
ParaMEDIC: Parallel Metadata Environment

for Distributed I/O and Computing

(Storage Challenge, Supercomputing 2007)

P. Balaji§ W. Feng¶ J. Archuleta¶ H. Lin*

§Math. and Computer Science,

Argonne National Laboratory

balaji@mcs.anl.gov

¶Dept. of Computer Science,

Virginia Tech

{feng, jsarch}@cs.vt.edu

*Dept. of Computer Science,

North Carolina State Univ.

hlin2@ncsu.edu

I. TEAM INFORMATION

The ParaMEDIC team consists of four individuals

across three institutions: Pavan Balaji (Argonne Na-

tional Laboratory), Wu-chun Feng and Jeremy Archuleta

(Virginia Tech) and Heshan Lin (North Carolina State

University). ParaMEDIC is a Parallel Metadata Environ-

ment for Distributed I/O and Computing that utilizes the

the MPICH2 communication library from Argonne Na-

tional Laboratory and the mpiBLAST parallel sequence-

searching application from Prof. Feng’s group at Virginia

Tech. Partner institutions that supported this effort by

providing equipment resources include the Tokyo Insti-

tute of Technology with support from Sun Microsystems,

the Center for Computation and Technology at Louisiana

State University, the Renaissance Computing Institute,

the University of Chicago, and the San Diego Super-

computing Center.

Short biographies of the ParaMEDIC team members

are provided below.

Pavan Balaji: Pavan Balaji holds a joint appointment as

a post-doctoral researcher at the Argonne National Labo-

ratory and as a fellow of the Computation Institute at the

University of Chicago. Dr. Balaji received his Ph.D. from

the Computer Science and Engineering department at

the Ohio State University. His research interests include

high-speed interconnects, efficient IP-based protocols,

parallel programming models and middleware, and job

scheduling and resource management. He has nearly 30

publications and has given several talks and tutorials

in the above areas. Dr. Balaji has also served as a

Program Committee Member and Technical Referee for

several international conferences and journals. He is a

member of the IEEE and ACM. More details about Dr.

Balaji, including a comprehensive CV, are available at

(http://www.mcs.anl.gov/∼balaji).

Wu-chun Feng: Wu-chun Feng is an associate professor

of Computer Science and Electrical and Computer En-

gineering at Virginia Tech, where he directs the Synergy

Laboratory. His research interests span many areas of

high-performance networking and computing from the

systems level to the applications level, e.g., advanced

computer architecture, green supercomputing, network

protocols, grid computing, virtual computing, and bioin-

formatics. He has amassed over 100 peer-reviewed publi-

cations, given more than 20 invited talks (including two

keynote talks), and served on 10 conference panels as

well as 30 program committees for international confer-

ences and workshops in high-performance computing. In

addition to having his work recognized in the New York

Times, CNN, and BBC News, he was also the recipient

of three R&D 100 Awards and was named as one of

HPCwire’s Top People to Watch in 2004. He holds a B.S.

and an M.S. in computer engineering and a B.S. Honors

in music, all from Penn State University, and a Ph.D.

in computer science from the University of Illinois at

Urbana-Champaign. He is a senior member of the IEEE

and a member of the ACM.

Jeremy Archuleta: Jeremy Archuleta is an Institute

for Critical Technologies and Applied Science Doctoral

Scholar and Ph.D. candidate in the Department of Com-

puter Science at Virginia Tech. His research areas include

high-performance computational science and software

engineering. Mr. Archuleta has a M.S. in Computer

Science from the University of Utah and a B.S. in

Electrical Engineering and Computer Science from the

University of California at Berkeley.

Heshan Lin: Heshan Lin is a Ph.D. student in the

Department of Computer Science at North Carolina State

University. His research focuses on high-performance

computing, particularly parallel I/O and distributed com-

puting. Mr. Lin has several publications in ACM and

IEEE-sponsored conference proceedings. He received a

M.S. in Computer Science from Temple University and

a B.S. in Applied Mathematics from the South China

University of Technology.

II. ABSTRACT

The ParaMEDIC team created a worldwide supercom-

puter that aggregates supercomputers around the world in

order to tackle large-scale bioinformatics problems that

cannot easily be solved in a traditional supercomputing

environment. The bioinformatics problems of signifi-

cance are as follows:

• Sequence-search all the 567 microbial genomes

(that have been completed to date) against each

other in order to discover missing genes via mpi-

BLAST sequence-similarity computations [5], [19].

• Generate a complete genome sequence-similarity

tree, based on the above results, in order to structure

the sequence databases so as to enable pruning of

the sequence-search space and, thus, accelerate the

sequence-search process.

In order to solve the above problems, we used more

more than 10,000 processors distributed across several

different supercomputing centers in the U.S. and gener-

ated a petabyte of uncompressed data in one month and

wrote a compressed version of this dataset to the 0.5-

petabyte filesystem at the Tokyo Institute of Technology.

Given the daunting computational and I/O scale of

the above problems, solving them required more than a

brute-force approach. It required a new framework that

we call ParaMEDIC (Parallel Metadata Environment for

Distributed I/O and Computing). ParaMEDIC leverages

MPICH2 and mpiBLAST to provide an environment that

decouples computation and I/O in applications such as

mpiBLAST and drastically reduces I/O overhead through

metadata processing. ParaMEDIC trades a small amount

of additional computation (in the form of metadata pro-

cessing) with a significant reduction in the amount of I/O

to achieve high performance. Preliminary studies demon-

strated that ParaMEDIC improves the performance of

mpiBLAST by 5-fold over the Teragrid infrastructure

and by 25-fold on regular Internet2 connectivity between

Virginia Tech and the Argonne National Laboratory. For

this SC|07 Storage Challenge, ParaMEDIC improved the

I/O time of mpiBLAST by more than three orders of

magnitude, over our worldwide supercomputer, which

consisted of 10,000+ computational cores located in the

U.S. and on the order of a petabyte of storage in Japan.

III. PROBLEM STATEMENT

In the past decade, there has been an increasing

research focus on computational biology as a means

to provide sophisticated mechanisms to allow biologists

to interact with and analyze existing information about

well-known biological entities and utilize it to improve

insights into the behavior of newer entities. Nucleotide

and protein sequence-searches are common examples for

such interactions, where biologists search an unknown

sequence (from a new organism) in a large database of

sequences corresponding to known biological entities [1]

in order to find genetic similarities [16] between the

organisms. For example, in 2003, sequence matching

helped biologists to identify the similarities between the

recent SARS virus and the more well-studied coron-

aviruses, thus enhancing the biologists’ ability to combat

the new virus [14]. The ubiquitous tool that is used to

perform these sequence searches is BLAST [1].

With the size of the GenBank database doubling every

12 months [2], [7], and the computational horsepower of

a single processor doubling only every 18-24 months, the

growth rate of the databases has been fast outstripping

the ability of a single processor to keep up. For instance,

in 2002, searching a 300-KB portion of the E. chrysan-

themi genome against the NT database took 22.4 hours

(80,775 seconds); by 2005, the same search but with an

updated NT database took 49.1 hours (176,880 seconds)

to complete.

Given the importance of biosequence searching us-

ing BLAST, researchers have designed a number of

tools to perform these searches in an efficient man-

ner. mpiBLAST [5], [6] is a freely available, open-

source parallelization of the popular BLAST sequence

search library. By segmenting the query and fragmenting

the database, along with many other advanced parallel

techniques, mpiBLAST gives super-linear speedups to

BLAST searches and has become an indispensable tool

for computational biologists.

Like most other parallel sequence search applications,

the overall software architecture of mpiBLAST follows a

Master-Worker model. At the core of mpiBLAST resides

database segmentation, which fragments a sequence

database across multiple nodes so that each fragment

fits in memory. Each worker process then searches its

unique portion of the database independently of the other

workers. Once the search is complete, the results of the

search are merged at the master process and written out

to a central file for later examination or post-processing

by the biologist.

While a Master-Worker model provides the required

compute horsepower to perform the actual sequence

search, as the scale of the problem and the number

of processes involved in the search increases, it is not

always possible for all the processes to have high-speed

access to the file-system. It forces the different compute

processes to utilize a potentially distant and/or slow

2

� � � � � � � � � � 	 � �
 � � �
 � � � �

�
� � �

� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �

� �
� � � � � � � � � � � � �

 !"
#$%& '
()& *
"+ ,"
#- . / 0 1 2 3 4 5

6 7 8 7 9 : ; < =

Fig. 1. Teragrid Infrastructure using University of Chicago and the
San Diego Supercomputing Center

distributed filesystem for writing the final output to. As

the database size grows, the search output generated

also grows proportionally. Thus, such distributed I/O

creates a significant bottleneck which severely limits the

performance of the application.

For example, on the Teragrid infrastructure, compute

servers are distributed across multiple locations in the

U.S. (including University of Chicago, Texas Advanced

Computing Center and Oak Ridge National Laboratory),

with a common distributed filesystem being hosted at

San Diego Supercomputer Center (SDSC). Our evalu-

ations, shown in Figure 1, demonstrated that the I/O

time of mpiBLAST when the query was computed at

SDSC was more than 5-fold faster as compared to when

the same query was computed at a different location,

in spite of having a 30Gbps network link between the

different locations. This essentially limits the utility of

the large number of compute resources available by

converting the sequence-search problem from a compute-

bound problem to an I/O-bound problem.

In this paper, we propose to sequence-search all of

the 567 microbial genomes that have been completed

to date, against each other, and build a similarity tree

based on these results. Given the scale and complexity

of this problem, the number of compute and storage

resources required to solve it is gigantic. For example,

the 567 microbial genomes together consist of more than

16 million individual sequences, and require more than

263 trillion sequence comparisons. Further, the output

generated from all these searches and the similarity tree

is expected to be more than one petabyte. Given that

very few institutes possess the capability to perform

such large computations AND store such a large amount

of data, only through the collective resources of a

worldwide computer can such multi-genome searches be

undertaken. This, however, means that the final storage

is not local for any of the compute resources, leading to

the distributed I/O bottleneck described above.

To handle this problem, we propose ParaMEDIC

(Parallel Metadata Environment for Distributed I/O and

Computing), a novel framework that decouples com-

putation and I/O through metadata processing. Specif-

ically, ParaMEDIC converts the output generated to

application-specific metadata at the compute site, moves

the metadata to the storage site, and reconverts the

metadata to the actual output again at the storage site.

In other words, ParaMEDIC trades a small amount of

additional computation (in terms of metadata processing)

for significantly lesser I/O in distributed environments.

This allows the distributed computational resources to

be effectively utilized without having to stall for long

periods on I/O.

IV. HARDWARE CONFIGURATION

In order to solve the problems described in Section III,

we used more than 10,000 processors distributed across

several different supercomputing centers in the U.S.,

and a large petabyte scale storage facility at the Tokyo

Institute of Technology at Japan. The overall hardware

configuration is broken down into two categories—

compute resources and I/O resources.

Compute Resources: Following the software architec-

ture of ParaMEDIC, the compute resources are respon-

sible for completing the required 263 trillion searches

and generating the resultant metadata. The following re-

sources were distributed around the U.S. and performed

the bulk of the computation, but minimal I/O, in the

application:

1) 2200-processor System X supercomputer at Vir-

ginia Tech.

2) 2048-processor BG/L supercomputer at Argonne

National Laboratory.

3) 5832-processor Sicortex supercomputer at Ar-

gonne National Laboratory.

4) 700-processor Intel Jazz supercomputer at the Ar-

gonne National Laboratory.

5) A few hundred processors on the Teragrid system

located at the San Diego Supercomputing Center

and University of Chicago.

6) A few hundred processors located the Center for

Computation and Technology located at Louisiana

State University.

7) A few hundred processors on the Open Science

Grid located at the Renaissance Computing Insti-

tute.

3

8) A few hundred processors on the Breadboard

system at the Argonne National Laboratory.

I/O Resources: The final output was stored at the

Tokyo Institute of Technology with support from Sun

Microsystems. The details of this storage system are:

1) Clients: 10 quad-core SunFire X4200 and 2 16-

core SunFire X4500 systems

2) Object Storage Servers (OSS): 20 SunFire X4500

3) Object Storage Targets (OST): 140 SunFire X4500

(each OSS has 7 OST)

4) RAID configuration for OST: RAID5 with 6 drives

5) Network: 1 Gigabit Ethernet

6) Kernel: 2.6

7) Lustre Version: 1.6.2

V. DATA AND STORAGE LAYOUT

As described earlier, the goal of this project is

two fold—(i) Sequence-search all the 567 microbial

genomes (that have been completed to date) against

each other in order to discover missing genes via

mpiBLAST sequence-similarity computations, and (ii)

Generate a complete genome sequence-similarity tree,

based on the above sequence-searching, in order to

structure the sequence databases so as to enable pruning

of the sequence-search space and, thus, accelerate the

sequence-search process.

With respect to the first goal, the output data gen-

erated by mpiBLAST is a list of matching sequences

with the relevant details about the matching portions

of the sequence, significance of the match, and others.

Typically, a separate output file is generated for each

query – a query itself is comprised of multiple query

sequences. We took all 567 microbial genomes from

NCBI (ftp.ncbi.nih.gov/genomes/Bacteria) and split each

replicon (a chromosome or plasmid) into open reading

frames (i.e., potential genes) of length 99 nucleotides

or greater. A minimum length is generally used to

prevent “useless” sequences from being perceived to be

functional genes. This resulted in more than 16 million

query sequences (or potential genes) being created, com-

prising more than 5 gigabytes of data. These 16 million

sequences were split into 16,242 queries with each query

generating a single output file.

With respect to the second goal, for each sequence in

the database, we further utilized this generated output to

form a sequence-similarity tree of matching sequences

at different depths. That is, if a sequence s1 directly

matches sequence s2 during a search, it is considered a

first-level match in the tree. If s2 directly matches s3,

then s3 is considered to be a second-level match in the

tree for s1. This allows the database to have a more

well-defined structure that relates each sequence to the

remaining sequences in the database.

For the size of the output, the division of each mi-

crobial genome into its respective potential genes and

the subsequent all-to-all comparison has never been

performed before; so there was no real expected size

of the amount of I/O that this would generate. However,

from preliminary testing, we estimated the final output

including the matches as well as a similarity restruc-

turing of the database to be around one petabyte. Due

to the large storage requirement, we utilized the storage

facility available at the Tokyo Institute of Technology

where data on the order of a petabyte could be stored.

Though generating or storing one petabyte is probably

not a major step by itself, the number of compute

resources required for generating this data force the

compute resources to be globally distributed (since very

few institutes hold as many compute resources in a sin-

gle site). Furthermore, the large geographical distances

between these resources and the final storage location

makes this scientific study extremely challenging and the

solution innovative.

VI. SOFTWARE USED

We used three primary software stacks for this chal-

lenge – (i) ParaMEDIC, a parallel metadata environ-

ment for distributed I/O and computing from Argonne

National Laboratory and Virginia Tech, (ii) MPICH2,

an implementation of the MPI standard from Argonne

National Laboratory and (iii) mpiBLAST, a parallel

sequence-search application from Virginia Tech.

Of note, all three primary applications used in this

work (ParaMEDIC, MPICH2 and mpiBLAST) are home-

grown by the authors. ParaMEDIC and mpiBLAST

were developed by the authors to address and resolve

issues in high-performance bioinformatics applications,

while MPICH2 was developed as a high-performance

and portable implementation of the Message Passing

Interface (MPI). Also of note, the version of mpiBLAST

used in this experiment is mpiBLAST-PIO, an opti-

mized version of mpiBLAST that utilizes parallel I/O

techniques to exploit the tightly-coupled computational

resources, i.e., clusters, at the different sites.

Other than these three applications, only standard

Linux and Mac OS X tools were used on the corre-

sponding platforms.

VII. DESCRIPTION OF SOLUTION TO THE PROBLEM

In this section, we present a detailed descrip-

tion of our approach, namely ParaMEDIC (short for

Parallel Metadata Environment for Distributed I/O and

Computation). We first describe the overall framework

4

Fig. 2. World-wide supercomputer

in section VII-A, followed by details of the generation of

the metadata by the compute workers in section VII-B.

We then conclude the section with a description of how

the post-processing is performed by the I/O workers to

regenerate the final output in section VII-C.

A. The ParaMEDIC Framework

As seen in Figure 3, ParaMEDIC utilizes a two-tiered

hierarchical framework for decoupling computation and

I/O in mpiBLAST. The upper tier consists of two pro-

cesses – compute manager and I/O manager — while

the lower tier consists of two groups of processes –

compute workers and I/O workers. The actual searching

of the query sequences in the database is handled by

the compute workers. These workers, however, do not

generate their regular sequence output; they instead

generate a raw version of metadata that represents the

actual output. Once the raw metadata is generated, the

compute master processes this metadata, compresses it,

writes it to the file-system, and sends a signal to the I/O

master. The I/O master, upon receiving a signal from the

compute master, utilizes the I/O workers to process the

metadata and generate the final output.

1) Trading Computation with I/O cost: The amount of

computation required in ParaMEDIC is higher than what

is required by the original mpiBLAST implementation.

For example, after the output is generated by the com-

pute workers, it has to be processed to generate the meta-

data, sent to the I/O master, and again processed by the

I/O workers to re-generate the final output. However, the

I/O cost can potentially be significantly reduced by this

framework. In other words, ParaMEDIC aims at trading

additional computation for reduced I/O cost. Figure 4

shows the execution breakup of running mpiBLAST and

ParaMEDIC over a WAN with 100ms network latency.

As can be seen, although paying a little extra computa-

tion (post-processing) overhead, ParaMEDIC can reduce

I/O costs by orders of magnitudes.

With respect to the additional computational cost

incurred, ParaMEDIC is quite generic with respect to

the metadata processing that is required by the different

processes. For example, the metadata can be a simple

and basic compression of the actual output or a complex

application-specific data structure that can be utilized

to regenerate the final output. In a simple compression

scheme, no application-specific information is needed,

thus allowing new applications to utilize the frame-

work quickly and easily. However, the post-processing

required is high and the I/O savings might not be that

significant either. On the other hand, with a complex

application-specific data structure generation scheme,

the amount of additional post-processing required to

regenerate the final output can be low, and the I/O

savings significant.

2) Managing Compute and I/O Worker Processes:

Managing the compute and I/O worker processes in

ParaMEDIC essentially determines the tradeoff in the

amount of time spent in computation versus the amount

of time saved in I/O. In general, since the I/O worker

processes are restricted to the cluster that hosts the file-

system, the number of I/O workers that are available

is restricted. For example, in a distributed environment

hosting 10,000 processors, only 100 processors might

reside on the same cluster that hosts the file-system.

Thus, in this case, it is ideal to maintain a 100:1 ratio

between the number of compute workers and the number

of I/O workers.

This forces ParaMEDIC to utilize algorithms that

can generate metadata from the result and re-generate

the result from the metadata with minimal processing

requirements. In other words, the framework ensures that

the post-processing cost required to process the metadata

5

mpiBLAST

Worker
mpiBLAST

Worker

mpiBLAST

Worker

Read temp
Database

Database
Generate temp

mpiBLAST

Worker
mpiBLAST

Worker

mpiBLAST

Worker

I/O Servers
hosting file−system

mpiBLAST Master

Raw MetaDataQuery Query

Write Results

mpiBLAST Master

Compute Master

Compute Workers

Processed Metadata

I/O Workers

I/O Master

Fig. 3. The ParaMEDIC Framework

mpiBLAST

Over WAN

ParaMEDIC

Over WAN

0 72 84 87

0 72 190

Computation Post-Processing I/O

Fig. 4. Execution breakup for running mpiBLAST and ParaMEDIC over WAN with 100ms network latency. The performance numbers are
measured in seconds.

and generate the final output is significantly less than

the actual computation needed to search for the query

sequence within the database.

B. Metadata Generation

As described in section VII-A1, the metadata gener-

ated by ParaMEDIC can be as simple as a basic com-

pression of the result, or as complex as an application-

specific data structure that can be used to regenerate

the result. In this section, we describe the metadata

generation algorithm used in mpiBLAST.

Several databases utilize unique identifiers for each

sequence in the database. These identifiers, though

unique for each sequence, are not always ordered in the

database. The result that is generated from mpiBLAST

typically consists of the sequences themselves, together

with a significant amount of additional information

such as details about the software package, additional

information about each sequence, pattern matches that

BLAST discovered for each sequence, the e-value rep-

resenting how close the match was for each sequence,

and various others statistics.

ParaMEDIC parses through the results generated by

the mpiBLAST compute workers and extracts the se-

quence identifier information for each matching se-

quence in the database. Once the sequence identifier in-

formation for all the matching sequences in the database

6

for each query sequence is identified, this data is com-

pressed (e.g., by discarding duplicate GI values) and sent

to the I/O workers at the storage site.

We note that as the number of query sequences

increase or as the number of result sequences that are

required by the user increases, the metadata generated

as well as the time for generating and processing the

metadata increases too. Thus, at some point, the addi-

tional cost of metadata processing becomes greater than

the saving in I/O time that is achievable. In order to

address this, ParaMEDIC finds the size of the metadata

that is created and uses a tunable threshold parameter

to determine whether decoupled computation and I/O

can provide any benefit. If the metadata size is larger

than the threshold, the scheme falls back to the regular

mpiBLAST implementation. However, with the large

genome database that we used in our current work

(containing 16 million sequences), to reach this thresh-

old, the user would have to request for unrealistically

large number of matches per sequence. Thus, in our

experiments, this threshold is never reached.

C. I/O Post-Processing

I/O post-processing is handled by the I/O workers

in ParaMEDIC. The post-processing comprises of two

primary components, viz., database creation and query

search. In the first component, the I/O master creates a

new temporary database based on the matched segments

that were found by the compute workers. This temporary

database is typically much smaller than the original

database. For example, each query sequence generates

at most 250 matched sequences by default (unless the

user requests for more matches) which is only 0.001%

of the original database. Once the temporary database

is created, the I/O workers re-search the original query

sequences against this temporary database to generate

the final output. Since the temporary database is typically

very small, this search time is minimal.

The size of the metadata generated directly impacts

the size of the temporary database. Thus, as the number

of unique sequences that match the query sequences

increases (either as the number of query sequences

increases or the number of matches requested by the user

increases), the size of the temporary database, and con-

sequently, the I/O post-processing time increases. Again,

the threshold (mentioned in section VII-B) ensures that

the metadata size in this scheme is small and thus the

ParaMEDIC scheme beneficial.

VIII. EXPERIMENTS, MEASUREMENTS AND

QUANTITATIVE RESULTS OF SOLUTION

The section presents the performance evaluation of

ParaMEDIC-enhanced mpiBLAST (hereafter referred to

as simply ParaMEDIC) and compares it with the ex-

isting mpiBLAST implementation. In Section VIII-A,

we first present preliminary performance studies which

demonstrate the capabilities of ParaMEDIC in sample

environments, including a distributed testbed between

Argonne National Laboratory and Virginia Tech over

the Internet2 network connection and the Teragrid in-

frastructure with nodes from University of Chicago and

San Diego Supercomputing Center participating in the

experiment. Then, in Section VIII-B, we present the

detailed quantitative analysis of our experiments directly

pertinent to the storage challenge, in a world-wide dis-

tributed supercomputing environment.

A. ParaMEDIC Evaluation in Sample Environments

Figure 5 illustrates the performance of mpiBLAST and

ParaMEDIC on a distributed system between Argonne

National Laboratory and Virginia Tech connected over

Internet2. Since the network connecting the two clusters

is not secure, data encryption is used to protect the data

transmitted over this network.

> ? @ A B C D E F D G D H I J K L M G K E N O A J P Q D R J S T N T A J U

V

W V V V

X V V V

Y V V V

Z V V V

[V V V

\ V V V

W V X V Y V Z V [V \ V] V ^ V _ V W V V
` a J E N b D c J d e f g

h i
jk
lmn o
pqn r
js t
jku v w x y z { | }~ � � � � � � � �

Fig. 5. Argonne National Laboratory to Virginia Tech encrypted file-
system

As shown in the figure, ParaMEDIC outperforms

mpiBLAST by more than 25-fold in this environment.

This is attributed to multiple aspects. First, given that

the network connection between the two sites is shared

by other users, the effective network performance achiev-

able is usually much lower than within the cluster. Thus,

with mpiBLAST transferring the entire output result

over this network, its performance would be heavily

impacted by the network performance. Second, since

7

� �

�
� � �

� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �

� �
� � � � � � ¡ � ¢ £ ¤ ¥

¦ §
©̈ª«¬ ­
®¯¬ °
¨± ²
©̈³ ´ µ ¶ · ¸ ¹ º »

¼ ½ ¾ ½ ¿ À Á Â Ã

Fig. 6. Teragrid Infrastructure using University of Chicago and the
San Diego Supercomputing Center

data communicated is encrypted, mpiBLAST also has to

pay the penalty for such encryption. Though ParaMEDIC

also pays such data encryption penalty, the amount of

data it transfers is significantly lesser, and hence the

penalty is lesser as well. Third, the distance between

the two sites causes the communication latency to be

high. Thus, file-system control messages tend to take a

long time to be exchanged resulting in further loss of

performance.

Figure 6 illustrates the performance of mpiBLAST

and ParaMEDIC on the Teragrid infrastructure. Teragrid

represents a widely used distributed environment for

several compute- and I/O-intensive applications includ-

ing mpiBLAST. A GPFS-based distributed file-system

is hosted at San Diego Supercomputing Center (SDSC),

which can be accessed from all facilities, and forms

a part of the Teragrid facility. For the experiments in

this section, we utilized the nodes at the University of

Chicago and SDSC. Nodes at the University of Chicago

were configured as compute resources while nodes at

SDSC were configured as I/O resources.

For both mpiBLAST and ParaMEDIC, while the final

output is written to the same global file-system in both

cases, mpiBLAST suffers from the fact that the compute

workers are performing the I/O for the output results.

Since they reside on a remote cluster as compared to

the actual file-system, their I/O performance is limited

resulting in an overall degradation in execution time. For

ParaMEDIC, on the other hand, since the I/O workers

are performing the I/O for the output results, the amount

of time taken is significantly smaller. For a query file

size of 100KB, ParaMEDIC outperforms mpiBLAST by

a factor of about five times.

B. Quantitative Analysis on a Worldwide Supercomputer

As described earlier, in this project, we utilize

ParaMEDIC to sequence the entire microbial genome

database against itself. Given the enormous compute

and storage requirements of this project, we utilized

a worldwide distributed supercomputer that is powered

by our ParaMEDIC framework, to sequence the entire

database. Several supercomputing centers (described in

Section IV) within the United States were utilized for

performing the computation, while the data generated

was stored at a large storage resource in Tokyo. In this

section, we primarily present data that describes the

improvement in storage utilization that we could achieve

through ParaMEDIC.

Figure 7(a) illustrates the storage bandwidth utilization

achieved by mpiBLAST, ParaMEDIC and the MPI-IO-

Test benchmark which is used as an indication of the

peak performance capability of the I/O subsystem. We

notice that the storage utilization of mpiBLAST is very

poor as compared to ParaMEDIC. The reason for this

is that mpiBLAST requires all of the generated output

to be transferred to the remote storage subsystem. In

case where the network connectivity is limited (such

as across the Internet as it is in this case), the storage

utilization suffers. It is to be noted that, though more

than 10,000 processors are performing the compute part

of the task, the network connecting the compute servers

in the United States and the storage system in Tokyo is

the bottleneck.

On the other hand, ParaMEDIC is able to utilize close

to 100% of the capability provided by the storage sub-

system (as demonstrated by the MPI-IO-test benchmark).

When the number of compute processes performing post-

processing is low (x-axis in the figure), ParaMEDIC

utilizes about half of the storage capability. However,

as the number of compute processes increases, the I/O

utilization of ParaMEDIC increases as well. In fact, with

288 compute threads, ParaMEDIC utilizes more than

90% of the capability of the storage system.

Figure 7(b) illustrates the percentage breakup of the

time spent in ParaMEDIC’s post-processing phase. As

shown in the figure, a significant portion of the time

spent is in the I/O part. This shows that inspite of using

a fast parallel file system such as Lustre, ParaMEDIC

is still bottlenecked by the I/O subsystem. In fact, our

analysis has shown that in this case the bottleneck lies

in the 1-Gigabit Ethernet network subsystem connecting

the storage nodes. Thus, we expect that even for systems

with faster I/O subsystems, ParaMEDIC will further

scale up and continue to utilize a significant portion of

the I/O bandwidth provided.

8

Storage Utilization with Lustre

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 8 16 32 64 128 288

Computation Threads

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

mpiBLAST

ParaMEDIC

MPI-IO-Test

ParaMEDIC Compute-I/O breakup (Lustre)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128 288

Computation Threads

P
e

rc
e

n
ta

g
e

I/O Percent

Compute Percent

Fig. 7. Storage Bandwidth Utilization using the Parallel Lustre Filesystem: (i) Improvement in Storage Utilization and (ii) Computation and
I/O time breakup

Storage Utilization with Local Disk

0

1000

2000

3000

4000

5000

6000

1 2 4 8 16 32 64 128 288
Computation Threads

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

mpiBLAST

ParaMEDIC

MPI-IO-Test

ParaMEDIC Compute-I/O breakup (Local Disk)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128 288

Computation Threads

P
e

rc
e

n
ta

g
e

I/O Percent

Compute
Percent

Fig. 8. Storage Utilization using the Local Filesystem: (i) Improvement in Storage Utilization and (ii) Computation and I/O time breakup

Since the performance of networked file-system such

as Lustre heavily depends on the capability of the

network, in Figure 8(a), we remove the network from

the equation and directly perform I/O on the local nodes.

We notice that the storage utilization achieved in this

case is significantly higher than going over the network.

However, even in this case, ParaMEDIC completely uti-

lizes the storage capability provided. Even with a small

number of compute threads, we notice that ParaMEDIC

is able to utilize more than 90% of the storage capability.

Figure 8(b) shows the percentage breakup of the time

spent in ParaMEDIC’s post-processing phase. Similar to

the case with the Lustre file-system, even in this case, a

significant portion of the time is still spent on I/O. Thus,

again, ParaMEDIC can be expected to scale and fully

utilize even significantly more capable storage resources.

Figure 9 shows the storage utilization of ParaMEDIC

with different output formats. Each output format gener-

ates a different amount of data; these sizes are sometimes

more than a factor of ten apart. However, the amount

of computation needed for each format is about the

Different Output Formats

0

1000

2000

3000

4000

5000

6000

Pairwise XML ASN, binary ASN, text Tabular Tabular with

Comment

lines
Output formats

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

mpiBLAST

ParaMEDIC

Fig. 9. Storage Utilization of mpiBLAST and ParaMEDIC for
different types of BLAST Output formats

same. Thus, depending on the kind of output format, it

is possible that the performance of ParaMEDIC varies.

As shown in the figure, while there is some amount of

variation, the storage utilization is comparable for all

formats. Further, for all formats, ParaMEDIC performs

significantly better than the current mpiBLAST imple-

9

mentation can perform.

IX. CONCLUSIONS BASED ON THE EXPERIMENTS

The goal of this project was two fold—(i) Sequence-

search all the 567 microbial genomes (that have been

completed to date) against each other in order to dis-

cover missing genes via mpiBLAST sequence-similarity

computations, and (ii) Generate a complete genome

sequence-similarity tree, based on the above sequence-

searching, in order to structure the sequence databases

so as to enable pruning of the sequence-search space

and, thus, accelerate the sequence-search process. Given

the scale and complexity of these problems, a regular

brute-force method would simultaneously require a large

amount of compute and storage resources together to

solve them. While most supercomputing centers provide

one of these two requirements (either large compute

power or storage), very few manage to provide both.

Thus, the entire data generated at one site has to be

moved to another site for storage. This is clearly ineffi-

cient, especially in distributed environments.

We presented ParaMEDIC: (Parallel Metadata Envi-

ronment for Distributed I/O and Computing), a novel

framework that decouples computation and I/O in ap-

plications such as mpiBLAST and drastically reduces

I/O overhead through metadata processing. ParaMEDIC

trades a small amount of additional computation (in

the form of metadata processing) with a significant

reduction in the amount of I/O to achieve high perfor-

mance. We utilized ParaMEDIC to create a worldwide

supercomputer with more than 10,000 processors dis-

tributed across six supercomputing centers in the U.S.

and a storage subsystem in Tokyo. The project generated

a petabyte of uncompressed data in one month and

wrote a compressed version of this dataset to the 0.5-

petabyte filesystem at the Tokyo Institute of Technology.

Through ParaMEDIC, we showed that we can increase

the utilization of the storage subsystem by several orders

of magnitude, since we are no longer limited by the

distributed infrastructure network connectivity. In many

cases, ParaMEDIC could utilize more than 90% of the

capability of the storage subsystem.

X. CLAIMS: ADDRESSING THE JUDGING CRITERIA

We believe this work has several contributions in the

following areas:

Application Performance: The primary goal of the

ParaMEDIC framework is to allow mpiBLAST to be

relieved off being I/O bound in distributed environments

and effectively utilize the available compute resources.

Thus, in distributed environments, especially where the

compute resources are separated from the file-system

hosting server by slow network connectivity, we expect

to see a large improvement (several orders of magnitude)

in performance.

System and/or Application: While the system utilized

is not a large single cluster, it utilizes a large number

of globally separated moderate to large-sized clusters.

Thus, our approach utilizes multiple independent clusters

as a loosely coupled cluster-of-clusters environment, or

a worldwide supercomputer.

With respect to the application, over the past three

years, mpiBLAST has become an integral component of

many high-performance cluster distributions [3], [4], [8],

[9], [11], [12], [13], [15] and is an officially supported

application at various high-performance computing facil-

ities [17], [18]. With more than 40,000 direct downloads

(not including downloads through other packaged distri-

butions such as NPACI Rocks Cluster distribution [10],

BioBrew Linux [3] and iNquiry [9]), mpiBLAST has

become one of the most popular parallel sequence-search

tools used in the community.

Scalability: The primary goal of the ParaMEDIC frame-

work is to remove the I/O bottleneck of mpiBLAST in

distributed environments and allow it to scale with the

number of compute resources. Though the scalability is

not expected to be perfect, due to the additional metadata

computation and I/O that needs to be performed, we

expect it to be very close to perfect. In fact, as the

number of processors grows very large, we expect to

close to virtually perfect scalability.

Storage Resource Utilization: Since mpiBLAST is pri-

marily a compute-intensive application, the computation

time can be expected to be significantly larger than

the I/O time when performed on a local file-system. In

the distributed environment, however, the I/O time can

increase significantly causing storage under-utilization.

To avoid this, in our experimentation, we over-subscribed

the number of compute resources to I/O resources by a

100:1 factor. From our tests, about 25:1 ratio seemed to

be sufficient to completely utilize the storage bandwidth

in our environment. A 100:1 factor not only guarantees a

complete storage resource utilization, but also provides

enough extra buffered data to handle cases where the

remote resources become unavailable for some periods

of time (e.g., when our allocation of the remote resource

has completed).

Innovation: To the best of our knowledge, there is no

existing mechanism which utilizes such a metadata based

approach to decouple computation and I/O in order to

alleviate the I/O bottleneck in distributed systems. Thus,

we believe that our approach is a novel contribution in

this regard.

Effectiveness: Given the popularity of mpiBLAST and

10

the current inability of I/O resources to scale equally

with compute resources, we believe that ParaMEDIC

might be an effective approach for scientists to utilize.

Even for local-area environments which provide limited

I/O capability (e.g., a BG/L system can provide one I/O

node for every 32 or 64 compute nodes), such a frame-

work can help relieve the I/O performance bottlenecks

significantly.

XI. DEVIATIONS FROM THE PROJECT PROPOSAL

Throughout the life of this experiment several obsta-

cles forced us to make small deviations from the original

proposal. These deviations were:

1) Using 567 microbial genomes instead of the NT

database.

2) Creating a sequence similarity tree in addition to

the BLAST output.

3) Using the storage system at Tokyo Institute of

Technology instead of at Argonne National Labo-

ratory.

While there are a few deviations from the original

proposal, in reality, these changes are in fact quite

small and more importantly do not change the overall

spirit of the experiment. Just as we proposed, we have

successfully used ParaMEDIC to improve performance

when running mpiBLAST on a large-scale bioinformat-

ics problem. The benefit of using ParaMEDIC allowed

us to not only perform an “all-to-all” sequence search,

but also allowed us to pursue the search for missing

genes. Both experiments are unprecedented undertakings

requiring computational and storage resources on a scale

unfathomable to normal bioinformatics scientists and

impossible without a worldwide supercomputer.

XII. ACKNOWLEDGMENTS

We would like to thank Rajeev Thakur and Rajkumar

Kettimuttu from the Argonne National Laboratory, and

Xiaosong Ma from the North Carolina State Univer-

sity for their help and technical support in creating

ParaMEDIC. We would also like to thank several mem-

bers at the Argonne National Laboratory and Virginia

Tech for allowing us access on several compute systems

for this storage challenge.

REFERENCES

[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic
Local Alignment Search Tool. Journal of Molecular Biology,
215:403–410, 1990.

[2] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A.
Rapp, and D. L. Wheeler. GenBank. Nucleic Acids Res., 30:17–
20, 2002.

[3] BioBrew / NPACI Rocks. http://bioinformatics.org/biobrew/.

[4] Cray. http://www.cray.com/solutions/life/applications.html.

[5] A. Darling, L. Carey, and W. Feng. The Design, Implementation,
and Evaluation of mpiBLAST. In International Conference on

Linux Clusters: The HPC Revolution 2003, 2003.
[6] W. Feng. Green destiny + mpiblast = bioinfomagic. In Interna-

tional Conference on Parallel Computing (ParCo), 2003.
[7] Gold - Genomes Online Database. http://www.genomesonline.

org/.
[8] IBM BlueGene. http://researchcomp.stanford.edu/hpc/archives/

BlueGene.pdf.
[9] iNquiry. http://www.bioteam.net/.

[10] NPACI Rocks. http://www.rocksclusters.org.
[11] Orion Multisystems. http://www.orionmulti.com/support/faq

mpiblast.
[12] Penguin Computing / Scyld. http://bioinformatics.org/biobrew/.
[13] Rocketcalc. http://www.rocketcalc.com/package.php?Key=15.
[14] SARS Coronavirus: New Insights from Genome Sequence Anal-

ysis. http://infectious-diseases.jwatch.org/cgi/content/full/2003/
523/1, 2003.

[15] Scalable Informatics. http://www.scalableinformatics.com.
[16] T. F. Smith and M. S. Waterman. Identification of Com-

mon Molecular Subsequences. Journal of Molecular Biology,
147:195–197, 1981.

[17] Terascale Computing Facility. http://www.tcf.vt.edu/.
[18] Teragrid. http://www.teragrid.org/.
[19] O. Thorsen, K. Jiang, A. Peters, B. Smith, H. Lin, W. Feng,

and C. Sosa. Parallel Genomic Sequence-Search on a Massively
Parallel System. In ACM International Conference on Computing

Frontiers, May 2007.

11

