
Non-Data-Communication Overheads in MPI:
Analysis on Blue Gene/P

P. Balaji1, A. Chan2, W. Gropp3, R. Thakur1, and E. Lusk1

1 Math. and Comp. Sci. Div., Argonne Nat. Lab., Argonne, IL 60439, USA
2 Dept. of Astronomy and Astrophysics, Univ. of Chicago, Chicago, IL 60637

3 Dept. of Computer Science, Univ. of Illinois, Urbana, IL, 61801, USA

Abstract. Modern HEC systems, such as Blue Gene/P, rely on achiev-
ing high-performance by using the parallelism of a massive number of
low-frequency/low-power processing cores. This means that the local pre-
and post-communication processing required by the MPI stack might
not be very fast, owing to the slow processing cores. Similarly, small
amounts of serialization within the MPI stack that were acceptable on
small/medium systems can be brutal on massively parallel systems. In
this paper, we study different non-data-communication overheads within
the MPI implementation on the IBM Blue Gene/P system.

1 Introduction

As we move closer to the petaflop era, modern high-end computing (HEC) sys-
tems are undergoing a drastic change in their fundamental architectural model.
With processor speeds no longer doubling every 18-24 months owing to the
exponential increase in power consumption and heat dissipation, modern HEC
systems tend to rely lesser on the performance of single processing units. Instead,
they try to extract parallelism out of a massive number of low-frequency/low-
power processing cores. IBM Blue Gene/L [1] was one of the early supercom-
puters to follow this architectural model, soon followed by other systems such
as Blue Gene/P (BG/P) [5] and SiCortex [2].

While such an architecture provides the necessary ingredients for building petaflop
and larger systems, the actual performance perceived by users heavily depends
on the capabilities of the systems-software stack used, such as the MPI imple-
mentation. While the network itself is quite fast and scalable on these systems,
the local pre- and post-data-communication processing required by the MPI
stack might not be as fast, owing to the slow processing cores. For example,
local processing tasks within MPI that were considered quick on a 3.6 GHz Intel
processor, might form a significant fraction of the overall MPI processing time
on the modestly fast 850 MHz cores of a BG/P. Similarly, small amounts of
serialization within the MPI stack which were considered acceptable on a system
with a few hundred processors, can be brutal when running on massively parallel
systems with hundreds of thousands of cores.

In this paper, we study the non-data-communication overheads in MPI on BG/P.
We identify various bottleneck possibilities within the MPI stack, with respect
to the slow pre- and post-data-communication processing as well as serialization
points, stress these overheads using different benchmarks, analyze the reasons
behind such overheads and describe potential solutions for solving them.



2 BG/P Software and Hardware Stacks

BG/P has five different networks [6]. Two of them (10G and 1G Ethernet with
JTAG interface) are used for file I/O and system management. The other three
(3-D Torus, Global Collective and Global Interrupt) are used for MPI commu-
nication. The 3-D torus network is used for MPI point-to-point and multicast
operations and connects all compute nodes to form a 3-D torus. Thus, each
node has six nearest-neighbors. Each link provides a bandwidth of 425 MBps
per direction (total 5.1 GBps). The global collective network is a one-to-all net-
work for compute and I/O nodes used for MPI collective communication and
I/O services. Each node has three links to this network (total 5.1 GBps bidirec-
tional). The global interrupt network is an extremely low-latency network for
global barriers and interrupts, e.g., the global barrier latency of a 72K-node par-
tition is approximately 1.3µs. On BG/P, compute cores do not handle packets
on the torus network; a DMA engine on each node offloads most of the network
packet injecting and receiving work, enabling better overlap of computation and
communication. However, the cores handle sending/receiving packets from the
collective network.

BG/P is designed for multiple programming models. The Deep Computing Mes-
saging Framework (DCMF) and the Component Collective Messaging Interface
(CCMI) are used as general purpose libraries to support different programming
models [9]. DCMF implements point-to-point and multisend protocols. The mul-
tisend protocol connects the abstract implementation of collective operations in
CCMI to targeted communication networks.

IBM’s MPI on BG/P is based on MPICH2 and is implemented on top of DCMF.
Specifically, it borrows most of the upper-level code from MPICH2, including
MPI-IO and the MPE profiler, while implementing BG/P specific details within
a device implementation called dcmfd. The DCMF library provides low-level
communication support. All advanced communication features such as alloca-
tion and handling of MPI requests, dealing with tags and unexpected messages,
multi-request operations such as MPI Waitany or MPI Waitall, derived-datatype
processing and thread synchronization are not handled by the DCMF library
and have to be taken care of by the MPI implementation.

3 Experiments and Analysis

Here, we study the non-data-communication overheads in MPI on BG/P.

3.1 Basic MPI Stack Overhead

An MPI implementation can be no faster than the underlying communication
system. On BG/P, this is DCMF. Our first measurements (Figure 1) compare
the communication performance of MPI (on DCMF) with the communication
performance of DCMF. For MPI, we used the OSU MPI suite [10] to evaluate
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Fig. 1. MPI stack overhead

the performance. For DCMF, we used our own benchmarks on top of the DCMF
API, that imitate the OSU MPI suite. The latency test uses blocking commu-
nication operations while the bandwidth test uses non-blocking communication
operations for maximum performance in each case.

The difference in performance of the two stacks is the overhead introduced by
the MPI implementation on BG/P. We observe that the MPI stack adds close
to 1.1µs overhead for small messages; that is, close to 1000 cycles are spent for
pre- and post-data-communication processing within the MPI stack. We also
notice that for message sizes larger than 1KB, this overhead is much higher
(closer to 4µs or 3400 cycles). This additional overhead is because the MPI
stack uses a protocol switch from eager to rendezvous for message sizes larger
than 1200 bytes. Though DCMF itself performs the actual rendezvous-based
data communication, the MPI stack performs additional book-keeping in this
mode which causes this additional overhead. In several cases, such redundant
book-keeping is unnecessary and can be avoided.

3.2 Request Allocation and Queueing Overhead

MPI provides non-blocking communication routines that enable concurrent com-
putation and communication where the hardware can support it. However, from
the MPI implementation’s perspective, such routines require managing MPI

Request handles that are needed to wait on completion for each non-blocking
operation. These requests have to be allocated, initialized and queued/dequeued
within the MPI implementation for each send or receive operation, thus adding
overhead, especially on low-frequency cores.

In this experiment, we measure this overhead by running two versions of the
typical ping-pong latency test—one using MPI Send and MPI Recv and the other
using MPI Isend, MPI Irecv, and MPI Waitall. The latter incurs the overhead of
allocating, initializing, and queuing/dequeuing request handles. Figure 2 shows
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Fig. 2. Request allocation and queuing: (a) Overall performance; (b) Overhead.

that this overhead is roughly 0.4 µs or a little more than 300 clock cycles.4 While
this overhead is expected due to the number of request management operations,
carefully redesigning them can potentially bring this down significantly.

3.3 Overheads in Tag and Source Matching

MPI allows applications to classify different messages into different categories
using tags. Each sent message carries a tag. Each receive request contains a
tag and information about which source the message is expected from. When a
message arrives, the receiver searches the queue of posted receive requests to find
the one that matches the arrived message (both tag and source information) and
places the incoming data in the buffer described by this request. Most current
MPI implementations use a single queue for all receive requests, i.e., for all tags
and all source ranks. This has a potential scalability problem when the length
of this queue becomes large.

To demonstrate this problem, we designed an experiment that measures the
overhead of receiving a message with increasing request-queue size. In this ex-
periment, process P0 posts M receive requests for each of N peer processes with
tag T0, and finally one request of tag T1 for P1. Once all the requests are posted
(ensured through a low-level hardware barrier that does not use MPI), P1 sends
a message with tag T1 to P0. P0 measures the time to receive this message not
including the network communication time. That is, the time is only measured
for the post-data-communication phase to receive the data after it has arrived
in its local temporary buffer.

Figure 3 shows the time taken by the MPI stack to receive the data after it has
arrived in the local buffer. Figures 3(a) and 3(b) show two different versions of
the test—the first version keeps the number of peers to one (N = 1) but increases
the number of requests per peer (M), while the second version keeps the number

4 This overhead is more than the entire point-to-point MPI-level shared-memory com-
munication latency on typical commodity Intel/AMD processors [7].
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Fig. 3. Request matching overhead: (a) requests-per-peer, (b) number of peers.

of requests per peer to one (M = 1) but increases the number of peers (N). For
both versions, the time taken increases rapidly with increasing number of total
requests (M × N). In fact, for 4096 peers, which is modest considering the size
BG/P can scale to, we notice that even just one request per peer can result in a
queue parsing time of about 140000µs.

Request Matching Overhead per Request
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Fig. 4. Matching overhead per request

Another interesting observation in the
graph is that the time increase with
the number of peers is not linear. To
demonstrate this, we present the av-
erage time taken per request in Fig-
ure 4—the average time per request
increases as the number of requests
increases! Note that parsing through
the request queue should take linear
time; thus the time per request should
be constant, not increase. There are
several reasons for such a counter-
intuitive behavior; we believe the pri-
mary cause for this is the limited num-
ber of pre-allocated requests that are
reused during the life-time of the ap-
plication. If there are too many pend-

ing requests, the MPI implementation runs out of these pre-allocated requests
and more requests are allocated dynamically.

3.4 Algorithmic Complexity of Multi-request Operations

MPI provides operations such as MPI Waitany, MPI Waitsome and MPI Waitall

that allow the user to provide multiple requests at once and wait for the com-
pletion of one or more of them. In this experiment, we measure the MPI stack’s



capability to efficiently handle such requests. Specifically, the receiver posts sev-
eral receive requests (MPI Irecv) and once all the requests are posted (ensured
through a low-level hardware barrier) the sender sends just one message that
matches the first receive request. We measure the time taken to receive the mes-
sage, not including the network communication time, and present it in Figure 5.
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Fig. 5. MPI Waitany Time

We notice that the time taken by
MPI Waitany increases linearly with
the number of requests passed to it.
We expect this time to be constant
since the incoming message matches
the first request itself. The reason
for this behavior is the algorithmic
complexity of the MPI Waitany imple-
mentation. While MPI Waitany would
have a worst-case complexity of O(N),
where N is the number of requests, its
best-case complexity should be con-
stant (when the first request is already
complete when the call is made). How-
ever, the current implementation per-
forms this in two steps. In the first
step, it gathers the internal request

handles for each request (takes O(N) time) and in the second step does the actual
check for whether any of the requests have completed. Thus, overall, even in the
best case, where the completion is constant time, acquiring of internal request
handlers can increase the time taken linearly with the number of requests.

3.5 Overheads in Derived Datatype Processing

MPI allows non-contiguous messages to be sent and received using derived
datatypes to describe the message. Implementing these efficiently can be chal-
lenging and has been a topic of significant research [8, 11, 3]. Depending on how
densely the message buffers are aligned, most MPI implementations pack sparse
datatypes into contiguous temporary buffers before performing the actual com-
munication. This stresses both the processing power and the memory/cache
bandwidth of the system. To explore the efficiency of derived datatype commu-
nication on BG/P, we looked only at the simple case of a single stride (vector)
type with a stride of two. Thus, every other data item is skipped, but the total
amount of data packed and communicated is kept uniform across the different
datatypes (equal number of bytes). The results are shown in Figure 6.

These results show a significant gap in performance between sending a contiguous
messages and a non-contiguous message (with the same number of bytes). The
situation is particularly serious for a vector of individual bytes (MPI CHAR). It is
also interesting to look at the behavior for shorter messages (Figure 6(b)). This
shows, roughly, a 2 µs gap in performance between contiguous send and a send
of short, integer or double precision data with a stride of two.
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Fig. 6. Derived datatype latency: (a) long messages and (b) short messages

3.6 Buffer Alignment Overhead

For operations that involve touching the data that is being communicated (such
as datatype packing), the alignment of the buffers that are being processed can
play a role in overall performance if the hardware is optimized for specific buffer
alignments (such as word or double-word alignments), which is common in most
hardware today.

In this experiment (Figure 7), we measure the communication latency of a vec-
tor of integers (4 bytes) with a stride of 2 (that is, every alternate integer is
packed and communicated). We perform the test for different alignment of these
integers—“0” refers to perfect alignment to a double-word boundary, “1” refers
to an misalignment of 1-byte. We notice that as long as the integers are within
the same double-word (0-4 byte misalignment) the performance is better as com-
pared to when the integers span two different double-words (5-7 byte misalign-
ment), the performance difference being about 10%. This difference is expected
as integers crossing the double-word boundary require both the double-words to
be fetched before any operation can be performed on them.

3.7 Unexpected Message Overhead

MPI does not require any synchronization between the sender and receiver pro-
cesses before the sender can send its data out. So, a sender can send multiple
messages which are not immediately requested for by the receiver. When the re-
ceiver tries to receive the message it needs, all the previously sent messages are
considered unexpected, and are queued within the MPI stack for later requests to
handle. Consider the sender first sending multiple messages of tag T0 and finally
one message of tag T1. If the receiver is first looking for the message with tag
T1, it considers all the previous messages of tag T0 as unexpected and queues
them in the unexpected queue. Such queueing and dequeuing of requests (and
potentially copying data corresponding to the requests) can add overhead.
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Fig. 7. Buffer alignment overhead

To illustrate this, we designed an experiment that is a symmetric-opposite of the
tag-matching test described in Section 3.3. Specifically, in the tag-matching test,
we queue multiple receive requests and receive one message that matches the last
queued request. In the unexpected message test, we receive multiple messages,
but post only one receive request for the last received message. Specifically,
process P0 first receives M messages of tag T0 from each of N peer processes and
finally receives one extra message of tag T1 from P1. The time taken to receive
the final message (tag T1) is measured, not including the network communication
time, and shown in Figure 8 as two cases: (a) when there is only one peer, but the
number of unexpected messages per peer increases (x-axis), and (b) the number
of unexpected messages per peer is one, but the number of peers increases. We
see that the time taken to receive the last message increases linearly with the
number of unexpected messages.

3.8 Overhead of Thread Communication

To support flexible hybrid programming model such as OpenMP plus MPI,
MPI allows applications to perform independent communication calls from each
thread by requesting for MPI THREAD MULTIPLE level of thread concurrency from
the MPI implementation. In this case, the MPI implementation has to perform
appropriate locks within shared regions of the stack to protect conflicts caused
due to concurrent communication by all threads. Obviously, such locking has
two drawbacks: (i) they add overhead and (ii) they can serialize communication.

We performed two tests to measure the overhead and serialization caused by
such locking. In the first test, we use four processes on the different cores
which send 0-byte messages to MPI PROC NULL (these messages incur all the
overhead of the MPI stack, except that they are never sent out over the net-
work, thus imitating an infinitely fast network). In the second test, we use four
threads with MPI THREAD MULTIPLE thread concurrency to send 0-byte messages
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Fig. 8. Unexpected message overhead: (a) Increasing number of messages per peer,
with only one peer; (b) Increasing number of peers, with only one message per peer.

to MPI PROC NULL. In the threads case, we expect the locks to add overheads and
serialization, so the performance to be lesser than in the processes case.
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Fig. 9. Threads vs. Processes

Figure 9 shows the performance of the two
tests described above. The difference be-
tween the one-process and one-thread cases
is that the one-thread case requests for
the MPI THREAD MULTIPLE level of thread
concurrency, while the one-process case re-
quests for no concurrency, so there are no
locks. As expected, in the process case, since
there are no locks, we notice a linear in-
crease in performance with increasing num-
ber of cores used. In the threads case, how-
ever, we observe two issues: (a) the perfor-
mance of one thread is significantly lower
than the performance of one process and
(b) the performance of threads does not in-
crease at all as we increase the number of
cores used.

The first observation (difference in one-process and one-thread performance)
points out the overhead in maintaining locks. Note that there is no contention
on the locks in this case as there is only one thread accessing them. The second
observation (constant performance with increasing cores) reflects the inefficiency
in the concurrency model used by the MPI implementation. Specifically, most
MPI implementations perform a global lock for each MPI operation thus allowing
only one thread to perform communication at any given time. This results in
virtually zero effective concurrency in the communication of the different threads.
Addressing this issue is the subject of a separate paper [4].



4 Conclusions and Future Work

In this paper, we studied the non-data-communication overheads within MPI
implementations and demonstrated their impact on the IBM BlueGene/P sys-
tem. We identified several bottlenecks in the MPI stack including request han-
dling, tag matching and unexpected messages, multi-request operations (such
as MPI Waitany), derived-datatype processing, buffer alignment overheads and
thread synchronization, that are aggravated by the low processing capabilities
of the individual processing cores on the system as well as scalability issues trig-
gered by the massive scale of the machine. Together with demonstrating and
analyzing these issues, we also described potential solutions for solving these
issues in future implementations.
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