
GePSeA: A General-Purpose Software Acceleration Framework for

Lightweight Task Offloading∗

A. Singh1 P. Balaji2 W. Feng1

1Dept. of Computer Science

Virginia Tech

{ajeets, feng}@cs.vt.edu

2Mathematics and Computer Science

Argonne National Laboratory

balaji@mcs.anl.gov

Abstract

Hardware-acceleration techniques continue to be used to speed-up

the execution of scientific codes. To do so, software developers iden-

tify portions of these codes that are amenable for offloading and map

them to hardware accelerators. However, offloading such tasks to

specialized hardware accelerators is non-trivial. Furthermore, these

accelerators can add significant cost to a computing system.

Consequently, we propose a framework called GePSeA (General

Purpose Software Acceleration Framework), which uses a small

fraction of the computational power on multi-core architectures to

“onload” complex application-specific tasks. Specifically, GePSeA

provides a lightweight process that acts as a helper agent to the ap-

plication by executing application-specific tasks asynchronously and

efficiently. We then apply the GePSeA framework to a real applica-

tion, namely mpiBLAST, an open-source computational biology ap-

plication, and demonstrate significant application-level benefits.

1 Introduction

Hardware-acceleration techniques continue to assist in im-

proving the performance of scientific codes. These acceler-

ators have traditionally focused on speeding-up the computa-

tionally intensive portions of an application such as Fourier

transformations, finite-element methods (FEMs), and dense

linear algebra. A secondary benefit of hardware accelerators

is their capability to serve as dedicated asynchronous engines,

as compared to general-purpose CPUs that are designed to be

shared between multiple processes.

As high-end computing systems and their associated applica-

tions continue to grow in scale and complexity, the need to

offload more complex tasks, like asynchronous data manage-

ment, becomes increasingly important. However, such tasks

are orthogonal to the primary purpose of existing hardware

accelerators. Consequently, offloading these tasks to hard-

ware accelerators would result in a significant increase in the

complexity and overall cost of a computing system. On the

other hand, multi- and many-core architectures have become

ubiquitous with quad- and hex-core processors already avail-

able and 16- and 80-core processors on the roadmap [6, 16].

∗This work was supported in part by National Science Foundation (NSF)

STTR Grant IIP-0741004 and the Mathematical, Information, and Compu-

tational Sciences Division subprogram of the Office of Advanced Scientific

Computing Research, Office of Science, U.S. Department of Energy, under

Contract DE-AC02-06CH11357.

These trends point to the fact that today, and more so in the

future, each physical node will have a massive number of pro-

cessing units which, for some tasks, can be viewed as low-cost

alternatives to expensive hardware accelerators.

In our previous work, we proposed ProOnE [11], a proto-

col onload engine that utilizes a small fraction of the com-

putational power of multi-core architectures and allows for

efficient onload of communication-related aspects in large-

scale systems. In this paper, we extend our previous de-

sign and propose GePSeA1 — a general-purpose, software-

acceleration framework, which can also onloadmore complex

application-specific tasks. Specifically, GePSeA provides a

number of utility components that support different function-

alities as well as a generic interface for applications to utilize

these components through simple plug-ins. While this pa-

per presents three categories of utility components: (i) data-

management components, (ii) memory-management compo-

nents, and (iii) synchronization and coordination components,

the general-purpose nature of GePSeA allows it to be ex-

tended to other categories as well. In our design, different util-

ity components are aggregated together into a lightweight pro-

cess referred to as a software accelerator. This process acts

as a helper agent to the application by executing lightweight,

application-specific tasks asynchronously and efficiently.

Like ProOnE, GePSeA does not aim to replace tasks that

dedicated hardware-based accelerators such as GPUs and

Cell processors excel at. Instead, it leverages the existing

hardware-offloaded features of such accelerators and extends

them by onloading more complex, application-specific tasks

that cannot be easily offloaded. We demonstrate the effi-

cacy of GePSeA by applying it to mpiBLAST, an open-source

bioinformatics application and delivering a performance im-

provement with 2.05x speed-up.

The rest of the paper is organized as follows. Section 2

presents background and related work on accelerators and

frameworks for parallel programming, followed by the de-

sign of our proposed software accelerator framework, i.e.,

GePSeA, in Section 3. We then present a case study with

mpiBLAST in Section 4, followed by a detailed experimental

evaluation in Section 5. Section 6 presents our conclusions

and discussion for future work.

1GePSeA is pronounced like the word gypsy.

1



2 Background and Related Work

While there exist many research efforts on developing spe-

cialized hardware accelerators [12, 15, 17, 19], very little ex-

ists with respect to software accelerators. However, there has

been considerable interest in the research community to de-

velop multi-core-aware applications [18]. In this paper, we

show how our GePSeA framework provides software-based

acceleration to dramatically improve the performance of our

case-study application, mpiBLAST.

Our work is distinct from other frameworks and libraries [3,

5, 8] available for the development of parallel applica-

tions. Frameworks [3, 5] and libraries such as MPICH2 and

OpenMP are collections of library functions that are intended

for the quick development of parallel programs. In contrast,

our framework is not intended for the development of paral-

lel applications; rather, it is for the development of software

accelerators that assist parallel applications.

In [10, 14], the authors study several techniques that can be

used for overlapping I/O, computation, and communication

in parallel applications written with MPI and MPI-IO. Using

GePSeA, applications can offload any of the aforementioned

tasks, including disk I/O and communication.

In [18], the authors present a communication engine to exploit

the cores in multi-core systems using various multi-threading

techniques. The authors plan to integrate their engine with

MPICH2 in the future. This work is most closely related to

ours. However, GePSeA differs in that it provides an infras-

tructure to quickly build application-specific software accel-

erators for any application (whether or not using MPICH2) as

well as to efficiently schedule onloaded tasks to maximize the

use of a compute node’s system resources.

In summary, our work differs from the existing literature with

respect to its capabilities and underlying architecture, and at

the same time, forms a complementary contribution to other

existing literature that can be simultaneously utilized.

3 The GePSeA Framework Design

The GePSeA framework is designed to function as indepen-

dently of the application as possible. Much like existing hard-

ware accelerators, GePSeA onloads several utility functions

on a dedicated unit (subset of cores in this case) and provides a

simple interface that applications can use to take advantage of

such functionality. These tasks are executed asynchronously,

allowing the application to continue its respective processing.

Figure 1 illustrates the design.

While GePSeA is a general-purpose framework that allows

arbitrary tasks to be “onloaded,” we focus on three categories

of components in this paper: (a) data-management compo-

nents, (b) memory-management components and (c) synchro-

nization and coordination components, as shown in Figure 2.

We describe the details of each of these categories as well

as some of the components within these categories below.

Figure 1: Using Accelerators for Parallel Applications

While the basic idea of some of these components is not new,

e.g., [20, 13], our work focuses on providing such function-

ality in the context of a general-purpose software accelerator,

which presents its own unique challenges.

3.1 Data-Management Utilities

The data-management utilities deal with moving I/O data as-

sociated with the application, including input data, output

data, and transitional meta-data that is created and destroyed

during application execution. We present four utilities within

this category: (i) distributed data caching, (ii) data streaming

service, (iii) distributed data sorting, and (iv) data compres-

sion engine. We note that while this paper presents software-

based designs for each of these utilities, this does not preclude

GePSeA from taking advantage of hardware implementations

when they are available. When such hardware units are avail-

able, GePSeA would simply replace these modules with the

hardware ones while retaining the interface it exposes to ap-

plications. Thus, from an application’s perspective, the actual

implementation of these utilities does not matter.

Distributed Data Caching: This component provides the

caching capability for an entire input database across all of

system memory. The input data used by many applications

(terabytes in size) is typically several times larger than the

amount of memory on each node (gigabytes in size). How-

ever, for large-scale systems, the total system memory is tens

of terabytes in size which, on the whole, is sufficient to cache

the entire input data in many cases. The distributed data

caching component performs this task by trapping I/O calls,

reading the entire input data into the system memory, and re-

sponding to I/O requests from the distributed memory cache,

instead of from the disk or filesystem.

The main challenge in distributed data caching is the address-

ability of the data. Specifically, should the application be

aware of the actual locality of the data segment, or should

this information be hidden and handled internally by the data

caching component? For most scalable applications, I/O

transactions involve moving reasonably large amounts of data

(e.g., a few megabytes at a time). So, the overhead added due

2



Figure 2: GePSeA Architecture

to trapping I/O calls, automatically figuring out the location,

and fetching data is typically not a major portion of the over-

all I/O cost. Furthermore, implicitly managing data locality

makes it simpler and intuitive for applications to use this com-

ponent. Thus, we chose to hide data locality. Data movement

is completely handled by this component through appropri-

ate communication that is initiated and terminated within the

components and never exposed to the applications.

Data Streaming Service: While distributed data caching

moves data from the filesystem to system memory thus reduc-

ing I/O overhead, the amount of time taken for data movement

is still large, especially when the amount of computation per

data unit is small (e.g., in search algorithms). Thus, to keep

the application fed with data, techniques such as prefetch-

ing are needed. The data streaming service handles this by

swapping out unused data with fresh data that the application

would use. This component includes distributed coordination

with other instances of the GePSeA helper agents in order to

minimize duplication of data (i.e., data is swapped between

two nodes instead of replicating and utilizing more memory

than needed). In addition, because this coordination is com-

pletely handled by the GePSeA helper agents, the prefetching

and swapping is done in a completely asynchronous manner

without disturbing the application.

Data Compression Engine: As the name suggests, this

component deals with (de)compressing data. However, to-

gether with regular byte-stream compression, this engine also

provides capabilities for application-specific compression, as

presented in our previous work [4]. Specifically, this engine

can either view the data as a stream of bytes or as high-level

application-specific objects that are converted to meta-data

that is much smaller in size. Once communicated over the

network, this meta-data is converted back to the actual data.

3.2 Memory-Management Utilities

Memory-management utilities deal with handling system

memory, allowing applications to access the entire memory

of the system rather than just the local nodes memory.

Global Memory Aggregator: Operations like caching, in-

dexing, and searching can all perform better with larger mem-

ory. Since the cost of remotememory access is typically much

lower than the cost of disk access, these components can ef-

fectively utilize the free memory available on other nodes.

The global memory aggregator efficiently allows applications

to utilize the memory on the entire cluster instead of just their

local memory. Specifically, this primitive presents a global

address space to its upper layers and maintains a mapping

of the locations on the global address space with the actual

node and physical address of these locations. Unlike the dis-

tributed data caching service, this component does not per-

form the global address translation to the actual physical ad-

dress and physical node transparently; this is because memory

accesses are typically much smaller in size than I/O accesses

and are expected to have very little overhead. Thus, appli-

cations explicitly control and manage data placement on the

system. Data movement, however, is completely handled by

the global memory aggregator.

3.3 Coordination and Synchronization Utilities

For applications using a large number of processes, coordina-

tion and synchronization between the processes can be a ma-

jor portion of the application execution. This category deals

with utility components that improve such tasks.

Global Process State Management: Managing the data pro-

cessing performed by application processes requires sharing

certain information about each node, such as whether the pro-

cess on that node is idle and waiting for communication or

what fragment of the data it currently hosts. The performance

and scalability of applications largely depends on how effi-

ciently global process state is maintained. Thus, the global

process-state management primitive aims at maintaining an

up-to-date and complete information about the status of the

different nodes in the cluster.

Bulletin Board Service: This task provides an addressable

memory that can be read or written to by any other node in the

cluster system. The bulletin board itself is distributed mem-

ory placed on different nodes in the system. However, from an

application’s perspective, this is a contiguous chunk of mem-

ory that is available to publish information. Together with the

3



efficient movement of data, this component also handles the

synchronization required in order to avoid data corruption.

Reliable Advertising Service: The reliable advertising ser-

vice addresses reliable and efficient ways of distributing in-

formation across the entire system. Where available, this task

can internally utilize the unreliable multicast features pro-

vided by networks such as InfiniBand, while providing soft-

ware reliability on top of it. On other architectures, such re-

liability is handled using reliable protocols such as TCP. This

task also includes other capabilities such as protection against

overwrite (i.e., two continuous messages from the same host

will ensure that the first message is read by the host before the

second is delivered), host transparent advertising (i.e., the re-

mote host does not have to actively provide a buffer to receive

the advertisements from other nodes), and advertisement fil-

tering (i.e., getting rid of irrelevant advertisements), and vari-

ous others that need to be handled efficiently.

Distributed LockManagement: A distributed lock manager

allows lock-based synchronization between multiple nodes

to avoid race conditions while accessing shared resources.

While such locking capability can be provided using the

atomic operations provided by high-speed networks such as

InfiniBand, the GePSeA helper agents can enhance these fea-

tures by providing capabilities, such as request queuing and

group-wise shared locks, that cannot be easily provided in

hardware. For environments where such networks are not

available, the GePSeA agents can perform both the atomic

operations as well as the request queueing and shared locks.

Dynamic Load Balancing: Load imbalance among the

nodes of the cluster can result in a bottlenecks that can limit

the scalability of parallel applications. This component pro-

vides mechanisms to balance the load on each node using the

reliable advertising service component to keep track of avail-

ability of all the nodes in the system. In this approach, each

node announces its availability when idle to an elected node

called the scheduler. The scheduler then assigns the work to

the nodes. Each node periodically queries the scheduler to ob-

tain the information about the work assignment to itself and to

all the other nodes in the cluster. Multiple schedulers can be

used to avoid hot spots but are outside the scope of this paper.

4 Case Study with mpiBLAST

The GePSeA framework is a general-purpose software accel-

erator that can be used by many applications. To demon-

strate its capabilities, we describe a case study using a popular

sequence-search application called mpiBLAST.

4.1 mpiBLAST Overview

mpiBLAST [7] is one the most popular sequence-search ap-

plications used in computational biology. It internally uses

the NCBI BLAST toolkit [1], the de facto “gold standard”

for sequential pairwise sequence-search that is ubiquitously

used in biomedical research. The BLAST tool searches one or

multiple input query sequences against a database of known

nucleotide (DNA) or amino acid sequences. A similarity

score is calculated for each close match based on a statisti-

cal model. The similarity of the comparison is measured by

the match with the highest score. As a result, the sequences

in the database that are most similar to the query sequence

are reported, along with their matches scored beyond a cer-

tain threshold. Therefore, the BLAST process is essentially

a top-k search, where k can be specified by the user, with a

default value of 500.

The core of the mpiBLAST algorithm is based on database

segmentation. Before the search, the raw sequence database

is formatted, partitioned into fragments, and stored in a shared

storage space. mpiBLAST then organizes parallel processes

into one master and many workers, as shown in Figure ??.

The master breaks down the search job in a Cartesian-product

manner and maintains a list of unsearched tasks, each rep-

resented as a pair of a query sequence and a database frag-

ment. Whenever a worker becomes idle, it asks the master

for a unsearched task and copies the needed fragment to its

local disk (if the fragment has not been cached locally) and

performs a BLAST search on its assignment. Upon finishing

a task, a worker reports its local results to the master for cen-

tralized result merging. Once the results of searching a query

sequence against all database fragments have been collected,

the master calls the standard NCBI BLAST output function

to format and print out results of this query to the output

file. By default, those results contain the top 500 database

sequences with highest similarity to the query sequence along

with their matches. The above process repeats until all tasks

have been searched. With database segmentation, mpiBLAST

can deliver super-linear speed-up when searching sequence

databases larger than the memory of a single node. In recent

developments, mpiBLAST has evolved to use a more scalable

parallel approach that allows different queries to be concur-

rently searched as well [9].

mpiBLAST, like most parallel sequence-search algorithms,

follows a scatter-search-gather model. The scatter stage con-

sists of query and/or database segmentation. In the search

stage, each worker searches the query against the assigned

database portion. Finally, the gather stage consists of merg-

ing of output results from individual workers.

Figure 3: Scatter-Search-Gather Model of Parallel Sequence

Search Applications [2]

4



Figure 4: Accelerator Framework used by mpiBLAST

4.2 mpiBLAST over GePSeA

Figure 4 shows components at each layer of accelerator

framework used by the mpiBLAST application. We de-

veloped asynchronous output consolidation, runtime output

compression and hot-swap database fragments plug-ins for

mpiBLAST. Using these plug-ins mpiBLAST can offload

considerable amount of work to accelerator that can be ex-

ecuted in parallel. Though we developed these plug-ins

for mpiBLAST, we believe they can be used by other se-

quence search applications such that follow scatter-search-

gather model described in the previous section.

4.2.1 Asynchronous Output Consolidation Plug-In

This plug-in utilizes the processing capability of the accelera-

tor to merge/sort the data that is distributed across all multiple

nodes in parallel. This is an important capability since re-

sult merging can be done asynchronously by the accelerators

while the applications can continue their respective applica-

tion processing. For example, if the first node has gotten its

results earlier than the other nodes, it does not have to wait

for till the others are done to perform the merge. Instead, it

can hand over this data to the accelerator; this accelerator can

wait for the other nodes and sort the data incrementally as the

other nodes finish their task.

To remove the bottleneck due to single writer, each accelera-

tor has the capability to write the output results directly to the

output file on a shared storage. Accelerator writes the results

into a separate file for each query assigned to it by the sched-

uler. After all the queries have been processed the result files

are sorted and merged into a single output file. This work of

merging and writing output data is divided fairly among the

accelerators using load balancing primitive.

4.2.2 Runtime Output Compression Plug-In

The data compression engine provides capabilities to com-

press the actual data. We conducted tests on the compressibil-

ity of the BLAST output and found that when the output was

in the standard pairwise alignment text format that the output

could be compresses to less than 10 percent of its original size

using gzip. This is mainly due to the redundancy found in the

BLAST output. The runtime output compression can be used

to compress the output before transfer thereby significantly

reducing the transfer time.

4.2.3 Hot-Swap Database Fragments Plug-In

Currently, in sequence search applications, the database is

pre-partitioned into a number of fragments that are distributed

over different nodes. Normally worker node searches the

database it holds. However balancing the work load on each

worker may require a node to hot-swap the portion of the

database it is currently processing with the other portions on-

demand. This feature swaps the database fragments asyn-

chronously across the nodes while hosts can continue their

respective application processing.

5 Experimental Evaluation

In this section, we evaluate the accelerator for mpiBLAST

and do a performance analysis. For all our experiments, we

used the GenBank nr database, a protein type repository fre-

quently searched against by bioinformatics researchers. The

size of the raw nr database is nearly 1 GB, consisting of

1,986,684 peptide sequences. We used ICE cluster residing in

Synergy Lab at Virginia Tech for our experiments. ICE clus-

ter has 9 nodes with each node equipped with two dual-core

AMD Opteron 2218 processors. Thus, each node has 4 cores.

Memory and cache size on each node is 4 GB and 1024 KB,

respectively. The interconnect is 1-Gbps Ethernet.

For our experiments, we pre-partitioned the NIH GenBank

nr database into 8 fragments using the mpiformatdb util-

ity. For most experiments, the input query sets containing dif-

ferent number of sequences were chosen randomly from nr

database. For the other experiments, pseudo-random query

sets were chosen in order to better control the output size and

to better analyze the efficacy of specific features of our accel-

erator.

Our experimental methodology includes running mpiBLAST

with an accelerator and without an accelerator on a given set

of processors on the ICE cluster for the same set of input

query set.

5.1 Accelerator on an Existing Core

By an existing core, we mean a core that is already running

some application process, e.g., worker process. Each node of

the cluster has a total of 4 cores. We ran one worker process

on each of these 4 cores with each worker process explicitly

bound to a core using the physcpubind utility available

5



on NUMA machines. Our accelerator (one per node) ran on

one of these 4 already-occupied cores, as per the scheduling

strategy of the operating system, as shown in Figure 5.

We conducted the experiments running mpiBLAST with and

without an accelerator for 8, 16, 24 and 36 workers, where

each worker ran on a separate core. For this experiment, 300

input query sequences were randomly chosen from the nr

database.

Figure 5: (a) Each worker process runs on a separate core. (b)

Core 2 is shared between worker process P2 and accelerator

A1

Figure 6 shows significant performance improvement using

the software accelerator. For 36 workers, we observed as

much as a 2.05x speed-up with an accelerator (per node)

against no accelerator. The speed-up increases with increase

in worker processes. This improvement is attributed to the

overlapping of worker computation and communication (be-

tween worker and the writer). Offloading of result merging

and writing tasks to an accelerator also contributes signifi-

cantly to this speed-up. These results were particularly inter-

esting as we are running the accelerator on an oversubscribed

core (against running exclusively on a spare core thereby

committing it additional system resources) and still observe

significant improvement.

 0

 0.5

 1

 1.5

 2

 2.5

8 16 24 36

S
p
e
e
d
u
p

Number of workers

Figure 6: Speed-up: Accelerator on an Existing Core

5.2 Accelerator on a Spare Core

By spare core, we mean a core that does not run any applica-

tion process. In this experiment, on a given node, we run 3

worker processes each bound explicitly to a core with the ac-

celerator bound explicitly to the fourth spare core. Therefore

for 9 nodes, we have total of 27 workers with one acceler-

ator on each node. Figure 8 shows significant speed-up of

mpiBLAST with a maximum of 1.68x for 27 workers. We

noticed that while the CPU utilization of a worker process is

nearly 100%, the CPU utilization of an accelerator is only 2-

5%. Therefore, running the accelerator exclusively on a spare

core results in under-utilization of system resources.

Figure 7: (a) Each of 3 worker processes runs on separate

core, core 4 unused (b) Each of 3 worker processes runs on

separate core, accelerator A1 on fourth spare core

 0

 0.5

 1

 1.5

 2

 2.5

6 12 18 27

S
p
e
e
d
u
p

Number of workers

Figure 8: Speed-up: Accelerator on a Spare Core

Next, we use the data from the above experiments to analyze

the effect of running mpiBLAST in the following per-node

configurations: (1) 4 worker processes running on 4 cores

of a node with no accelerator versus (2) 3 worker processes

running on 3 cores and an accelerator running on the fourth

spare core. Thus, for a 9-node configuration, we compare be-

tween 36 mpiBLAST worker processes running on 36 differ-

ent cores without an accelerator versus 27 mpiBLAST worker

processes with an accelerator on each node. Even with one

worker less per node, we still see speed-up as much as 1.4x

with 36 workers. Refer to Figure 10. Even though accelerator

utilizes only 2-5% CPU cycles, it still performs better when

replaced by a worker whose CPU utilization is close to 100%.

As mentioned earlier that running accelerator on an spare core

result in under-utilization of CPU but even then it performs

better than being replaced by a worker process.

6



Figure 9: (a) 4 worker processes per node running on sepa-

rate cores (b) 3 worker processes and an accelerator per node

running on separate cores

 0

 0.5

 1

 1.5

 2

 2.5

8 16 24 36

S
p
e
e
d
u
p

Number of cores

Figure 10: Speed-up using accelerator with different number

of workers

5.3 Worker Search Time

We analyzed the variation of search time and the non-search

time of each worker with increase in number of worker pro-

cesses. For mpiBLAST, search time refers to the computation

time while non-search time refers to non-computation time.

We observed that for a fairly large number of input query se-

quences, percentage of search time of a worker to total time

decreases rapidly from 92.2% to nearly 71% as shown in Fig-

ure 11. However mpiBLAST with accelerator reported over

99% of the total worker time as search time consistently.

Figure 11: Worker search time as a percentage of total worker

time with and without accelerator

5.4 Asynchronous Output Consolidation

We tested distributed output consolidation feature provided

by accelerator as described in section 4.2.1. In this experi-

ment we compared output result consolidation done by only

one accelerator in the cluster (chosen statically) against result

consolidation done by each accelerator in the cluster. Results

are shown in Figure 12.

 0

 10

 20

 30

 40

 50

 60

50 100 150 200 250

%
 r

e
d

u
c
ti
o

n
 i
n

 r
u

n
n

in
g

 t
im

e

Problem size (number of query sequences)

Figure 12: Reduction in running time of mpiBLAST due to

asynchronous result consolidation feature

5.5 Dynamic Load Balancing

We tested dynamic load balancing functionality provided by

accelerator as described in the design section. We compared

dynamic load balancing with static allocation of result merg-

ing and writing assignment. We see close to 14% of perfor-

mance improvement from the Figure 13. With highly uneven

queries this difference could be very high.

 5

 10

 15

 20

 25

8 16 24 36

%
 r

e
d
u
c
ti
o
n
 i
n
 r

u
n
n
in

g
 t

im
e

Number of workers

Figure 13: Reduction in running time of mpiBLAST due to

dynamic load balancing

5.6 Run-Time Output Compression

We tested compression functionality provided by accelerator

as described in section 4.2.2. Negative values Figure 14 sig-

nify increase in running time of mpiBLAST using the com-

7



pression engine. This is contrary to our expectations. How-

ever, for compression at run time to be effective, network la-

tency must exceed the time required to compress and uncom-

press the data. We believe that size of result data generated by

our experiments is not large enough to make positive impact

on the running time. However we do observe a that running

time decreases with increase in worker processes.

-4

-2

 0

 2

 4

8 16 24 36

%
 r

e
d

u
c
ti
o

n
 i
n

 r
u

n
n

in
g

 t
im

e

Number of workers

Figure 14: Effect of using compression engine to compress

the output at runtime

6 Conclusion and Future Work

In this paper, we presented a general-purpose software ac-

celeration framework called GePSeA that dedicates a small

subset of the available cores on a multi-core equipped node

to “onload” complex application-specific tasks. The pro-

posed framework does not aim to replace tasks that dedicated

hardware-based accelerators such as GPGPUs and Cell pro-

cessors specialize in. Instead, it utilizes the existing hardware-

offloaded features of such accelerators, but extends them

by onloading more complex application-specific functional-

ity that cannot be easily offloaded. Together with the de-

tailed design of GePSeA, we also presented a case study with

mpiBLAST, an open-source computational biology applica-

tion and demonstrated more than 205% improvement in the

overall application performance.

Our future work would involve extending GePSeA to support

new abstract features so that the accelerator can be used by

more applications. We also plan to use our framework with

other parallel applications and also conduct conduct extensive

performance and usability studies.

References

[1] S. Altschula, W. Gisha, W. Millerb, E. Meyersc, and D. Lipmana. Ba-

sic local alignment search tool. Journal of Molecular Biology, 215(3),

1990.

[2] Jeremy Archuleta, Eli Tilevich, and Wu chun Feng. Maintainable

Software Architecture for Fast and Modular Bioinformatics Sequence

Search . In Proc. of the 23rd IEEE International Conference on Soft-

ware Maintenance, 2007.

[3] Olivier Aumage, Guillaume Mercier, and Raymond Namyst.

MPICH/Madeleine: A True Multi-Protocol MPI for High-Performance

Networks. In Proc. of 15th International Parallel and Distributed Pro-

cessing Symposium, 2001.

[4] P. Balaji, W. Feng, J. Archuleta, and H. Lin. ParaMEDIC: Paral-

lel Metadata Environment for Distributed I/O and Computing . In

IEEE/ACM International Conference for High Performance Comput-

ing, Networking, Storage and Analysis (SC), 2007.

[5] F. Bertrand and R. Bramley. DCA: A distributed CCA framework based

on MPI. In Proc. of High-Level Parallel Programming Models and

Supportive Environments, 2004.

[6] Intel Corp. Tera-scale computing.

[7] A. Darling, L. Carey, and W. Feng. The design, implementation, and

evaluation of mpiblast. In International Conference on Linux Clusters:

The HPC Revolution 2003, 2003.

[8] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Pro-

cessing on Large Clusters. In Proc. of Symposium on Operating System

Design and Implementation, 2004.

[9] M. Gardner, W. Feng, J. Archuleta, and X. Ma H. Lin. Parallel Ge-

nomic Sequence-Searching on an Ad-Hoc Grid: Experiences, Lessons

Learned, and Implications . In IEEE/ACM SC2006: The International

Conference on High-Performance Computing, Networking, and Stor-

age, 2006.

[10] Mao Jiayin, Song Bo, Wu Yongwei, and Yang Guangwen. Overlap-

ping Communication and Computation in MPI by Multithreading. In

Proc. of International Conference on Parallel and Distributed Process-

ing Techniques and Applications, 2006.

[11] P. Lai, P. Balaji, R. Thakur, and D. K. Panda. ProOnE: A General Pur-

pose Protocol Onload Engine for Multi- and Many-Core Architectures.

Technical report, Argonne National Laboratory, 2009.

[12] R. Luthy and C. Hoover. Hardware and software systems for accelerat-

ing common bioinformatics sequence analysis algorithms . In Biosilico,

2(1), 2004.

[13] S. Narravula, A. Mamidala, A. Vishnu, K. Vaidyanathan, and D. K.

Panda. High Performance Distributed Lock Management Services us-

ing Network-based Remote Atomic Operations. In Int’l Symposium on

Cluster Computing and the Grid (CCGrid), 2007.

[14] Christina M Patrick, SeungWoo Son, and Mahmut Kandemir. Enhanc-

ing the Performance ofMPI-IO Applications by Overlapping I/O, Com-

putation and Communication . In Proc. of Symposium on Principles and

Practice of Parallel Programming, 2008.

[15] IBM Research. The cell project at ibm research. http://www.

research.ibm.com/cell/.

[16] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael

Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Suger-

man, Robert Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat

Hanrahan. Larrabee: A many-core x86 architecture for visual comput-

ing. In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, pages 1–15,

New York, NY, USA, 2008. ACM.

[17] R. K. Singh, W. D. Dettloff, V. L. Chi, D. L. Hoffman, S. G. Tell, C. T.

White, S. F. Altschul, and B. W. Erickson. BioSCAN: A Dynamically

Reconfigurable Systolic Array for Biosequence Analysis. In Research

on Integrated Systems, 1993.

[18] F. Trahay, E. Brunet, A. Denis, and R. Namyst. A multithreaded com-

munication engine for multicore architectures. In Proc. of IEEE Inter-

national Symposium on Parallel and Distributed Processing, 2008.

[19] General-purpose computation using graphics hardware. http://

www.gpgpu.org.

[20] K. Vaidyanathan, S. Narravula, P.Lai, and D. K. Panda. Optimized Dis-

tributed Data Sharing Substrate in Multi-Core Commodity Clusters: A

Comprehensive Study with Applications. In Int’l Symposium on Clus-

ter Computing and the Grid (CCGrid), 2008.

8


