
Semantics-based Distributed I/O with the ParaMEDIC Framework∗

P. Balaji
Math. and Comp. Science

Argonne National Laboratory
balaji@mcs.anl.gov

W. Feng
Dept. of Computer Science

Virginia Tech
feng@cs.vt.edu

H. Lin
Dept. of Computer Science

North Carolina State University
hlin2@ncsu.edu

Abstract

Many large-scale applications simultaneously rely on multiple re-

sources for efficient execution. For example, such applications may

require both large compute and storage resources; however, very few

supercomputing centers can provide large quantities of both. Thus,

data generated at the compute site oftentimes has to be moved to a

remote storage site for either storage or visualization and analysis.

Clearly, this is not an efficient model, especially when the two sites

are distributed over a wide-area network.

Thus, we present a framework called “ParaMEDIC: Parallel Meta-

data Environment for Distributed I/O and Computing” which uses

application-specific semantic information to convert the generated

data to orders-of-magnitude smaller metadata at the compute site,

transfer the metadata to the storage site, and re-process the metadata

at the storage site to regenerate the output. Specifically, ParaMEDIC

trades a small amount of additional computation (in the form of data

post-processing) for a potentially significant reduction in data that

needs to be transferred in distributed environments.

1 Introduction

With the rapid growth in the scale and complexity of scien-

tific applications over the past few decades, the requirements

for compute, memory and storage resources are now greater

than ever before. While system sizes have also grown, most

researchers do not have local access to systems of the scale

that they need for their applications. Hence, they remotely

access such large systems to perform the required computa-

tions. Further, many of these applications require multiple

resources simultaneously for efficient execution. For exam-

ple, applications that perform large computations to generate

massive amounts of output data are becoming increasingly

common. While several large-scale supercomputers provide

either the required compute power or storage resources, few

provide both. Thus, data generated at a remote compute site

oftentimes has to be moved to a local storage site for either

storage or visualization and analysis. Clearly, this is not an

efficient model, especially when the two sites are distributed

over a wide-area network.

In this paper we present a novel framework called

“ParaMEDIC: Parallel Metadata Environment for Distributed

I/O and Computing” to effectively utilize both large-scale re-

mote computational resources as well as local compute re-

sources to perform efficient data movement in distributed en-

vironments. ParaMEDIC uses application-specific semantic

∗This work was funded in part by the Mathematical, Information, and

Computational Sciences Division of the Office of Advanced Scientific Com-

puting Research, Office of Science, U.S. Department of Energy, under Con-

tract DE-AC02-06CH11357 and the Dept. of Computer Science at Virginia

Tech.

information and converts the generated data from a given ap-

plication to orders-of-magnitude smaller metadata at the com-

pute site. It then transfers the metadata to the storage site and

re-processes the metadata at the storage site to regenerate the

output. Specifically, ParaMEDIC trades a small amount of

additional computation (in the form of data post-processing)

for a potentially significant reduction in data that needs to be

transferred in distributed environments.

At a high level, ParaMEDIC is similar to standard com-

pression algorithms. However, the term “compression” typ-

ically has a connotation that the data is dealt as a generic

byte-stream. Because ParaMEDIC uses a more abstract

application-specific representation of the data to achieve a

much larger reduction in data size, we instead use the term

“metadata transformation” in this case.

Together with a detailed description of the ParaMEDIC

framework, this paper also evaluates ParaMEDIC on three

distributed systems. The first system utilizes TeraGrid nodes

at the University of Chicago and San Diego Supercomputing

Center (30-Gbps network connection). The second system

consists of a secure filesystem hosted between the Argonne

National Laboratory and Virginia Tech over an Internet2 con-

nection (1-Gbps connection). The third system is a local clus-

ter connected with a dedicated 10-Gbps network that has the

ability to vary both bandwidth and latency between any two

nodes. We use this last system to emulate various forms of

high-latency and high-bandwidth distributed computing in-

frastructures. Our experimental results demonstrate order-

of-magnitude improvements in performance with ParaMEDIC

compared to the traditional approach of blindly moving data

in distributed environments.

2 Sample Distributed Environments

A wide variety of distributed environments exist today, rang-

ing from high-latency, high-bandwidth LambdaGrids, to low-

bandwidth environments connected over the Internet, to unse-

cure environments requiring data encryption before transmis-

sion. Here we present two sample distributed environments.

2.1 NSF TeraGrid

NSF TeraGrid is a distributed computing facility that com-

bines leadership-class resources at 11 partner sites within

the U.S. to form the world’s largest distributed cyber-

infrastructure for open scientific research. It includes 750+

teraflops of computing capability and 30+ petabytes of data

storage, along with rapid access and retrieval over high-

performance networks to form the world’s largest distributed

1



cyber-infrastructure for open scientific research.

The TeraGrid comprises several sites including the Univer-

sity of Chicago/Argonne National Laboratory (Illinois), San

Diego Supercomputing Center (California), Purdue Univer-

sity (Indiana), Texas Advanced Computing Center (Texas),

and others. The San Diego Supercomputing Center (SDSC)

also doubles as a host for a global parallel filesystem (GPFS)

that is visible and usable by all TeraGrid compute servers. All

sites are connected using high-bandwidth optical links. How-

ever, the large physical distance between the sites forces the

latency to be high (up to tens of milliseconds) as well.

Scientists use the computational power available at different

locations to run computations and then write the final out-

put to the globally shared filesystem to be viewed or post-

processed at a later time. While such a system provides good

computational capability for I/O-rich applications, the dis-

tributed filesystem can form a significant bottleneck.

2.2 Argonne-VT Distributed System

The Argonne-VT distributed system is a small-scale research

infrastructure built to share application output data for post-

processing and visualization. The system consists of 200 pro-

cessors of shared compute resources, and about 200 gigabytes

(GB) of main memory spread across the two sites. Apart from

this, the Argonne site also provides 10 terabytes of storage re-

sources to be utilized by the compute systems.

The storage resources available at Argonne are shared across

the two sites using a distributed file-system that utilizes the

shared Internet2 connectivity (1 Gbps). This network connec-

tivity is much slower than the NSF TeraGrid infrastructure.

Furthermore, though this network is mostly a dedicated in-

frastructure, it occasionally experiences large traffic bursts,

causing further performance degradation in the network. Fi-

nally, because the connection between the two sites is over

the regular wide-area network, it is considered to be unse-

cure, and thus, the data transmission might require encryp-

tion, which can add substantial overhead as well.

3 ParaMEDIC Design Overview

This section presents a detailed description of the

ParaMEDIC framework (short for Parallel Metadata

Environment for Distributed I/O and Computation).

3.1 The ParaMEDIC Framework

ParaMEDIC provides a framework for decoupling computa-

tion and I/O in applications that rely on large quantities of

both. Its architecture, shown in Figure 1), contains three

major components that are abstracted to the applications

through the ParaMEDIC API: (a) ParaMEDIC data tools, (b)

communication services, and (c) application plugins. The

ParaMEDIC data tools include efficient support for data-

touching operations such as data encryption and data in-

tegrity that might be required in unsecure distributed environ-

ments. The communication services include data-movement

mechanisms such as direct communication via TCP/IP. The

semantics-based metadata creation for ParaMEDIC is done by

the application plugins. Most application plugins are specific

to each application, and thus rely on knowledge of application

semantics. These plugins provide two primary functionalities:

Profiling Visualization

ParaMEDIC API

(PMAPI)

Applications

mpiBLAST
Communication Remote

Data
Encryption

Data
Integrity

ParaMEDIC Data Tools

Communication

Profiling Plugin

Communication Services Application Plugins

mpiBLAST

PluginCompression

Basic
Network

GlobalDirect
File−system

Figure 1: ParaMEDIC Architecture

1. Functionality to perform post-processing on the data

generated by the application in order to create metadata.

This metadata can either be intermediate data generated

during the application execution or data that is separately

extracted by processing the generated output.

2. Functionality to convert the metadata back to the final

output. This conversion can be 100% accurate or lossy,

depending on the application requirements. However, in

this paper, we only deal with lossless data conversion.

Though the development of application-specific plugins is

mostly straightforward, they require application knowledge to

be developed. Consequently, the onus of writing these plugins

is on the application writers, though the ParaMEDIC frame-

work provides tools to ease this effort. As an intermediate

solution, ParaMEDIC also provides a standard compression

plugin that views the output data as a byte stream and per-

forms non-application-specific compression on it. This stan-

dard plugin is similar to regular archiving tools that move and

store data without interpreting it. While this compression plu-

gin is straightforward to use and does not require any appli-

cation knowledge, the performance benefits it can achieve are

small compared to application-specific plugins. Thus, we do

not discuss this approach further in this paper and focus only

on application-specific plugins.

While tasks such as data encryption and data integrity typi-

cally add substantial overhead in communication, the encryp-

tion and integrity components in the ParaMEDIC framework

are applied on compressed metadata which is much smaller

than the actual data. Thus, within the context of ParaMEDIC,

the overhead added by these components is minimal.

3.2 Trading Computation with I/O Cost

The amount of computation required in the ParaMEDIC

framework is higher than what is required by the original ap-

plication. For example, after the output is generated by the

2



application processes, it has to be further processed to gener-

ate the metadata, sent to the destination nodes, and processed

yet again to re-generate the final output. However, the I/O cost

achieved can potentially be significantly reduced by using this

framework. In other words, the ParaMEDIC framework aims

at trading (a small amount of) additional computation for re-

duced I/O cost.

With respect to the additional computational cost incurred,

the ParaMEDIC framework is quite generic with respect to

the metadata processing that is required by the different pro-

cesses. For many applications, it is possible to tune the

amount of post-processing that is performed on the out-

put data, with the general trend being—the more the post-

processing computation, the better the reduction in the meta-

data size. That is, an application plugin can perform more

processing of the output data to reduce the I/O cost at the

cost of the additional processing overhead. Similarly, it can

perform very little processing of the output data to save on

the processing overhead, but at the cost of a larger amount

of data that might need to be transferred. In the rest of this

section, we formalize this capability of ParaMEDIC to trade

additional computational cost for larger savings in I/O.

Consider a distributed environment connecting a large-scale

supercomputer that is performing the computation and gener-

ating the data and a small-scale system where the data has to

be stored or visualized. In this context, consider the following

definitions:

B: Network Bandwidth in the above distributed environment.

T: Overall application execution time.

D: Total data generated by the application.

f(x): Time taken to convert output data to x units of metadata.

g(y): Time taken to convert y units of metadata to final output.

Based on the above definitions, the actual time (A) taken for

the application to be executed and the data to be moved to

the target system is given by the sum of four components:

(a) the computation time of the application, (b) the time to

convert the generated output to metadata, (c) time to transfer

the metadata over the network and (d) time to post-process

the metadata to generate back the required output. This is

formalized by the following equation:

A = T + f(x) +
x

B
+ g(x) (1)

Conversely, the actual time taken by the application without

using ParaMEDIC is the summation of the application com-

putation time and the time to transfer the overall data:

A′ = T +
D

B
(2)

Clearly, ParaMEDIC is only beneficial when A (equation 1)

is small than A’ (equation 2). That is,

T + f(x) +
x

B
+ g(x) < T +

D

B

Simplifying the above equation, we get:

D − x > B × (f(x) + g(x)) (3)

Thus, as illustrated by Equation 3, ParaMEDIC would be

beneficial only when the difference between the actual data

size and the metadata size is larger than the network band-

width times the amount of time taken for the post-processing

(output-to-metadata and metadata-to-output conversion). Ac-

cordingly, ParaMEDIC is expected to significantly outper-

form the native implementations of the applications when ei-

ther the network bandwidth of the distributed environment is

low, or the post-processing cost is low. For example, even in

distributed environments such as the NSF TeraGrid which has

30-Gbps high-speed network connectivity between the sites,

ParaMEDIC can improve performance if the application data

post-processing time is low enough.

Figure 2 illustrates the implications of Equation 3. Applica-

tions in Quadrant 1 have a large difference in size between the

actual data and the processed metadata, while requiring only a

small amount of metadata post-processing. Such applications

can take ideal benefit of the ParaMEDIC framework. Appli-

cations in Quadrant 2 have a large difference in size between

the actual data and the processed metadata, but they require

a large amount of metadata post-processing as well. So, it

is not clear whether such applications can fully benefit from

ParaMEDIC. Applications in Quadrant 3 almost never benefit

from ParaMEDIC as they use a lot of post-processing, but do

not reduce the size of the data output too much. Finally, for

applications in Quadrant 4, again, it is not clear whether they

would benefit from ParaMEDIC, since though they require

only a small amount of post-processing, they do not reduce

the amount of data significantly.

P
o

st
−

p
ro

ce
ss

in
g

 T
im

e

Reduction in Data Size

Quadrant 1

Quadrant 3

Quadrant 4

?
?

?

?
?

Quadrant 2

?

Figure 2: Application Output Data Patterns

3.3 Managing Computational Resources

In ParaMEDIC, the conversion of the actual output to meta-

data and the conversion of metadata back to the actual output

does not come free. Computational resources have to be ex-

pended for such post-processing. Thus, if the total number of

compute resources are fixed, managing how the resources are

partitioned between the actual application computation and

3



the metadata post-processing determines the tradeoff in the

amount of time spent in computation versus the amount of

time saved in I/O.

If too many compute resources are used for application pro-

cessing and too little for post-processing, the time taken for

post-processing either increases significantly or only super-

ficial post-processing will be possible, resulting in larger

amounts of metadata that needs to be communicated. On the

other hand, if too few compute resources are used for the ap-

plication processing and too many for the post-processing, the

application execution time increases rapidly.

In general, since the post-processing resources are mainly re-

stricted to the client system (i.e., the system where the final

data has to be moved to), these resources are limited. For

example, a remote large-scale cluster where the actual appli-

cation is executed might have about 10000 processors, while

the local small-scale cluster used by the scientist might only

have about 1000 processors. Thus, in this case, it is ideal

to maintain a 10:1 ratio between the number of compute re-

sources allocated to the actual application and the number of

compute resources allocated to the post-processing. Deviat-

ing from this ratio will result in degradation in performance.

This forces ParaMEDIC to use algorithms that can gener-

ate metadata from the result and re-generate the result from

the metadata with minimal processing requirements. That is,

for most applications, the framework ensures that the post-

processing cost required to process the metadata and generate

the final output is significantly less than the actual computa-

tion needed by the application.

An evaluation describing the tradeoffs associated with manag-

ing the number of computation resources provided to applica-

tion computation vs. post-processing is presented in §5.2.2.

4 Case Studies in Scientific Computing

As described in §3, different applications can plug-in to

the ParaMEDIC framework by providing application-specific

plugins using the ParaMEDIC API. In this section, we dis-

cuss two sample applications that can take advantage of this

framework, namely mpiBLAST in §4.1 and the MPI Parallel

Environment (MPE) profiling library in §4.2.

4.1 mpiBLAST Sequence Search Application

Here we present an overview of mpiBLAST and discuss how

we integrate it with the ParaMEDIC framework.

4.1.1 Application Overview

mpiBLAST [4] parallelizes the NCBI BLAST toolkit [1], the

de facto “gold standard” for sequential pairwise sequence-

search that is ubiquitously used in biomedical research. The

BLAST tool searches one or multiple input query sequences

against a database of known nucleotide (DNA) or amino acid

sequences. A similarity score is calculated for each close

match based on a statistical model. The similarity of the com-

parison is measured by the match with the highest score. As

a result, the sequences in the database that are most similar

to the query sequence are reported, along with their matches

scored beyond a certain threshold. Therefore, the BLAST

process is essentially a top-k search, where k can be speci-

fied by the user, with a default value of 500.

The core of the mpiBLAST algorithm is based on database

segmentation. Before the search, the raw sequence database

is formatted, partitioned into fragments, and stored in a shared

storage space. mpiBLAST then organizes parallel processes

into one master and many workers. The master breaks down

the search job in a Cartesian-product manner and maintains a

list of unsearched tasks, each represented as a pair of a query

sequence and a database fragment. Whenever a worker be-

comes idle, it asks the master for a unsearched task and copies

the needed fragment to its local disk (if the fragment has not

been cached locally) and performs a BLAST search on its

assignment. Upon finishing a task, a worker reports its lo-

cal results to the master for centralized result merging. Once

the results of searching a query sequence against all database

fragments have been collected, the master calls the standard

NCBI BLAST output function to format and print out results

of this query to the output file. By default, those results con-

tain the top 500 database sequences with highest similarity to

the query sequence along with their matches. The above pro-

cess repeats until all tasks have been searched. With database

segmentation, mpiBLAST can deliver super-linear speed-up

when searching sequence databases larger than the memory

of a single node. In recent developments, mpiBLAST has

evolved to use a more scalable parallel approach that allows

different queries to be concurrently searched as well [8].

4.1.2 Integration with ParaMEDIC

In a cluster environment, most of the mpiBLAST execu-

tion time is spent on the search itself, i.e., comparing in-

put query sequences to the database fragments, because the

search requires a full scan of the database fragment and

the BLAST string-matching algorithm is computationally in-

tensive (quadratic complexity in the worst case). In con-

trast, the cost of formatting and writing the results that are

generated from the search is much less significant, espe-

cially when many advanced clusters are configured with high-

performance parallel filesystems.

However, in distributed environments such as those presented

in §2, the execution profile of mpiBLAST differs significantly

from cluster environments because mpiBLAST output needs

to be written over a wide-area network to a remote filesystem.

Hence, the cost of writing the results can easily dominate the

execution profile of mpiBLAST, and thus, become a severe

performance bottleneck.

This is where “ParaMEDIC comes to the rescue” for mpi-

BLAST. By replacing the traditional global parallel filesystem

over a wide-area network with the ParaMEDIC framework (as

shown at the top of Figure 3), we can still support the basic

functionality of a global parallel filesystem, e.g., transferring

large volumes of data to a distant filesystem (if needed), but

4



more importantly, we can also provide advanced functional-

ity that trades a small amount of additional computation for a

potentially significant reduction in data that needs to be trans-

ferred in distributed environments. For example, as we will

see in §5, a mpiBLAST-specific instance of ParaMEDIC re-

duces the volume of data that needs to written across a wide-

area network by more than two orders of magnitude.

mpiBLAST

Worker
mpiBLAST

Worker

mpiBLAST

Worker

Read temp
Database

Database
Generate temp

mpiBLAST

Worker
mpiBLAST

Worker

mpiBLAST

Worker

I/O Servers
hosting file−system

mpiBLAST Master

Raw MetaDataQuery Query

Write Results

mpiBLAST Master

Compute Master

Compute Workers

Processed Metadata

I/O Workers

I/O Master

Figure 3: ParaMEDIC and mpiBLAST Integration

Specifically, Figure 3 depicts how mpiBLAST can be inte-

grated with the ParaMEDIC framework. First, on the compute

site (the left cloud in Figure 3), instead of having mpiBLAST

collect and write all the result sequences and their matches

of a query sequence, the mpiBLAST application plugin in

ParaMEDIC, as shown in Figure 1, generates semantics-based

metadata based on the mpiBLAST output at the compute site.

ParaMEDIC then transfers this metadata to the I/O site (the

right cloud in Figure 3), metadata that is orders of magnitude

smaller than the actual data output that would have been trans-

ferred in a traditional global parallel filesystem. Next, at the

I/O site, a small amount of additional computation must then

be performed on the metadata in order to re-generate the ac-

tual output data. That is, a temporary (and much smaller)

database that contains only the result sequences is created

by extracting the corresponding sequence data from a local

database replica. ParaMEDIC then re-runs mpiBLAST at the

I/O site by taking as input the same query sequence and the

temporary database to generate and write output to the local

filesystem. (Note: The overhead in re-running mpiBLAST at

the I/O site is quite small as the temporary database that is

searched is substantially smaller with only 500 sequences in

it by default, as opposed to the several millions of sequences

in large DNA databases.

4.2 MPE Communication Profiler

The MPI Profiling Environment (MPE) is a suite of perfor-

mance analysis tools consisting of profiling libraries, utility

programs, graphical tools and checking libraries. MPE is a

part of the MPICH2 distribution of the Message Passing In-

terface (MPI) communication standard, but can be used by

any MPI implementation that provides the MPI profiling in-

terface. The MPE profiler generates logs viewable by the in-

tegrated Jumpshot visualization tool. The datatype and col-

lective verification library finds argument inconsistencies in

MPI calls. The tracing library records all MPI calls and the

animation and X-graphics libraries provide a real-time pro-

gram animation of the trace. In this paper, we are primarily

interested in the profiling capabilities of MPE. MPE performs

postmortem performance analysis based on trace file gener-

ated during parallel program execution. It utilizes CLOG2 as

a low-overhead logging format, a simple collection of single

time-stamp events.

4.2.1 Output Data Management in MPE

Depending on the communication pattern, number of proces-

sors used and the length of execution, the output data gener-

ated by MPE can be enormous. For example, a large-scale

application such as FLASH when executed on a 16384 pro-

cessor cluster can easily generate 40GB of data every second.

That is, for an hour-long run, the amount of data generated is

close to 150 terabytes. Thus, the output data has to be man-

aged carefully in order to avoid performance overheads.

MPE allocates a default 8MB memory buffer in each pro-

cess during initialization time. During the run, MPE profiles

its communication pattern and stores this information in this

memory buffer. As the memory buffer fills up, the content of

the buffer is written to the local storage. At the end of the run,

all processes form a binary tree. Each process reads in its lo-

cal trace data from the disk and performs a three-way merge

of its own buffer with the buffers sent from its children. When

a merged buffer is filled up, it will then send to its parent. At

the root process, the overall merged buffers are written to lo-

cal storage.

Once the profiled data is obtained, it can viewed through visu-

alization tools such as Jumpshot. However, for this, the data

has to be available locally for the scientists to visualize. Thus,

if the application was executed and profiled at a remote loca-

tion, the profile data has to be transferred (oftentimes over a

distributed environment) to be processed and viewed.

4.2.2 Integration with ParaMEDIC

As described in §4.2.1, the amount of data generated by the

MPE profiling tool is enormous. However, most scientific ap-

plications follow a very periodic pattern where they repeat-

edly perform the same task to refine a data set, or to process

different portions of the data set. Accordingly, the communi-

cation pattern for such applications is periodic as well.

While most application communication patterns are periodic,

the periodicity for each application is different. Thus, the

main idea for integrating MPE with ParaMEDIC is two-fold:

1. Find the periodicity of the profiled data using a Fast

Fourier Transform (FFT) of the data.

2. Use this periodicity information to convert the actual

output into metadata that breaks the output into periods,

and only store differences between the periods, rather

than the entire communication profiling information.

Finding Output Periodicity with FFT: Though FFT is a pop-

ular approach for finding the periodicity of data sets, it can

5



be quite compute intensive to evaluate, especially for large

data sets. Specifically, FFT is an O(N.log(N)) time oper-

ation, where N is the number of points in the data set. Fur-

ther, several applications also have recursive periodicity. That

is, within each recurring communication pattern, these appli-

cations might have a separate recurring pattern embedded.

While identifying such patterns recursively can allow us to

improve the I/O savings even further, this can significantly in-

crease the amount of computation required as well. Thus, in

our approach, we only consider the first level of periodicity.

Given the importance of FFT in scientific computing, several

parallel implementations of FFT have been designed and de-

veloped. FFTW [7], Parallel 3D FFT (P3DFFT) [3] and BG/L

3D FFT are some popular implementations. Such implemen-

tations can reduce the time taken to compute the periodicity

of the data set by utilizing multiple compute nodes in parallel.

Also, since the periodicity detection has to only take place on

the computational site, this process can be heavily parallelized

using the large number of compute resources available on the

site, thus further reducing the total time taken. Note that the

post-processing required to convert the metadata back to the

actual output does not require another FFT calculation, and

can be done much more efficiently even with the lesser com-

pute resources on the storage site. In our approach, we used

the Parallel 3D FFT (P3DFFT) implementation of FFT.

Metadata Storing Only Differences between Periods: Once

the periodicity of the data set is calculated, the repeating in-

formation in each period does not have to be stored and can be

regenerated. In the metadata format for this application, we

store the complete information for the first period, and store

only the differences for the remaining periods.

For most applications, the differences between each period is

quite minimal even when storing the timing information to up

to two decimal places. For systems such as IBM BlueGene,

where the system noise level is extremely low, the accuracy

is even higher. Thus, the size of the differences is also very

small, allowing for larger savings in the amount of data that

needs to be communicated.

Our experimental results demonstrate about 3-5X improve-

ment in performance for the MPE profiling library by using

ParaMEDIC. However, due to space constraints, we do not

present detailed performance results for this library in this pa-

per and restrict ourselves to detailed performance results with

the mpiBLAST application.

5 Experimental Results

This section presents a performance evaluation of mpiBLAST

in its native form, as compared to ParaMEDIC-enhanced mpi-

BLAST (hereafter referred to as simply ParaMEDIC). All ex-

periments were performed with the Nucleotide (NT) database

downloaded from the NCBI website. NT is a nucleotide se-

quence database that contains the GenBank, EMB L, D, and

PDB sequences. At the time when our experiments were per-

formed, it contained over 5 million sequences with a total

raw size of about 20GB. All queries were synthesized by ran-

domly sampling sequences from NT itself.

5.1 Experimental Testbeds

Testbed 1 (Local Cluster): This testbed consists of 24 dual-

2.8GHz-Opteron-processor dual-core nodes. Each processor

has 2MB of L2-cache, and each node has 4GB of 667MHz

DDR2 SDRAM and four SATA disks using a software

RAID0. The nodes were connected with NetEffect NE010

10-Gigabit Ethernet adapters. We used NetEm to emulate the

various distributed computing infrastructures. This allowed

us to emulate high-latency, high-bandwidth distributed com-

puting environments by separating the nodes in the system

into two sub-clusters, where communication within the sub-

cluster is fast but between sub-clusters is slow.

Testbed 2 (Argonne-VT Distributed System): This testbed

consists of two clusters (one at Argonne and one at VT) con-

nected over Internet2. The Argonne cluster is the one de-

scribed in Testbed 1, while the VT cluster consists of a 24-

node Orion Multisystems DT-12 system that contains 12 in-

dividual x86 compute nodes in a 24” x 18” x 4” (or one cu-

bic foot) pizza-box enclosure. Each compute node contains a

Transmeta Efficeon processor, its own memory, and Gigabit

Ethernet interface. The nodes share a power supply, cooling

system, and external 10-Gigabit Ethernet network connection.

Testbed 3 (NSF TeraGrid): This testbed consists of a subset

of the TeraGrid, using nodes at U. Chicago and SDSC. The

U. Chicago site consists of two sets of nodes. The first set has

96 2.4GHz Intel Xeon 32-bit dual-processor systems, each

with 3GB memory and 512KB L2 cache, while the second

set has 64 1.5GHz Intel Itanium II 64-bit dual-processor sys-

tems, each with 4GB memory. The SDSC site has 64 1.5GHz

Intel Itanium II 64-bit dual-processor systems, each with 4GB

memory. The two sites are connected with a 30-Gbps high-

bandwidth network, and the end-to-end delay between the two

sites is approximately 10ms.

5.2 Local Cluster Evaluation

Here we compare ParaMEDIC to native mpiBLAST on a lo-

cal cluster, which emulates various distributed infrastructures.

5.2.1 Impact of High-Latency, High-Bandwidth Networks

We analyze the impact of distributed environments connected

with high-latency, high-bandwidth networks on the perfor-

mance of ParaMEDIC and basic mpiBLAST. For this experi-

ment, we divide the local cluster into two logical sub-clusters.

While all the nodes are connected with a 10Gbps network, we

artificially delay the communication between nodes belong-

ing to different sub-clusters. The performance of the applica-

tion for different network delays is measured (the amount of

delay is fixed within a run and is illustrated on the x-axis). The

socket buffer sizes are set to be equal to the bandwidth-delay

product of the network so as to maximize the performance

that the network subsystem can provide. Four nodes (each

node with 4 SATA disks connected with a software RAID0)

6



in the second sub-cluster host a PVFS2 filesystem which is

visible to all nodes in both the sub-clusters.

For the evaluation, 80 processors are used for performing the

computation. For mpiBLAST, all processors were used for

performing the actual application computation. However, for

ParaMEDIC, to keep the overall computational resources con-

stant, 76 processors hosted on the first sub-cluster were used

for performing the actual computation, while 4 processors on

the second sub-cluster were used for the post-processing.

Impact of Network Latency

0

20

40

60

80

100

120

140

160

180

200

0 1 5 10 20 40 70 100

Network Delay (ms)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
) mpiBLAST

ParaMEDIC

Figure 4: Impact of High Latency Networks

As shown in Figure 4, when the network delay be-

tween the two sub-clusters is low, mpiBLAST outperforms

ParaMEDIC. This is expected since ParaMEDIC requires ad-

ditional computation for converting the search results to meta-

data and converting the metadata back to the final output.

However, as the network delay increases, ParaMEDIC out-

performs mpiBLAST. In fact, for a network delay of 100ms,

ParaMEDIC outperforms mpiBLAST by a factor of 2.26.

This improvement is attributed to two factors. First, high

network latency causes degradation in the filesystem com-

munication and synchronization operations required when

data needs to be written or read from the server. Second,

the total amount of data written in mpiBLAST over the

I/O subsystem is much higher as compared to ParaMEDIC,

since ParaMEDIC only writes metadata which is significantly

smaller than the final results to the filesystem.

To further understand these results, we show the performance

breakdown of the time taken by mpiBLAST and ParaMEDIC

in Figure 5. As shown in Figure 5(a), for mpiBLAST, as the

network delay increases, the I/O time increases very quickly.

Thus, though the computation time does not change much,

the overall execution time suffers. On the other hand, for

ParaMEDIC (Figure 5(b)), the computation time, the I/O

time, and the post-processing time required to handle the

metadata are nearly constant for all values of network delays.

This is expected since the only component in ParaMEDIC

that would be affected by the network latency is the post-

processing, since it requires moving the metadata from the

compute workers to the I/O workers. And because the meta-

data amount is very small (few KB), this time typically does

not make any difference to either the post-processing time or

the overall execution time of the application.

5.2.2 Trading Computation to I/O

We analyze the performance of mpiBLAST and ParaMEDIC

by varying the ratio of computational resources allocated to

the actual application processing vs. the resources allocated

for post-processing. For all experiments in this section, for

ParaMEDIC, we allocate four processes for performing the

post-processing. The number of processes allocated for the

actual application computation is varied from 16 to 80. That

is, the ratio of resources allocated for actual application com-

putation to post-processing is varied from 4:1 to 20:1. For

mpiBLAST, on the other hand, all of the processes are al-

located for the actual application computation. That is, the

native mpiBLAST implementation gets four extra processes

for application computation as compared to ParaMEDIC.

The ratio of resources allocated to application and post-

processing essentially determines the trade-off in computa-

tion time to I/O time. Specifically, a large ratio means that

more resources are given for application processing, thus the

resources given for metadata generation and management is

minimal. This implies that the application execution time will

be lesser, while the amount of data that needs to be moved

over the distributed environment will be large. Similarly, a

small ratio means that lesser resources are given for applica-

tion processing, thus the resources given for metadata gener-

ation and management is high.

Figure 6 shows the performance of the two schemes as the

ratio of resources alloted to application and post-processing

is varied. As shown in the figure, when this ratio is low,

mpiBLAST outperforms ParaMEDIC. However, as the ra-

tio increases the performance of mpiBLAST degrades faster

than ParaMEDIC, and it is eventually outperformed by

ParaMEDIC.

This behavior is related to the available compute resources for

execution. Specifically, when the total number of compute re-

sources is N, ParaMEDIC uses (N-4) of them for application

computation and 4 processes for metadata post-processing.

Thus, when N is very large, the increase in computation time

caused by using resources (approximately N / (N - 4)) is not

very high. However, when N is small, the increase in com-

putation time can be substantial. For example, when N is 8

processes, ParaMEDIC uses only 4 processes for the applica-

tion processing while mpiBLAST uses 8. Thus, the compu-

tation time taken by ParaMEDIC would be nearly twice that

of mpiBLAST. This overshadows any benefit in the I/O time

ParaMEDIC can bring about, causing it to deliver worse per-

formance than mpiBLAST. In summary, ParaMEDIC is most

effective only when the number of resources used for applica-

tion processing are sufficiently large as compared to the num-

ber of resources used for post-processing.

5.2.3 Impact of Output Data Size

In this section, we vary two parameters that affect the output

data size: (i) number of input query sequences provided by the

user and (ii) number of output query sequences requested by

the user, and study their impact on the performance of mpi-

7



mpiBLAST Performance Breakup (High Latency Networks)

0

20

40

60

80

100

120

140

160

180

200

0 1 5 10 20 40 70 100

Network Delay (ms)

E
x
e
c
u
ti
o
n
 T
im
e
 (
s
e
c
)

Compute Time I/O Time

ParaMEDIC Performance Breakup (High Latency Networks)

0

10

20

30

40

50

60

70

80

90

100

0 1 5 10 20 40 70 100

Network Delay (ms)

E
x
e
c
u
ti
o
n
 T
im
e
 (
s
e
c
)

Compute Time Post-processing Time I/O Time

Figure 5: Breakup of Performance with Network Delay: (i) mpiBLAST and (ii) ParaMEDIC

BLAST and ParaMEDIC. Varying the number of sequences

in the input query increases the search time for both mpi-

BLAST and ParaMEDIC. However, it is also expected to im-

pact the post-processing time for ParaMEDIC. Thus, increas-

ing the query size is expected to affect the computation time of

ParaMEDIC more than that of mpiBLAST. At the same time,

an increase in the query size also typically results in more

output. This, on the other hand, can potentially impact mpi-

BLAST more than ParaMEDIC. Figure 7(a) shows the per-

formance of the two schemes with increasing number of input

query sequences (depicted by input query size). We see that

while the increase in the input query size increases the execu-

tion time of ParaMEDIC, it has a more drastic effect on mpi-

BLAST. Thus, as the query size increases, we notice that the

performance difference between the two schemes increases,

with ParaMEDIC outperforming mpiBLAST by about 66%

for a 100KB query file size.

0

100

200

300

400

500

600

20 18 16 14 12 10 8 6 4

E
xe

c
u
ti
o
n

 T
im

e
 (

s
e

c
)

Application Compute to Post-processing Resource Ratio

Trading Computation and I/O

mpiBLAST

ParaMEDIC

Figure 6: Varying the Number of Worker Processes

Figure 7(b) shows the impact of increasing the number of re-

quested output result sequences. Increasing the number of

output result sequences does not increase the computation too

much, while it can increase the amount of I/O. Thus, because

the I/O cost for ParaMEDIC is very low, increasing the num-

ber of output result sequences does not vary its performance

too much. On the other hand, since the I/O cost for mpi-

BLAST is very high, increasing the number of output result

sequences significantly affects its performance.

5.2.4 Impact of Encrypted Filesystems

For distributed filesystems that span unsecure network con-

nections (such as the Internet), using data encryption to pro-

tect transmitted data is a common occurrence in several envi-

ronments such as government national laboratories and other

secure facilities such as those demonstrated in §5.3.

Figure 8 shows the impact of such data encryption on the per-

formance of the two schemes. As shown in the figure, the

performance of the two schemes is similar to the case where

there is no file encryption (except that the performance of

mpiBLAST degrades faster). This is attributed to the data

encryption overhead. That is, since all the data that is being

transmitted has to be encrypted and the amount of data trans-

mitted by mpiBLAST over the unsecure network is signifi-

cantly larger than ParaMEDIC, encryption affects mpiBLAST

more significantly as compared to ParaMEDIC.

Impact of Encryption

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

Query Size (KB)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

mpiBLAST

ParaMEDIC

Figure 8: Impacted of Encrypted Filesystems

5.3 Distributed Setup from Argonne and VT

Here we evaluate mpiBLAST and ParaMEDIC on a dis-

tributed system between Argonne National Laboratory and

Virginia Tech connected over Internet2. Since the network

connecting the two clusters is not secure, data encryption is

used to protect the data transmitted over this network.

As shown in Figure 9, ParaMEDIC significantly outperforms

mpiBLAST in this environment. Further, as the query size in-

creases, the performance difference between the two schemes

increases. For a query size of 100KB, we observe more than a

25-fold improvement in performance for ParaMEDIC as com-

pared to mpiBLAST. This difference is attributed to multiple

aspects. First, given that the network connection between the

two sites is shared by other users, the effective network per-

8



Impact of Number of Input Query Sequences

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100

Query Size (KB)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
) mpiBLAST

ParaMEDIC

Impact of Number of Output Query Sequences

0

20

40

60

80

100

120

140

160

180

100 300 500 1000 2000 4000 10000

Number of Requested Sequences

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

mpiBLAST

ParaMEDIC

Figure 7: Varying the Number of Requested Sequences: (i) Input Query Sequences and (ii) Output Result Sequences

ANL to Virginia Tech Encrypted File-system

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60 70 80 90 100

Query Size (KB)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

mpiBLAST

ParaMEDIC

Figure 9: Argonne to Virginia Tech Encrypted Filesystem

formance achievable is usually much lower than within the

cluster. Thus, with mpiBLAST transferring the entire output

result over this network, its performance would be heavily

impacted by the network performance. Second, since data

communicated is encrypted, mpiBLAST also has to pay the

penalty for such encryption. Though ParaMEDIC also pays

such data encryption penalty, the amount of data it transfers

is significantly lesser, and hence the penalty is lesser as well.

Third, the distance between the two sites causes the commu-

nication latency to be high. Thus, file-system communication

and synchronization messages tend to take a long time to be

exchanged resulting in further loss of performance.

5.4 TeraGrid Infrastructure

The TeraGrid infrastructure represents a widely used real en-

vironment for several compute- and I/O-intensive applica-

tions. As described in §2, a GPFS-based distributed filesys-

tem is hosted at San Diego Supercomputing Center (SDSC),

which can be accessed from all facilities, and forms a part of

the TeraGrid facility. For the experiments in this section, we

utilized the nodes at the University of Chicago and SDSC.

In this experiment, both mpiBLAST and ParaMEDIC per-

form their application computation on the University of

Chicago nodes. However, mpiBLAST directly writes the out-

put data to the global GPFS file-system. ParaMEDIC, on the

other hand, converts the output data to metadata, transfers the

metadata to SDSC, and re-converts the metadata to the final

output at SDSC.

Teragrid Infrastructure

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40 50 60 70 80 90 100

Query Size (KB)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
) mpiBLAST

ParaMEDIC

Figure 10: NSF TeraGrid using U. Chicago and SDSC

Figure 10 shows the performance of mpiBLAST and

ParaMEDIC on TeraGrid. While the final output is written

to the same global filesystem in both cases, mpiBLAST suf-

fers because the application processing nodes at University of

Chicago are performing the I/O for the output results. Since

these nodes reside on a remote cluster as compared to the

physical filesystem, their I/O performance is limited resulting

in an overall degradation in execution time. For ParaMEDIC,

on the other hand, since the post-processing nodes are per-

forming the I/O for the output results, the amount of time

taken is significantly smaller. For a query file size of 100KB,

ParaMEDIC outperforms mpiBLAST by five-fold.

Figure 11 shows the performance breakdown of the two

schemes. As the query size increases, the computation time

for both mpiBLAST as well as ParaMEDIC increases. How-

ever, for mpiBLAST, the I/O time also increases very quickly.

On the other hand, for ParaMEDIC, there is practically no dif-

ference in the I/O time with increasing query sizes. That is,

ParaMEDIC is only minimally impacted by the limited I/O of

the subsystem and it efficiently distributes its computational

resources across the system to achieve high performance.

6 Related Work

Providing efficient remote I/O for scientific applications has

been an ongoing subject of research. RIO [6] introduced a

proof-of-concept library that allowed application to access

remote files through ROMIO [12]. However, it relied on a

legacy communication protocol and required setting up extra

9



mpiBLAST Performance Breakup (TeraGrid Infrastructure)

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

Query Size (KB)

E
x
e
c
u
ti
o
n
 T
im
e
 (
s
e
c
)

Compute Time I/O Time

ParaMEDIC Performance Breakup (TeraGrid Infrastructure)

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70 80 90 100

Query Size (KB)

E
x
e
c
u
ti
o
n
 t
im
e
 (
s
e
c
)

Compute Time Post-processing Time + I/O Time

Figure 11: TeraGrid Infrastructure Performance Breakup: (i) mpiBLAST and (ii) ParaMEDIC

nodes dedicated for message processing. Those limitations

were addressed in a more recent study, RFS [9], that adopted

the active buffering technique to reduce the visible remote

write cost, thus optimizing overlap between application I/O

and computation. Other approaches of translating remote I/O

requests into operations of general data transferring protocols

such as Grid FTP [2] and Logistic Network [10] have also

been investigated. ParaMEDIC, on the other hand, focuses on

aggressively reducing the amount of I/O data that needs to be

shipped across the wide area network with efficient utilization

of application semantic knowledge.

Example frameworks of decoupling computation and I/O in-

clude MapReduce and TCP Linda. MapReduce is a program-

ming model and an associated implementation for process-

ing and generating large datasets [5]. TCP Linda is a virtual

shared memory system whereby parallel processes execute si-

multaneously and exchange data be generating, reading, and

consuming data objects [11]. Both frameworks decouple the

different phases of an algorithm and transfer intermediate ob-

jects to the appropriate processes. In ParaMEDIC, these inter-

mediate objects are the metadata. That MapReduce has been

shown to achieve high performance when working with large

datasets in [5] is indicative that ParaMEDIC, a similar model,

can substantially improve performance as well.

7 Concluding Remarks
In this paper, we presented a novel framework called

“ParaMEDIC: Parallel Metadata Environment for Distributed

I/O and Computing” which uses application-specific seman-

tic information to convert the generated data to orders-of-

magnitude smaller metadata at the compute site, transfer the

metadata to the storage site, and re-process the metadata at

the storage site to regenerate the output. In other words,

ParaMEDIC trades a small amount of additional computa-

tion (in the form of data post-processing) for a potentially

significant reduction in data that needs to be transferred in

distributed environments. We presented the detailed design

of the framework and presented experimental evaluations on

different experimental as well as real distributed systems. Our

results show an order-of-magnitude improvement in perfor-

mance with ParaMEDIC in some cases.

Acknowledgment

We wish to recognize and thank Jeremy S. Archuleta for his

technical support on this project.

References

[1] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang,

Z. Zhang, W. Miller, and D. J. Lipman. Gapped BLAST and

PSIBLAST: A New Generation of Protein Database Search

Programs. Nucleic Acids Research, 25:3389–3402, 1997.

[2] T. Baer and P. Wyckoff. A parallel i/o mechanism for dis-

tributed systems. In Cluster, 2004.

[3] San Diego Supercomputing Center. Parallel 3D FFT Library.

http://www.sdsc.edu/us/% linebreak[0]resources/p3dfft.php.

[4] A. Darling, L. Carey, and W. Feng. The Design, Implementa-

tion, and Evaluation of mpiBLAST. In International Confer-

ence on Linux Clusters: The HPC Revolution 2003, 2003.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data pro-

cessing on large clusters. In OSDI, 2004.

[6] I. Foster, D. Kohr, R. Krishnaiyer, and J. Mogill. Remote I/O:

Fast access to distant storage. In Proceedings of the FifthWork-

shop on I/O in Parallel and Distributed Systems, 1997.

[7] Matteo Frigo and Steven G. Johnson. The design and imple-

mentation of FFTW3. Proceedings of the IEEE, 93(2):216–

231, 2005.

[8] M. Gardner, W. Feng, J. Archuleta, H. Lin, and X. Ma. Paral-

lel Genomic Sequence-Searching on an Ad-Hoc Grid: Experi-

ences, Lessons Learned, and Implications. In SC, 2006.

[9] J. Lee, X. Ma, R. Ross, R. Thakur, and M. Winslett. RFS:

Efficient and flexible remote file access for MPI-IO. In Cluster,

2004.

[10] J. Lee, R. Ross, S. Atchley, M. Beck, and R. Thakur. MPI-

IO/L: efficient remote i/o for mpi-io via logistical networking.

In IPDPS, 2006.

[11] TCP Linda. http://www.lindaspaces.com/

products/linda_overview.html.

[12] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective

I/O in ROMIO. In Proceedings of the 7th Symposium on the

Frontiers of Massively Parallel Computation, February 1999.

10


