
September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

A simple, pipelined all-gather algorithm
for large irregular problems

Jesper Larsson Träff, Andreas Ripke,
Christian Siebert,

Pavan Balaji, Rajeev Thakur, William Gropp
NEC Labs Europe, ANL, UIUC

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

An irregular all-gather data-exchange operationAn irregular all-gather data-exchange operation

MPI_Allgatherv(sendbuf,…,recvbuf,…,counts,…);

•A set of processes, 0, …, p-1

•Each has a block of data Bi of (possibly) different size

All processes have all blocks B0, B1, …, B(p-1)

counts[i] ≈ |Bi|, all processes know the size of all blocks!

B0 B1

Bi

Bi B(p-1)… …

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

MPI_Allgatherv used in numerical libraries eg. PETSc

•Other irregular collectives, eg. MPI_Alltoallw

Irregular collectives algorithmically (much!) more difficult –
challenging - than regular collectives:

1. Different amounts of data between
processes (in different rounds)

2. Partial information for the processes
(MPI_Alltoallw, MPI_Gatherv, …)

3. Schedules

Load imbalance

Difficult/expensive to
compute schedule
Optimality is (NP)-
hard!

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Related work:

•Bruck et al. ’97: simultaneous binomial tree algorithm:

•Benson et al. ’03: MPI implementation of allgather algorithms on
switched networks [non SMP-aware]

•Thakur et al. ’04: mpich2 implementations of Bruck and other [non
SMP-aware]

•Mamidala et al. ’06: SMP implementations

•Träff’06: Graceful degradation from Bruck to linear ring [SMP-
aware]

MPI_Allgather

MPI_Allgatherv

•Balaji et al ’07: optimization in the context of PETSc

(gossip, broadcast-to-all, …)

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

An algorithm for large, regular all-gather problemsAn algorithm for large, regular all-gather problems

Bi

Linear ring: p-1 rounds

•Process i receives block B(i-1-k) and sends block B(i-k) in
round k, k=0, …, p-1

Process i

B(i+1)B(i-1)

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Analysis:

•p-1 (regular) communication rounds

•Each round takes time O(mi), total O((p-1)mi) = O(m-m’)

Size per process mi = |Bi| = m’ (for regular problem)

Total problem size m = ∑mi

Assumptions:

•Processes can send and receive simultaneously

•Cost of sending/receiving data of size m’ is O(m’)

•Homogeneous communication along ring

NOTE:

For small m’
algorithm with
log p rounds
preferable!

Optimal: no idle time, no superfluous data!

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Bi

Process i

Linear ring: p-1 rounds

•Process i receives block B(i-1-k) from i-1 and sends block
B(i-k) to i+1 in round k, k=0, …, p-1

Irregular problem:

B(i+1)B(i-1)

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Bi

Process i

Linear ring: p-1 rounds

•Process i receives block B(i-1-k) from i-1 and sends block
B(i-k) to i+1 in round k, k=0, …, p-1

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Bi

Process i

Linear ring: p-1 rounds

•Process i receives block B(i-1-k) from i-1 and sends block
B(i-k) to i+1 in round k, k=0, …, p-1

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Bi

Process i

Linear ring: p-1 rounds

•Process i receives block B(i-1-k) from i-1 and sends block
B(i-k) to i+1 in round k, k=0, …, p-1

BUT:

•Time is O((p-1)max |Bi|)
for last process to finish

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Observation 1: linear ring works for clustered systems also

Bi

Linear ring: p-1 rounds

•Process i receives block B(i-1-k) from i-1 and sends block
B(i-k) to i+1 in round k, k=0, …, p-1

node i node i+1node i-1

MODIFICATION: Use virtual ranking, one process per node
sends, one process per node receives

7 8 5 3

B(i+1)B(i-1)

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Analysis:

•p-1 rounds

•Inter-node connections busy in all rounds:
one process per node sends, one process
per node receives

•Each node sends and receives (p-1) blocks

IMPROVEMENT:

a node never receives a block that it already has (replace
by intra-node all-gather).

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Observation 2:

linear ring on cluster solves irregular problem over nodes

Bi

node i node i+1node i-1

Irregular problem can be solved by simulating
clustered algorithm

B(i+1)B(i-1)

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Bi

process i process i+1process i-1

Handle each block Bi as node of ceil(Bi/B) regular blocks
of some size B

B(i-1) B(i+1)

B

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

The algorithm for large, irregular all-gather problemsThe algorithm for large, irregular all-gather problems

The blocked/pipelined ring algorithm

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Bi

Process i

The blocked ring algorithm:

1. For each process i, cut data Bi into bi = max(1,ceil(mi/B))
blocks B’j of some chosen size (at most) B

mi

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Bi

Process i

B’0 B’4B’3

B’2

B’1

B’9

B’6

B’5

si: first block of process i,
si = ∑(j<i)bi

B

bi =
ceil(mi/B)

1. For each process i, cut data Bi into bi = max(1,ceil(mi/B))
blocks B’j of some chosen size (at most) B – each process has
at least one block

The blocked ring algorithm:

Total number of blocks b = ∑bi

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Bi

Process i

2. Run linear pipe on blocks, in round k process i receives
block B’(si-1-k) from i-1 and sends block B’(si+bi-1-k) to i+1

B’0 B’4B’3

B’2

B’1

B’9

B’6

B’5

si: first block of process i,
si = ∑(j<i)bi

B

bi =
ceil(mi/B)

The blocked ring algorithm:

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Bi

Process i

2. Run linear pipe on blocks, in round k process i receives
block B’(si-1-k) from i-1 and sends block B’(si+bi-1-k) to i+1

B’0 B’4B’3

B’2

B’1

B’9

B’6

B’5

si: first block of process i,
si = ∑(j<i)bi

B

bi =
ceil(mi/B)

The blocked ring algorithm:

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Bi

Process i

2. Run linear pipe on blocks, in round k process i receives
block B’(si-1-k) from i-1 and sends block B’(si+bi-1-k) to i+1

B’0 B’4B’3

B’2

B’1

B’9

B’6

B’5

si: first block of process i,
si = ∑(j<i)bi

B

bi =
ceil(mi/B)

The blocked ring algorithm:

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Bi

Process i

2. Run linear pipe on blocks, in round k process i receives
block B’(si-1-k) from i-1 and sends block B’(si+bi-1-k) to i+1

B’0 B’4B’3

B’2

B’1

B’9

B’6

B’5

si: first block of process i,
si = ∑(j<i)bi

B

bi =
ceil(mi/B)

The blocked ring algorithm:

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Bi

Process i

2. Run linear pipe on blocks, in round k process i receives
block B’(si-1-k) from i-1 and sends block B’(si+bi-1-k) to i+1

B’0 B’4B’3

B’2

B’1

B’9

B’6

B’5

si: first block of process i,
si = ∑(j<i)bi

B

bi =
ceil(mi/B)

The blocked ring algorithm:

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Bi

Process i

2. Run linear pipe on blocks, in round k process i receives
block B’(si-1-k) from i-1 and sends block B’(si+bi-1-k) to i+1

B’0 B’4B’3

B’2

B’1

B’9

B’6

B’5

si: first block of process i,
si = ∑(j<i)bi

B

bi =
ceil(mi/B)

The blocked ring algorithm:

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

At most one block per process
may not be full (may be empty)

B

MODIFICATION:

•Empty blocks are neither sent nor received

•Only actual data of partial blocks is sent/received

•No process receives a block it already has

The blocked ring algorithm:

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Bi

Process i

Analysis:

•b-1 (almost) regular communication rounds

•Each round takes time O(B), total time O((b-1)B) =
O((p+∑floor(Bi/B))B) ≈ O(m)

MUCH BETTER than O((p-1)max(mi)) of linear ring
without blocking

Total number of blocks b = ∑bi

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

General principle:

1. Regular collective operation solves similar irregular problem
on clustered system

2. By simulation, algorithm for regular problem on clustered
system can be converted to algorithm for irregular problem.
ASSUMPTION: communication capability of node and
processor similar, eg. one ported

3. Irregular operation (on processes) remains irregular problem
on clustered system

Blocked ring algorithm also works for MPI_Allgatherv on
clustered system

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Choosing the block size B:

1. All mi>0: choose B=min(mi) – smallest data of some process
(not too small, threshold).

2. Fixed block size

3. Some mi=0: number of rounds is m/B+(p-z)/2, z number of
mi=0, assuming partial blocks half full. Time per round in
linear model is α+βB, best block size ≈ √[2αm/β(p+z-2)]

1. All processes busy in all rounds, for regular problems
algorithm identical to linear ring

2. Simple solution - can lead to load imbalance for some
distributions

3. Optimizes pipelining effect, for extreme problems with m0=m,
mi=0 similar to pipelined broadcast. Linear model not accurate
enough!

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Experimental resultsExperimental results

Target systems

•NEC SX-8 - up to 30 nodes used

•Linux clusters with IB and Gig. Ethernet - 16 nodes, 24 nodes

•IBM Blue Gene/P - up to 4096 processes

•SiCortex 5832 - 5784 processes

Comparison of blocked ring algorithm to standard ring:

•Performance

•Load balance

•Effect of block size B

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Distributions

1. Regular

2. Broadcast

3. Spike

4. Half

5. Linear

6. Geometric

…

p

…

p
…

p

…

p

…

p

p

2, 3: same total amount of data

1, 4, 5, 6: same total amount of data

m = c, c is Base Size

m = pc, c is Base Size

Comparable running times

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

SX-8, 30x1 processes

…

p

> factor 10

only ≈ 15% slower
than MPI_Bcast

Fixed B = 1MByte

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

SX-8, 30x8 processes

…

p

> factor 12

Fixed B = 1MByte

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

SX-8, 30x1 processes

…

p

Fixed B = 1MByte

Same as broadcast
distribution time

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

SX-8, 30x8 processes

…

p

Fixed B = 1MByte

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

SX-8, 30x1 processes

…

p

Better
pipelining!?

Fixed B = 1MByte

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

SX-8, 30x1 processes

…

p

Fixed B = 1MByte

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

SX-8, 30x1 processes

…

p

Fixed B = 1MByte

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

SX-8, 30x1 processes

p

Fixed B = 1MByte

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Yellow: idle time

Blue: communication time

Linux cluster, 96 processes

…

p

Linear ring

Blocked ring

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Linux cluster, 96 processes

Fixed B = 32KByte

…p p

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Linux cluster, varying number of processes

p

Fixed B = 32KByte

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Blue Gene/P, 4096 processes

Fixed B = 64KByte

p

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

SiCortex, 5784 processes

Fixed B = 1MByte

p

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Linux cluster, 16x2 procs

…

p

Too small B

Factor 2

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Linux cluster, 16x2 procs

…

p

Too small B

Too small B

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Linux cluster, 16x2 procs

p

Little effect
of block size B

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Linux cluster, 16x2 procs

…

p

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

…

p

Linux cluster, 16x2 procs

Little effect
of block size B

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

Linux cluster, 16x2 procs

…

p

Little/some effect of
block size B

Too large B

September 8-10, 2008 EuroPVM/MPI 2008, Dublin
© NEC Laboratories Europe

SummarySummary

•Simple, blocked linear ring algorithm for MPI_Allgatherv

•NEW? Observation not found in literature

•Large performance gains for large problems on different
systems

•Good limit behavior: identical to linear ring for regular
problems, similar to pipelined broadcast for extreme
distributions

•Tuning of block size: dependent on data distribution, linear
model inadequate, experimental work needed

•There are relationships between regular and irregular
collectives (on processes and nodes) that can (sometimes) be
exploited for design of new algorithms

