
Are Nonblocking Networks Really Needed for
High-End-Computing Workloads?

N. Desai,∗1 P. Balaji,∗2 P. Sadayappan,†3, M. Islam†4

∗Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL 60439, USA

1desai@mcs.anl.gov
2balaji@mcs.anl.gov

†Department of Computer Science and Engineering
Ohio State University, Columbus, Oh 43210, USA

3saday@cse.ohio-state.edu
4islammo@cse.ohio-state.edu

Abstract—High-speed interconnects are frequently used to
provide scalable communication on increasingly large high-end
computing systems. Often, these networks are nonblocking, where
there exist independent paths between all pairs of nodes in
the system allowing for simultaneous communication with zero
network contention. This performance, however, comes at a heavy
cost as the number of components needed (and hence cost)
increases superlinearly with the number of nodes in the system.

In this paper, we study the behavior of real and synthetic super-
computer workloads to understand the impact of the network’s
nonblocking capability on overall performance. Starting from a
fully nonblocking network, we begin by assessing the worse-case
performance degradation caused by removing interstage commu-
nication links, resulting in overprovisioning and hence potentially
blocking in the communication network. We also study the impact
of several factors on this behavior, including system workloads,
multicore processors, and switch crossbar sizes. Our observations
show that a significant reduction in the number of interstage links
can be tolerated on all of the workloads analyzed, causing less
than 5% overall loss of performance.

I. INTRODUCTION

As high-end computing (HEC) systems continue to grow
in size and scale, it is a generally accepted notion that the
network that connects these systems also has to grow to
allow for improved performance and scalability. High-speed
interconnects, such as InfiniBand (IB), Myrinet, 10-Gigabit
Ethernet and Quadrics, are popular choices for connecting
machines on modern HEC systems. These networks are com-
posed of small building blocks known as crossbars or switch
building blocks (SBBs) that connect together to form the
overall network. For IB and Myrinet, 16-port and 24-port
crossbars are common today; switches with larger port counts
are created by interconnecting these crossbars internally using
an efficient network topology such as the Clos network.

To achieve the best communication performance, several
HEC systems use completely nonblocking network topologies,
where there exist independent paths between all pairs of nodes
in the system, allowing for simultaneous communication with
zero network contention. Unfortunately, to scale a network
linearly with the system size, while retaining such nonblocking
capabilities increases the number of network components

(specifically the number of crossbars and cables) superlinearly.
For example, in order to connect 16 nodes in a completely
nonblocking manner, one single 16-port crossbar is required
in a Clos network; for 32 nodes, four such crossbars would be
required. The SUN Enterprise 3456 switch (formerly known as
the Magnum switch) is another such example. SUN Magnum
is a five-stage Clos network, with each stage containing
288 24-port crossbars, to only create a 3456-port IB switch.
That is, the number of internal ports used for inter-crossbar
connectivity is an order of magnitude higher than the number
of external ports to which nodes can be connected. When we
move forward to systems with tens of thousands of nodes, this
problem will only get worse. Further, since the crossbars are
the basic building blocks of a network fabric, the cost of the
network fabric increases superlinearly as well.

In this paper, we quantify the performance benefits of such
nonblocking topologies compared to less expensive blocking
network topologies. Specifically, a topology that reduces the
number of interstage links by a factor of two can halve the
cost of the network components. However, every job that
is scheduled on the system is not evenly slowed down by
a factor of two. Jobs that are allocated such that all their
processes are on nodes that are connected to a single crossbar
do not experience any slowdown, since the crossbar itself is
completely nonblocking. That is, on a 24-port crossbar, any job
that uses less than 24 processes can potentially be fully sched-
uled on a single crossbar. With multicore or multiprocessor
architectures, even larger jobs can be scheduled on the same
crossbar (for dual-processor quad-core nodes connected to a
24-port crossbar, up to 192 process jobs can be scheduled on
the same crossbar). Depending on the actual communication
percentage of the job, the potential for contention further
reduces rapidly.

Based on the above observations, it is not very clear
whether, in practice, such network overprovisioning actually
causes significant performance degradation in real workloads.
Accordingly, we study the impact of various parameters
discussed on network contention and overall job slow-down
that occurs due to reductions in interstage network links.

978-1-4244-2640-9/08/$25.00 © 2008 IEEE 2008 IEEE International Conference on Cluster Computing152

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 6, 2009 at 18:09 from IEEE Xplore. Restrictions apply.

Analysis is performed with both synthetic traces (that allow
us to study the impact of different job characteristics) and
real system workloads from different supercomputers. Our
simulation results demonstrate that even in the worst case
where all jobs perform 100% communication, and halving
the numer of leaf switch uplinks, the overall system wide
performance of jobs is not slowed down by more than 5%
on an average.

II. TECHNICAL APPROACH

The goal of our work is to model the effects of network
contention on the overall utility of real-world systems, in order
to understand the quantitative benefit of nonblocking intercon-
nection networks. Clearly, contention is a large issue in some
environments, particularly those with workloads composed
primarily of large jobs. Our basic approach is to determine per-
crossbar utilization levels using a worst-case communication
demand from jobs. Our workloads include the results of actual
scheduling policy and hence are representative of real-world
behavior on production systems. For this work, we assume
that independent jobs do not communicate with one another.

Several hardware aspects of cluster systems are currently
in flux. Multicore CPUs have become the norm for cluster
systems. Likewise, the size of network crossbars, the build-
ing blocks of switches, are growing, which leads to flatter
networks. We will analyze each of these factors in turn to
determine how they alter the attractiveness of nonblocking
networks.

A. Network Contention

Network performance is a key indicator of cluster utility.
In parallel clusters, many applications are limited by their
ability to communicate effectively with their peer processes.
Frequently, network contention is believed to be a performance
limiting factor.

Network performance is determined by two main factors in
parallel systems. The first is a node’s ability to communicate
with its peers. This ability depends on the node and network
hardware and on the node’s software stack. The second is the
ability of a network to quickly convey a packet from the sender
to its intended recipeient. If the network is idle, this process
will occur quickly without any errors. If transmission path
includes any network links already carrying other traffic, then
the packet will be slowed or even lost. When this contention
occurs, performance is reduced, or retransmission may be
required.

Cluster interconnection networks are frequently nonblock-
ing. These networks are often described as having full bi-
section bandwidth. nonblocking networks are structured so
that there exist enough internal links in the network fabric
for the two parts of an arbitrary bisection of the network
to communicate without network contention. This effect is
achieved by ensuring that each nonblocking leaf crossbar can
communicate with all other leaf crossbars at full bandwidth.
As the number of leaf switches grows, additional layers of
switches that provide high-bandwidth connectivity to other

leaf switches must be added at certain points. When a new
stage must be added into a network, the per-port cost of the
network increases dramatically. For example, a fully populated
three-stage network constructed out of 16 port crossbars will
provide ports for 128 nodes. When the 129th node is added,
the three stage network will need to be expanded to a five-
stage network. These price discontinuities make nonblocking
networks unappealing for many system sizes, depending on
size of network crossbars used. Over the past several years,
crossbar sizes have grown dramatically. Whereas 8-port cross-
bars used to be the norm, 16- and 24-port crossbars are now
common and 32-port crossbars are on the horizon; and this
trend is expected to continue well past this point. Increased
crossbar sizes enable the construction of larger nonblocking
networks with a fixed number of stages.

Fig. 1. Block diagram of the Atlas Infiniband Network

Figure 1, taken from the LLNL computing site [1], shows
the Infiniband network used on the Atlas system at LLNL,
which is one of the traces analyzed in this paper. This network
shows a mixed view of crossbars and integrated switches. The
boxes at the bottom of the diagram are leaf crossbars, with
12 ports connecting to nodes. The top layer of boxes are the
network spine. This view is simplified, showing just the spine
as four integrated 288 port switches. Internally, these switches
are three-stage networks composed of 24-port crossbars.

The alternative to a nonblocking network is one in which
bandwidth is internally constrained. Here, the optimal scenario
possible in the nonblocking case cannot occur during heavy
network utilization; interswitch links will frequently block,
limiting end-to-end bandwidth for clients or causing packet
loss. Blocking networks can be constructed in a variety of
ways.

The contended networks analyzed in this paper are con-
structed by connecting nonblocking crossbars with reduced
uplinks to a nonblocking network spine. Each leaf crossbar is
connected to nodes on a half of its ports, while using some
fraction of the remaining ports as uplinks. The advantage
of this approach is that all contention occurs locally; jobs
that share crossbars contend with each other for limited
uplink capacity from that crossbar to the network spine. This
architecture is shown in Figure 2.

In this 2:1 overcommitted network, S1 and S2 are 288-

153

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 6, 2009 at 18:09 from IEEE Xplore. Restrictions apply.

S1 S2

L96L3L2L1 ...

3

3 3 3 3

3
3

3

12 12 12 12

Fig. 2. Block diagram of an 2:1 overcommitted network

port Clos networks, built using 24-port crossbars. L1 . . . L96
are 24-port leaf crossbars. On each leaf switch, 12 ports are
connected to nodes, while 3 ports are connected to each of
S1 and S2. Compared with the Atlas network in Figure 1, the
component savings in terms of spine switches and associated
links is obvious.

B. Analysis Methodology

The goal of our analysis was to quantify the effects of net-
work contention on realistic system workloads. We procured
accounting logs for several systems: the Argonne Jazz system
and two systems at Lawrence Livermore National Lab.

Jazz is a 350-node cluster acquired in late 2002. It is used
by the Argonne community at large, and so the workload
is unpredictable. The user base changes frequently, and the
applications used vary widely in terms of scalability and
network requirements. We have analyzed data from the entire
operational life of Jazz, from 2003 until the present.

The other real-world data sources are from two LLNL
clusters, Atlas and Thunder. Atlas is an 1152-node cluster,
with 8 cores per node. Atlas is used primarily as a capability
cluster. Thunder is a 1024-node cluster with four cores per
node. This system is used primarily as a capacity cluster.

The analysis input consisted of a series of jobs; the pertinent
information was start time, end time, and node allocations. We
assummed a linear allocation of interconnect switch ports: in
other words, if a crossbar is connected to 8 nodes, nodes 0–7
will be connected to the first leaf crossbar, and nodes 8–15
will be connected to the second, and so forth.

From this node-to-crossbar mapping, we were able to deter-
mine the number of jobs that are subject to uplink contention.
Jobs that were run on nodes connected to a single crossbar
will communicate internally only on a single, nonblocking
crossbar; hence, these jobs cannot experience any uplink
contention. All subsequent analysis was performed on jobs
subject to uplink contention.

The next step was to calculate each job’s worst-case uplink
usage for communication traffic. This number differs for each
crossbar used in a job, based on the way the job is spread

across multiple crossbars. Uplink use for crossbar n for job
j is defined as the following, where c(n, j) is the number of
nodes on crossbar n where job j is running.

U(n, j) = min(c(n, j),
xbars∑
m=0
m6=n

c(m, j)) (1)

This equation determines a job’s maximum ability to use
crossbar uplinks, which is limited by both the number of job
nodes on the local crossbar and the sum of job nodes on
other crossbars. I/O activity, typically performed on the same
interconnect network, is not factored in; it is outside the scope
of this paper.

Using this information about crossbar uplink use, in con-
junction with job start and end times, we can calculate the
aggregate uplink use for each crossbar over time. In order to
combine uplink use for two jobs, used crossbar uplink counts
are added for overlapping time intervals, and left the same
for nonoverlapping times. We can then generate the aggregate
uplink utilization over time for all crossbars in the system,
called Utotal.

The final stage of analysis determines the impact of remov-
ing crossbar uplinks at leaf crossbars. An ideal nonblocking
interconnect complex will not suffer from any oversubscription
effects. As leaf node uplinks are removed, network perfor-
mance begins to suffer if the aggregate uplink utilization is
greater than the number of available uplinks. For a given
reduction in uplink count, we can determine the number of
affected jobs and the intervals in which contention occurs. A
worst-case network slowdown can be determined by the ratio
of original network bandwidth to available network bandwidth.

Given an uplink reduction level for leaf crossbars, the
slowdown for a single job can be calculated for each interval i
during its execution as follows. R is the number of remaining
links, while Utotal(n, i) is the uplink use of crossbar n during
interval i.

S(job, i) =
max(Utotal(0, i), . . . , Utotal(xbars, i)))

R
(2)

Jobs are assumed to be tightly coupled; hence each will
be limited by the crossbar with highest demand in a given
interval. The slowdown is the ratio of demand to available
uplinks. The total slowdown, in wall time, for a single job
consists of the uncontended time, combined with per-interval
slowdown times that interval length.

This slowdown is indeed a worst-case scenario; it would
be substantially reduced in the case of jobs that spend less
than 100% of their time communicating. A more accurate
approximation of job slowdown on a single crossbar can
be determined probabilistically. Here, m represents usable
crossbar uplinks, n is the remaining number of links (we
assume that there are no idle links) and J is the fraction
of time spent by processes communicating (communication
probability). If m <= n no contention will occur; contention

154

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 6, 2009 at 18:09 from IEEE Xplore. Restrictions apply.

will only occur if at least (m + 1) of the n data links are
transmitting data at the same time.

The probability that exactly k of the links are transmitting
data at the same time is given by:(

n

k

)
× Jk × (1− J)n−k (3)

We are interested in the case where either exactly (m + 1)
links are active, or exactly (m + 2) links are active, so on up
to exactly n links being active. Thus, our overall probability of
contention, E(J), as a function of communication probability
J can be given by:

E(J) =
n∑

k=m+1

[
(

n

k

)
× Jk × (1− J)n−k] (4)

This equation represents a part of the newton binomial
equation, whose sum would be one, if k ranged from 0 to n.
For the partial sum given in equation 4, we expect this value to
be much smaller than one, when the range is small, i.e., when
m+1 is close to n; in other words, we expect this probability
to be close to zero, when the number of overprovisioned links
is not very high.

Fig. 3. Contention Probability as a function of Communication Probability

To further illustrate this, we plot the function E(J) against
J in Figure 3, for a 24-port crossbar with different fractions
of overprovisioning. The figure illustrates a steep increase
in contention probability for high values of communication
probability. Specifically, we notice that even for a commu-
nication probability of 20% and an overprovisioning factor
of 3, there is a less than 5% probability of contention on
a 24-port ASIC. Further, a 20% communication percentage
is considered very high for most scientific applications. Note
that the time spent within the MPI library, for example, is a
combination of communication time and idle wait time waiting
for communication.

In summary, while this paper deals with the worst case sce-
nario of 100% communication probability for all applications,
in reality, the potential amount of contention can be expected
to be much lower. Further, this also gives us an indication of

what kind of overprovisioning system integrators can utilize,
assuming that they are aware of the approximate amount of
communication their applications are expected to perform.

C. Multicore Effects on Network Contention

The introduction of multicore nodes into computational
clusters clearly reduces overall network performance available
to processes running on nodes. This reduction is due to
the multiplication of computation resources without (in most
cases) an addition of network capacity. Functionally, multicore
or SMP fat nodes divide up available network bandwidth by
the number of processes on the local node.

That said, the outgoing and incoming bandwidth available
to a given node stays the same: it is just split more ways.
Hence, the same basic model for network contention works
for fat nodes.

The use of multicore systems does have one important effect
on network contention. Jobs of a fixed size can run on a
smaller number of nodes on these systems than on comparable
single core nodes. This compression effectively produces a
workload with a smaller per-job node counts. Smaller node
counts translate to reduced potential for network contention;
hence, we expect these multicore systems to be more tolerant
of network contention.

To accurately simulate multicore effects, we have scaled
the resources used by each job in our workloads according
to an increased per-node core count. In most cases, this
alteration will result in a job executing on a smaller number
of fatter nodes. For example, a 32-node job from the Jazz
workload (a system with uniprocessor nodes) is scaled to
run on a smaller number of 8-core nodes. We preserve the
fragmentation present in the original workload; if a job was
run on a series of noncontiguous nodes, it will run on a disjoint
set of cores spread across a larger number of multicore nodes.
The best possible scenario is the case where a job ran on
contiguous resources. In this case, the core locations will be
compressed onto nodes that are effectively job-dedicated. In
this case, the node count will be reduced by a factor of the
ratio of new core count to old core count. In the worst-case
scenario, fragmentation will spread the job allocation across
the same number of nodes used in the original case.

Each workload comes from a system with a different
number of cores per node. Jazz has one core per node, Atlas
has eight, and Thunder has four. Each of these will be scaled
up to larger core counts to demonstrate the impact of core
count on network contention. The allocation fragmentation
present in each workload will vary the improvements offered
by multicore growth in each case.

III. RESULTS

We describe three sets of results. First, we will show the
initial analysis of potential job contention in the presence
of blocking network behavior. Next, we show the effect of
varying network crossbar size for a given workload. Finally,
we show how multicore nodes affect network contention.

155

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 6, 2009 at 18:09 from IEEE Xplore. Restrictions apply.

A. Network Contention Analysis

Our first round of analysis considered the historical work-
loads on networks built with 16 and 24 port crossbars. All
three production workloads and the synthetic workload all
showed similar trends. Figures 4, 5, and 6 show examples
of these results. These figures include the worst-case scenarios
for communication slowdown; the probabalistic slowdown will
also be included in the final paper.

Each graph includes two types of data for each column. The
first measures slowdown as an effect on the system overall.
This is calculated by determining the aggregate wallclock time
increase and comparing it to the overall wallclock time used by
jobs in the trace. The second column measures slowdown as
it impacts jobs that suffered contention. This metric shows the
impact on users for individual jobs, when slowdown occurred.

1 2 3 4 5 6 7

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

Jazz Slowdown

Overall
Slowdown
Contended
Slowdown

Uplink Reduction

S
lo

w
d

o
w

n

Fig. 4. Effect of uplinks removal on the Jazz workload

Each graph shows a similar trend. As expected, as uplinks
were removed, more jobs suffered from contention, resulting
in larger slowdowns. More surprising, the impact of removing
a small number of uplinks is nearly negligible. Moving from
a nonblocking interconnect network to one with a 1:2 over-
subscription ratio results in only a 5% system-wide slowdown.
Also, Jazz, a 350-node cluster, showed the highest sensitivity
to network contention. Atlas and Thunder, both considerably
larger systems, showed much less sensitivity. These results
show another interesting pattern: the difference between sys-
tem slowdowns and single job slowdowns varies greatly by
workload. Both of these results were quite unexpected.

The slowdowns displayed in the graphs are the mean of
calculated slowdowns. While the average case looks good even
with many uplinks removed, the slowdowns experienced by
jobs can be quite bad in the worse cases. Figure 7 shows the
downside of this approach.

1
2

3
4

5
6

7
8

9
10

11

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

Atlas Slowdown

Overall
Slowdown
Contended
Slowdown

Uplink Reduction

S
lo

w
d

o
w

n

Fig. 5. Effect of uplink removal on the Atlas workload

1 2 3 4 5 6 7

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

Thunder Slowdown

Overall
Slowdown
Contended
Slowdown

Uplink Reduction

S
lo

w
d

o
w

n

Fig. 6. Effect of uplink removal on the Thunder workload

In the Jazz and Thunder workload, slowdowns of 350%
were encountered, while slowdowns of 550% occurred in the
Atlas workload. These maximum slowdowns are related to
the crossbar sizes. The Jazz and Thunder workloads were
analyzed with 16-port crossbars, while the Atlas workload
runs with a 24-port crossbar. While substantial slowdowns did
occur in each workload, they occurred extremely infrequently.
This result is shown by the average slowdown being less than
50%. While the overall slowdowns look good in most cases,
particular jobs were badly impacted.

156

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 6, 2009 at 18:09 from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6 7 8 9 10 11

0.00%

100.00%

200.00%

300.00%

400.00%

500.00%

600.00%

Maximum Job Slowdown

Jazz
Atlas
Thunder

Uplink Reduction

S
lo

w
d

o
w

n

Fig. 7. Maximum Slowdown by Workload.

B. Crossbar Size Comparison

The next analysis varied crossbar sizes for a given workload
and preexisting schedule. Again, all datasets showed a similar
pattern, an example of which is shown in Figure 8. Two
important patterns are shown in this data. First, slowdowns
grow quite slowly until a majority of the uplinks are removed.
Larger crossbar sizes incur decreased slowdown for the same
ratio of removed uplinks. Also, for each crossbar size, the
last case incurs additional slowdowns compared with the
slowdowns shown by smaller crossbars.

0
1

2
3

4
5

6
7

8
9
10

11
12

13
14

15
16

17
18

19
20

21
22

23

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

16-port
24-port
32-port
48-port

S
lo

w
d

o
w

n

Uplink Reduction

Fig. 8. Effect of crossbar growth on a synthetic workload

This data shows that networks built out of larger crossbars

will be less sensitive to network contention for a given
workload.

C. Multicore Comparison
The final analysis simulates the effect of increases in

multicore systems on network contention. The scaling used
to simulate fatter nodes is described in detail in Section II-C.

Two interesting trends emerge from the data. We simulated
each workload on systems with increasing numbers of cores
per node. In each case, the network contention decreased
substantially with each expansion of node size, even in the
presence of substantial allocation fragmentation. Each of the
following graphs chart the slowdown for the increasing core
counts, starting at their actual core counts and proceeding
upward.

1 2 3 4 5 6 7

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

Jazz Multicore Slowdown

1 core*
4 core
8 core
16 core

Uplink Reduction

S
lo

w
d

o
w

n

Fig. 9. Effect of multicore processors on the Jazz workload

As core counts increase, the amount of network contention
for each workload decreases sharply. This situation bodes well
for the use of overcommitted networks as core sizes grow.
Even for the worst contention behavior we have seen, in
the Jazz workload, growth to modern core counts shows a
dramatic improvement. In the worse contention case, where
only one uplink remains from each leaf switch, changing from
uniprocessor nodes to eight-core nodes reduces the slowdown
from 37.35% to 17.72%. The other traces show similar, though
less striking, improvement.

Comparison of the three traces is also useful, as each system
has a different number of cores per node. The Jazz workload
has shown much more sensitivity to network contention than
either of the other two workloads, despite the fact that Atlas
and Thunder are both large systems. Moreover, Atlas is a
capability system, and its average job size is considerably
larger than that of either Thunder or Jazz. This analysis,
showing the impact of increased core sizes, reveals the likely
cause.

Comparison of the Atlas and Thunder workloads is also
interesting. These are comparably sized systems, in terms of

157

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 6, 2009 at 18:09 from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6 7

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

Thunder Multicore Slowdown

4 cores*
8 cores
16 cores
32 cores

Uplinks Reduction

S
lo

w
d

o
w

n

Fig. 10. Effect of multicore processors on the Thunder workload

1 2 3 4 5 6 7 8 9 10 11

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

Atlas Multicore Slowdown

8 cores*
16 cores
32 cores

Uplink Reduction

S
lo

w
d

o
w

n

Fig. 11. Effect of multicore processors on the Atlas workload

node counts. The two main differences are the number of cores
per node and the workload. The higher number of cores per
node on the Atlas system partially balances out the difference
in workload between the systems. Despite the fact that the
average job size on Atlas is nearly four times larger than that
of Thunder, the differences in slowdown are much smaller.
This effect provides an interesting window into the future,
where the number of cores in a single node and the size of
network crossbars will continue to grow.

IV. CONCLUSION

In this paper, we have presented a model that describes
network contention on space-shared clusters. We have used

this model to calculate the aggregate impact of network
contention on workloads for several systems. These workloads
each expressed aspects of the variety present on many clusters.
One workload was taken from a moderately sized production
cluster at Argonne National Laboratory. The others were taken
from capacity and capability clusters at Lawrence Livermore
National Laboratory. In each case, analysis showed that the
workload could tolerate the slowdowns caused by moderate
amounts of leaf switch uplink reduction. This finding suggests
that nonblocking networks may not be an absolute requirement
in modern HEC systems.

Our initial analysis showed that scaling back the uplink
bandwidth of the leaf crossbars in a cluster interconnect
should have a minimal impact in aggregate, provided the
majority of uplinks are not removed. While individual jobs
can be greatly impacted, these jobs are not so common as to
substantially slow systems overall. Also, as the size of network
crossbars increases, the impact of contention is dramatically
reduced for a fixed workload. Moreover, multicore systems
have a substantial positive impact on the sensitivity to network
contention for a given workload.

Each of these findings is independently encouraging, partic-
ularly with an eye toward the near future. System sizes have
grown considerably over the past few years, and this trend is
sure to continue. As system sizes grow, the cost of nonblocking
interconnect networks increases dramatically. Because we ex-
pect core count and crossbar size growth to continue, system
tolerances for network contention and oversubscription will
expand. These factors will make oversubscribed networks
compelling for the large systems of the next five years.

This strategy of reducing uplinks to the network spine is
useful in several situations. Nonblocking switch complexes
grow non-linearly; at certain points, the addition of small
numbers of nodes requires the addition of a large amount of
switching infrastructure. The strategy of removing leaf cross-
bar uplinks while retaining a nonblocking network spine would
provide a limited slowdown for user jobs while substantially
reducing the network costs.

While our analysis suggests that many systems can tolerate
increased network contention, this is not a universal truth.
Particular systems, including those featuring large numbers of
jobs that frequently occupy a majority of that system, will be
susceptible to network contention solely due to this workload.

Uplink removal is not without detrimental aspects. Fre-
quently, network switch complexes are subject to hotspot
behavior. This situation has been widely studied, and various
improvements have been proposed, including multipathing [2].
Hotspots can occur for a variety of reasons, including hardware
failures or load imbalances in multipathing. The removal of
spine capacity will negatively impact networks in either of
these cases.

Caveats aside, these results demonstrate that oversubscribed
networks could fill a vital role in large scale clusters – that of
price-competitive, though still high-performance, networks.

158

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 6, 2009 at 18:09 from IEEE Xplore. Restrictions apply.

V. FUTURE WORK

While our model provides a basic mechanism to assess
workload-related uplink contention, several steps are required
before this process can be used as a design guide for new
systems.

I/O is not factored into this model. Many applications spend
large fractions of their wall time performing I/O. This activity
typically uses the same interconnect network used for job
communication and hence has the potential to interfere with
other jobs in blocking networks. Our model will need to take
this into account if it is to be useful for prediction purposes.

Another issue we have not examined here is the impact
of reusing idle uplink ports for nodes. This approach can
clearly result in even higher levels of contention than the worst
numbers in our graphs, if leaf crossbars use only a single
uplink. It is unclear whether more conservative use of this
approach results in good price/performance compared with the
approach described in this paper.

Also, this model does not factor in hotspots in the network
spine. Hotspots have been shown to occur relatively frequently
and hence have a bearing on this model.

Several studies have focused on effective node allocation
and its impact of on application performance. Many of these
efforts have considered mesh [3], [4], [5], [6], [7], [8], [9] and
hypercube topologies [10], [11]. The Buddy strategy for node
allocation has been widely studied [12], [13], [14], [15].

These studies have shown various ways of improving appli-
cation performance via topology-aware mapping and schedul-
ing. The thrust of our effort is in an orthogonal direction –
development of upper-bounds on overall performance degra-
dation of a workload scheduled on a shared cluster. Our
analysis makes worst-case assumptions regarding demand on
network communication links. In practice, with the use of
effective mapping and scheduling algorithms developed in
other studies, the actual degradation from removal of com-
munication links from nonblocking networks would likely be
considerably lower than the upper bounds that we developed.
This would further strengthen our conclusions: nonblocking
interconnection networks are even more an overkill than shown
by our upper-bound analysis.

Finally, this work does not include an explicit pricing model
for determining precise network costs. If this approach is to
have impact in cluster-buying decisions, network costs must
be factored in.

SOFTWARE AVAILABILITY

The software used to perform the analysis is open source
and will be publicly available by publication time. It is able
to natively process PBS and Slurm accounting logs and an
extended version of SWF files that include job execution
location data.

ACKNOWLEDGMENTS

This work was supported by the Mathematical, Informa-
tion, and Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research, Office

of Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357.

Some of the analysis in this paper, particularly the multicore
analysis portion, would not have been possible without the
Parallel Workloads Archive [16] compiled and maintained by
Dror Feitelson. In particular, the traces provided by Moe Jette
of Lawrence Livermore National Laboratory for the Atlas and
Thunder systems were crucial for this work.

REFERENCES

[1] B. Barney. Linux clusters overview. Lawrence Livermore National
Laboratory. [Online]. Available: https://computing.llnl.gov/tutorials/
linux clusters/#Hardware

[2] A. Vishnu, M. Koop, A. Moody, A. R. Mamidala, S. Narravula, and
D. K. Panda, “Hot-spot avoidance with multi-pathing over infiniband:
An mpi perspective,” in CCGRID ’07: Proceedings of the Seventh
IEEE International Symposium on Cluster Computing and the Grid.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 479–486.

[3] P. Chuang and N. Tseng, “An efficient submesh allocation strategy
for mesh computer systems,” in Proceedings of the 11th International
Conference on Distributed Computing Systems, 1991, pp. 256–263.

[4] K. Li and K. H. Cheng, “A two-dimensional buddy system for dynamic
resource allocation in a partitionable mesh connected system,” Journal
of Parallel and Distributed Computing, vol. 12, pp. 79–83, 1991.

[5] Y. Zhu, “Efficient processor allocation strategies for mesh-connected
parallel computers,” Journal of Parallel and Distributed Computing,
vol. 16, pp. 328–337, 1992.

[6] V. Leung, E. Arkin, M. Bender, D. Bunde, J. Johnston, A. Lal,
J. Mitchell, C. Phillips, and S. Seiden, “Processor Allocation on Cplant:
Achieving General Processor Locality Using One-Dimensional Alloca-
tion Strategies,” Proceedings of the IEEE International Conference on
Cluster Computing, 2002.

[7] J. Mache, V. Lo, and S. Garg, “Job scheduling that minimizes network
contention due to both communication and I/O,” Proceedings of the
14th International Parallel Processing Symposium (IPPS, vol. 0, p. 457,
2000.

[8] S. Moore and L. Ni, “The effects of network contention on processor
allocation strategies,” Proceedings of the 10th International Parallel
Processing Symposium (IPPS, pp. 268–273, 1996.

[9] M. A. Bender, D. P. Bunde, E. D. Demaine, S. P. Fekete, V. J.
Leung, H. Meijer, and C. A. Phillips, “Communication-aware processor
allocation for supercomputers: Finding point sets of small average
distance,” Algorithmica, vol. 50, no. 2, pp. 279–298, 2008.

[10] P. Krueger, T. Lai, and V. Dixit-Radiya, “Job scheduling is more
important than processor allocation for hypercube computers,” in IEEE
Transactions on Parallel and Distributed Systems, vol. 5, no. 5, 1994,
pp. 488–497.

[11] P. Mohapatra, C. Yu, C. R. Das, and J. Kim, “A lazy scheduling scheme
for improving hypercube performance,” in Proceedings of the 1993
International Conference on Parallel Processing, vol. I - Architecture.
CRC Press, 1993, pp. I–110–I–117.

[12] M. Chen and K. G. Shin, “Processor allocation in an n-cube multipro-
cessor using gray codes,” IEEE Trans. on Computers, vol. C, no. 36,
pp. 1396–1407, 1987.

[13] S. Dutt and J. P. Hayes, “Subcube allocation in hypercube computers,”
IEEE Trans. on Computers, vol. 40, no. 3, pp. 341–352, 1991.

[14] J. Kim, C. R. Das, and W. Lin, “A top-down processor allocation
scheme for hypercube computers,” in IEEE Transactions on Parallel
and Distributed Systems, vol. 2, 1991, pp. 20–30.

[15] V. Subramani, R. Kettimuthu, S. Srinivasan, J. Johnston, and P. Sadayap-
pan, “Selective buddy allocation for scheduling parallel jobs on clusters,”
Cluster Computing, 2002. Proceedings. 2002 IEEE International Con-
ference on, pp. 107–116, 2002.

[16] D. Feitelson. Parallel workloads archive. Hebrew University. [Online].
Available: http://www.cs.huji.ac.il/labs/parallel/workload/

159

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 6, 2009 at 18:09 from IEEE Xplore. Restrictions apply.

