of 4096 cores per rack. Blue

Gene systems have a hierarchical structure. Nodes are grouped

into midplanes, which contain 512 nodes in an 8x8x8 structure.

Each rack contains two such midplanes. For the remainder of

the paper, we will refer to partitions and jobs by node count;

for example, a 2K node partition comprises four midplanes.

BG/P uses five different networks for different communica-

tion operations. The 3D torus network is used for MPI point-

to-point operations as well as for collective operations using

irregular communication or large message sizes. Each node

has six nearest neighbors. Each link provides a bandwidth of

425 MB/s per direction, for a total bidirectional bandwidth of

5.1 GB/s. Though each node has six bidirectional links on each

node, there is only one shared DMA engine. All discussion in

this paper will focus on the 3D torus network. The 3D torus

network is also usable as a 3D mesh.

Blue Gene systems are partitioned for the purpose of job ex-

ecution; this approach isolates jobs from one another. Individ-

ual midplanes can be used as 512-node partitions or built into

larger partitions. Inter-midplane connectivity is implemented

by using cables and link chips. Each link chip connects to a

single midplane and to four unidirectional cables that connect

midplanes. These cables can be used only by a single partition

at once. Link chips have two major types of configurations:

either the link chips connect the local midplane with a pair of

cables (one in each direction), or they wrap the midplane mesh

back into itself. When the midplane is wrapped, the cables

connected to the link chip and the path through the link chip

remain available for use. This situation, referred to as pass-

through, occurs frequently during partitioning. In this case, the

Logical z cables

Logical y cablesL
o
g
ic

a
l
x
 c

a
b
le

s

Fig. 1. Blue Gene cabling

local midplane is unable to connect to any other midplanes in

this mesh dimension.

Blue Gene partitions can be connected with either a torus

or a mesh network. In general, Blue Gene systems use torus

networks for partitions larger than a single midplane. In order

to build a torus network, each midplane needs to be connected

to six adjacent midplanes. Mesh networks are not wrapped;

only interior connections are required. Hence, mesh networks

cost less in terms of shared resources.

Large Blue Gene systems are constructed in rows of racks.

While the torus building mechanism provided on Blue Gene

systems are flexible, large systems are typically cabled in a

similar fashion, described here. The X dimension of the torus

connects the rows of the machine together. The Y dimension

connects each midplane with a midplane in the same position

two racks in either direction. The Z dimension connects the

four midplanes in two adjacent racks. This scheme is depicted

in Figure 1.

If a torus partition spans more than one midplane in a

dimension, it monopolizes all of the cables in that dimension,

so that the mesh can be properly wrapped into a torus.

Mesh partitions have no such limitation; hence, multiple mesh

partitions can be active on a single dimension simultaneously

without interfering with each other.

III. THE INTREPID SYSTEM

Intrepid is a 556 TF Blue Gene/P system operated by

Argonne National Laboratory for the Department of Energy

INCITE program [?]. The system comprises 40 racks, 80

midplanes, containing a total of 163,840 cores. It was on the

Top500 [?] June 2008 list as the number three system, and

number five in the November 2008 list. Intrepid is a capability

system, with single jobs frequently occupying substantial

fractions of the system. Jobs of 8K and 16K nodes are common

on the system. Larger jobs occur often on the system as well.

Jobs up to 32K nodes run without administrator assistance.

More than a dozen application groups have INCITE appli-

cations on Intrepid. Each of these applications has completed

a computational readiness review that measures their ability to

run at large scale. Each application has different scalability;

while some applications can effectively run at 40K nodes,

many can scale only to 4K or 8K nodes before efficiency

begins to drop off. Most users want to run most of their jobs on

partitions between 1K and 4K nodes. Moreover, because users

are actively scaling their codes to larger sizes, job response

times strongly affect user productivity.

Intrepid is a comprised of forty racks, or eighty midplanes.

The dimensions of the full system torus are 5×4×4. As

described above, each row is a slice out of the X dimension.

A full row (8K node, 16 midplane) torus is 1×4×4. Only a

limited number of torus configurations are possible, because

of the constraints described above. A single 8K node partition

is possible per row, as are four 2K node partitions. Partitions

of 1K and 4K nodes consume cabling resources that impact

their neighbors; hence, only a single 4K partition or four 1K

node partitions can be run at the same time. The balance of

the midplanes can be wired together by using the remaining

dimensions, so the combination of a 4K node partition and

two 2K node partitions is valid. The combination of 4K and

1K node rack partitions is particularly wasteful; the use of

a single 4-rack partition and two 1K node partitions requires

that all four remaining midplanes are usable only individually.

Use of the X dimension cables would allow connection of

these midplanes, at the cost of preventing multirow jobs from

working. For operational reasons, this option is unavailable for

small partitions on Intrepid.

Intrepid uses Cobalt [?], a component-based resource man-

agement suite popular on Blue Gene systems. Its architecture

makes simulation of both scheduling behavior and system

behavior accurate and simple. This simulation is described in

detail elsewhere [?].

IV. RELATED WORK

Previous literature has evaluated and presented ways to

improve communication performance on systems such as the

Blue Gene [?], [?]. However, this work focuses mainly on

improving application performance while utilizing the avail-

able torus network. In this paper, we take a systemwide view

of performance, as opposed to the more application-centric

view of absolute communication performance of Blue Gene

networks.

The performance difference between partitioning issues on

flat networks has also been a topic of significant research re-

cently. Specifically, in [?] the authors studied the performance

implications between the partitioned tori on Blue Gene sys-

tems and the shared torus available on Cray systems. Similarly,

researchers have studied scheduling strategies [?] that study

the implications of not having completely dedicated hardware

for each job and ways to improve such issues. However, the

focus of this paper is slightly different from this research.

Specifically, we do not look into using network hardware

simultaneously in a shared manner by multiple applications.

Rather, we concentrate on the impact of minimizing use the

shared hardware. While using the hardware in a shared manner

is an option too, we do not pursue that in this paper, as it is

not trivial to do so in the current BG/P architecture without

significant hardware changes.

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

8 32 128 512 2K 8K 32K

S
lo

w
d

o
w

n

Job Size (cores)

0 KiB
1 KiB

Fig. 2. Latency slowdown

In summary, this paper extends existing work and brings out

interesting resource management aspects that are present on

current large-scale systems and will become more prominent

and visible in larger systems.

V. EXPERIMENTAL ANALYSIS

Our approach has three major components. First, we validate

our expectations for performance differences between wrapped

and unwrapped mesh partitions. Second, we benchmark sev-

eral applications from the INCITE program. Third, we sim-

ulate the scheduling effect of substituting mesh partitions for

torus partitions using the workload from Intrepid.

A. Synthetic Benchmarks

In this section, we evaluate different synthetic benchmarks

on torus and mesh connected topologies. These benchmarks

give us an indication of the specific cases where large perfor-

mance differences are expected.

1) Point-to-Point Latency: Figure 2 illustrates the slow-

down in the maximum inter-process latency when using a

mesh partition instead of a torus, with increasing system size.

Specifically, the test measures the latency between the two

farthest processes (maximum number of network hops) in

the system for both topologies and presents the percentage

difference between the two. For a message size of 0 bytes,

we notice around 35% slowdown, while for a message size

of 1K bytes, we notice about 20% slowdown. This difference

is due to the increased number of hops that messages have to

traverse when using a mesh instead of a torus. With increasing

message sizes, the slowdown keeps decreasing because of

data pipelining (i.e., the absolute difference remains constant,

causing the percentage difference to reduce).

2) Effective Bisectional Bandwidth: Figure 3 illustrates

the slowdown in the aggregate bandwidth reported by the

B eff benchmark (a part of the HPCC benchmark suite).

Specifically, this benchmark presents the effective bisectional

bandwidth that is available on the system. The figure illustrates

a slowdown of close to 35% for large system sizes. This is

30%

31%

32%

33%

34%

35%

36%

 4096 8192 16384 32768

S
lo

w
d

o
w

n

Job Size (cores)

Fig. 3. Slowdown in aggregate bandwidth reported by b eff benchmark

-1.00%

-0.75%

-0.50%

-0.25%

0.00%

0.25%

0.50%

0.75%

1.00%

 1 2 4 8 16 32 64 128 256

S
lo

w
d

o
w

n

Message size (Bytes)

allgather
allgatherv

scatterv

Fig. 4. Allgather, Allgatherv, and Scatterv slowdown

expected because the effective bisectional bandwidth reduces

when moving from a torus partition to a mesh partition because

of the smaller number of communication links.

3) Collective Communication: Figures 4 and 5 illus-

trate the performance of collective communication oper-

ations for the two topologies. Figure 4 shows the per-

formance of MPI Allgather, MPI Allgatherv, and

MPI Scatterv. Figure 5 shows the performance of the dif-

ferent all-to-all variants (MPI Alltoall, MPI Alltoallv,

and MPI Alltoallw). As shown in the figures, for non-all-

to-all collectives, there is little slowdown, while for all-to-all

collectives, there is a large slowdown (we verified this for other

non-all-to-all collectives as well, but the results are not shown

in this paper because of space constraints). The reason is that

all-to-all collectives perform the most amount of per-process

communication; thus, reducing the number of communication

links causes the largest degradation in their performance.

B. Application Results

In this section we describe three INCITE program appli-

cations: Nek5000, GFMC, and FLASH. Each of these has

105%

110%

115%

120%

125%

130%

135%

 1 2 4 8 16 32 64 128 256

S
lo

w
d

o
w

n

Message size (Bytes)

alltoall
alltoallv
alltoallw

Fig. 5. Alltoall, Alltoallv, and Alltoallw slowdown

been executed on partitions ranging from 1K to 8K nodes (4K

to 32K cores) using both mesh and torus networks. We also

describe P3DFFT, a 3D fast Fourier transformation library, and

compare its relative performance on both networks.

Nek5000 [?] is a spectral element CFD code developed at

Argonne National Laboratory, which features spectral element

multigrid solvers coupled to a highly scalable, parallel coarse-

grid solver. It was recognized in 1999 with a Gordon Bell

prize and is used by more than two dozen research institutions

worldwide for projects including ocean current modeling,

thermal hydraulics of reactor cores, and spatiotemporal chaos.

Because the communication pattern is nearest-neighbor on an

unstructured grid, Nek5000 is highly scalable. This communi-

cation pattern also indicates that we should not see a significant

performance drop when running on a mesh versus a torus.

The second application, Green’s function Monte Carlo

(GFMC) [?], is an ab initio light-nuclei computation code,

that models nuclear structures and reactions from bare nuclear

forces. This application uses the Asynchronous Dynamic Load

Balancing (ADLB) library, developed using MPI specifically

for this code, to distribute work in a master-worker pattern. In

GFMC, the ADLB servers, which serve as master processes,

are arranged in a plane on one side of the partition. The

communication pattern of this application is directed between

master processes and worker processes to request and deliver

work and solutions, as well as between master processes

themselves to distribute pending work requests and solutions.

Note that the servers are arranged on one side of the

partition. In a torus configuration, because of wrap-around

links, the servers have connectivity on both sides of the

plane. In a mesh configuration, however, only one of the

sides is connected to the rest of the mesh. We expect that

mesh performance would be improved by relocating the server

processes.

FLASH 3.1.1 [?] is the latest FLASH release from the ASC

Center at the University of Chicago. The FLASH code [?] is

an astrophysical MPI simulation code written in FORTRAN90

and C. We choose the Sedov 3D setup with adaptive mesh

-2%

-1%

0%

1%

2%

3%

4%

5%

6%

7%

2048 4096 8192 16,384 32,768

S
lo

w
d

o
w

n

Job size (cores)

NEK5000
GFMC

FLASH

Fig. 6. Slowdown of application execution times due to using a mesh versus
a torus configuration.

refinement module, Paramesh 4.0, with high refinement level

(up to lreine max = 12) in our test runs. The Sedov

3D explosion problem [?] is a purely hydrodynamic setup

that simulates the self-similar evolution of a spherical blast

wave from a delta-function initial pressure perturbation in a

homogeneous medium.

We ran these codes on various partition sizes, ranging from

2K cores to 32K cores (512 to 8K nodes), using mesh and

torus configurations. Figure 6 shows the slowdown of the

applications when using a mesh versus torus configuration for

the various job sizes. We see that the largest slowdown was

just over 6% for FLASH at 32K cores. Notice that for 2K and

4K core jobs, GFMC performs better in the mesh configuration

than the torus; however, we believe that this is due to random

variation in the execution times. These results indicate that

using a mesh configuration has only a small effect on the

application’s execution time.

We believe that the high scalability of these application

is a major reason for the relatively small impact. The com-

munication patterns of these applications either are relatively

localized, such as Nek5000, or are more bursty but staggered,

which reduces congestion, such as GFMC.

P3DFFT [?] is a 3D fast Fourier transform library developed

at the San Diego Supercomputing Center. It uses a 2D pencil

decomposition, which allows for good scalability on relatively

large (32768) processor counts. MPI traces show that P3DFFT

depends heavily on MPI Alltoallv for communication. This

dependence explains the substantial difference in performance

between mesh partitions and torus partitions. The relative

performance is shown in Figure 7. While P3DFFT is not an

application per se, it does demonstrate sensitivity to bisection

bandwidth exhibited by one class of large-scale application.

C. Scheduling Simulation

In the previous section, we demonstrated the reduced ap-

plication performance caused by the use of mesh partitions.

However, using mesh partitions should provide a substantial

45%

50%

55%

60%

65%

70%

75%

80%

4096 8192 16,384 32,768

S
lo

w
d

o
w

n

Job Size (cores)

Fig. 7. Slowdown of P3DFFT performance due to using a mesh versus a
torus configuration.

boost to scheduler performance, because resources can be

more freely allocated. To evaluate whether this approach is

effective, we simulate the effects of making mesh partitions

available to the scheduler. Because of the cabling of Intrepid,

it makes sense to use only 1K and 4K node mesh partitions; if

enough hardware is available to run 2K or 8K node partitions,

sufficient cabling exists to build a torus.

For each simulation, we establish a per-run slowdown. Each

job runs for the time included in the input trace, except for

jobs run on mesh partitions. These jobs are expanded by the

configured slowdown.

We have used a workload trace taken from Intrepid. This

workload contains 3,890 jobs and reflects two weeks of ac-

tivity. The INCITE program awards allocations on a January-

to-January basis; hence, many new projects are just getting

under way at the time of this writing. This situation biases this

workload toward smaller jobs more than we typically see after

the start-up period for projects. Also, fewer jobs are queued

during this period in the year; job submission accelerates

as groups become more experienced with the machine and

improve their application scaling.

These simulations were performed using FCFS and the

production scheduling policy used on Intrepid, WFP. WFP

seeks to minimize unit-less job wait times, that is, the time

a job has waited compared with the time requested. It also

favors large node count jobs.

For each scheduling policy, we have compared the current

production system (all torus) configuration used on Intrepid,

with a configuration that uses mesh networks for all 1K and

4K node partitions. In the mesh configuration, we have added a

performance penalty for jobs run on mesh partitions. We have

simulated a uniform 5% and 20% job slowdown for these jobs.

Considering the performance results for applications measured

in the previous section, these seem like realistic values for

application slowdowns.

For the workload tests, utilization was affected substantially;

it improved 3-5% for the cases simulated. This change had a

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

512 1K 2K 4K 8K 16K 32K Avg

Im
p
ro

v
e
m

e
n
t

Job Size (nodes)

FCFS 5% FCFS 20% WFP 5% WFP 20%

Fig. 8. Response Times, by job size.

more striking effect on job wait times. Figure 8 shows this

impact. These results have several interesting characteristics.

First, response times of 512 and 2K node partitions were

negatively impacted. This result is to be expected; jobs of

these sizes benefited from the resource contention experienced

by 1K and 4K node partitions. Response times for 1K and 4K

node partitions are greatly improved. Likewise, this result is

to be expected because the switch from torus to mesh at these

sizes reduces the resources needed to run these partitions. Fur-

thermore, we note that WFP demonstrates diminished response

times when applications have substantial (20%) degradation.

VI. DISCUSSION

The results in this paper raise a set of questions for operators

of such systems. Clearly the performance penalty of switching

to a mesh partition varies with the application. The three

applications benchmarked in Section V showed a range of

results, from no slowdown ranging up to 7%. However, this

7% slowdown is clearly not a worst case scenario; applications

based on P3DFFT or otherwise heavily dependent on all-to-

all operations will show higher slowdowns, potentially rising

to 100% or worse. A site will typically have some mixture of

such workloads, so providing both types or partitions is impor-

tant to improve resource availability while still providing the

best performance for communication-intensive applications.

Users should be allowed to select between a torus partition,

which would provide the best communication performance for

applications like those using P3DFFT, and a mesh partition for

applications similar to FLASH3, GFMC, or Nek5000. Jobs

using mesh partitions could be scheduled more quickly and

would result in improved system utilization.

In the specific case of Intrepid’s workload and current

scheduling policy, this approach appears to provide a greatly

improved level of service to users. Utilization is slightly im-

proved, while job wait times are substantially reduced. While

response times for large jobs are slightly increased under

WFP with the 20% performance penalty, we have determined

that this result is due to poor tuning of WFP with the new

workload. Moreover, at least 75% of the INCITE allocations

(by core hour) on Intrepid do not make heavy use of all-to-

all operations, so system performance would be improved even

without the hybrid solution described above. We would expect

this hybrid approach to surpass the results presented here, for

obvious reasons.

VII. CONCLUSIONS AND FUTURE WORK

Large-scale systems currently use and will continue to use

a significant amount of shared hardware between processing

units. For example, on the Blue Gene/P system, which uses a

torus-based network interconnect, some of the torus links are

shared between multiple racks. Thus, a job running on one

rack might preclude another job from running on a second

rack in spite of its having completely idle compute resources.

In this paper, we assessed the relative performance degradation

in three applications when such shared network hardware

is completely unutilized. Our experiments demonstrated that

while the reduced number of network links available degrades

application performance, this degradation is less than 5% for

several leadership applications commonly run on Intrepid. At

the same time, the additional scheduling flexibility available

can improve the overall job turnaround time by nearly 40% in

some cases.

As future work, we plan to characterize other target appli-

cations in terms of their relative performance. Also, some of

the performance degradation we are seeing might be caused

by collectives that are not tuned for mesh partitions. We

need to investigate whether mesh-tuned collectives could yield

improved performance on mesh partitions compared with

current collectives.

ACKNOWLEDGMENTS

This work was supported in part by the Office of Advanced

Scientific Computing Research, Office of Science, U.S. De-

partment of Energy, under Contract DE-AC02-06CH11357.

The software FLASH3 used in this work was in part

developed by the DOE-supported ASC/Alliance Center for

Astrophysical Thermonuclear Flashes at the University of

Chicago.

This work would not have been possible without the support

of the Argonne Leadership Computing Facility, in particular

the ALCF Operations team. Their assistance is greatly appre-

ciated.

