
Supporting iWARP Compatibility and Features for Regular

Network Adapters∗

P. Balaji H. -W. Jin K. Vaidyanathan D. K. Panda

Department of Computer Science and Engineering

The Ohio State University

Columbus, Ohio 43210

{balaji, jinhy, vaidyana, panda}@cse.ohio-state.edu

Abstract

With several recent initiatives in the protocol offload-
ing technology present on network adapters, the user
market is now distributed amongst various technol-
ogy levels including regular Ethernet network adapters,
TCP Offload Engines (TOEs) and the recently in-
troduced iWARP-capable networks. While iWARP-
capable networks provide all the features provided by
their predecessors (TOEs and regular Ethernet network
adapters) and a new richer programming interface, they
lack with respect to backward compatibility. In this as-
pect, two important issues need to be considered. First,
not all network adapters support iWARP; thus, soft-
ware compatibility for regular network adapters (which
have no offloaded protocol stack) with iWARP capable
network adapters needs to be achieved. Second, several
applications on top of regular Ethernet as well as TOE
based adapters have been written with the sockets inter-
face; rewriting such applications using the new iWARP
interface is cumbersome and impractical. Thus, it is
desirable to have an interface which provides a two-fold
benefit: (i) it allows existing applications to run directly
without any modifications and (ii) it exposes the richer
feature set of iWARP to the applications to be utilized
with minimal modifications. In this paper, we design
and implement a software stack to handle these issues.
Specifically, (i) the software stack emulates the function-
ality of the iWARP stack in software to provide compat-
ibility for regular Ethernet adapters with iWARP capa-
ble networks and (ii) it provides applications with an
extended sockets interface that provides the traditional
sockets functionality as well as functionality extended
with the rich iWARP features.

Keywords: iWARP, RDMA and Extended Sockets

1 Introduction

While TCP/IP [14] is considered the most ubiq-
uitous standard for transport and network proto-
cols, the host-based implementation of TCP/IP has
not been able to scale very well with high-speed

∗This project is supported in part by the DOE grant
#DE-FG02-04ER86204 through Seafire Micros Inc.

networks. In high-speed networks, the CPU has
to dedicate more processing to handle the network
traffic than to the applications it is running. Par-
tial and complete Protocol Offload Engines (POEs)
such as the TCP/IP Offload Engines (TOEs) [26]
have provided a mechanism by which the host’s
computational requirements of the TCP/IP stack
can be curbed. Most TOEs retain the standard
sockets interface while replacing the host-based
TCP/IP stack with the hardware offloaded TCP/IP
stack [10]; this allows transparent compatibility for
existing applications to be directly deployed on to
TOEs.
Though TOEs have been able to handle most of

the inefficiencies of the host-based TCP/IP stack,
they are still plagued with some of the limitations in
order to maintain backward compatibility with the
existing infrastructure and applications. For exam-
ple, the traditional sockets interface is often not the
best interface to allow high performance communi-
cation [4, 16, 20, 21]. Several techniques used with
the sockets interface (e.g., peek-and-post, where the
receiver first posts a small buffer to read the header
information and then decides the length of the ac-
tual data buffer to be posted) make it difficult to ef-
ficiently perform zero-copy data transfers with such
an interface.
Several new initiatives by IETF such as iWARP

and Remote Direct Data Placement (RDDP) [25],
were started to tackle such limitations with basic
TOEs and other POEs. The iWARP standard,
when offloaded on to the network adapter, provides
two primary extensions to the TOE stack: (i) it
exposes a rich interface including zero-copy, asyn-
chronous and one-sided communication primitives
and (ii) it extends the TCP/IP implementation on
the TOE to allow such communication while main-
taining compatibility with the existing TCP/IP im-
plementations.
With such aggressive initiatives in the offloading

technology present on network adapters, the user

1

market is now distributed amongst these various
technology levels. Several users still use regular
Ethernet network adapters (42.4% of the Top500
supercomputers use Ethernet with most, if not
all, of them relying on regular Gigabit Ethernet
adapters [1]) which do not perform any kind of pro-
tocol offload; then we have users who utilize the of-
floaded protocol stack provided with TOEs; finally
with the advent of the iWARP standard, a part of
the user group is also moving towards such iWARP-
capable networks.
TOEs and regular Ethernet network adapters have

been compatible with respect to both the data
format sent out on the wire (Ethernet + IP +
TCP + data payload) as well as with the inter-
face they expose to the applications (both using the
sockets interface). With iWARP capable network
adapters, such compatibility is disturbed to some
extent. For example, currently an iWARP-capable
network adapter can only communicate with an-
other iWARP-capable network adapter1. Also, the
interface exposed by the iWARP-capable network
is no longer sockets; it is a much richer and newer
interface.
For a wide-spread usage, network architectures

need to maintain compatibility with the existing
and widely used network infrastructure. Thus, for
a wide-spread acceptance of iWARP, two important
extensions seem to be quite necessary.

1. Let us consider a scenario where a server han-
dles requests from various client nodes (Fig-
ure 1). In this scenario, for performance rea-
sons, it is desirable for the server to use iWARP
for all communication (e.g., using an iWARP-
capable network adapter). The client on the
other hand might NOT be equipped with an
iWARP-capable network card (e.g., it might
use a regular Fast Ethernet or Gigabit Ethernet
adapter or even a TOE). For such and various
other scenarios, it becomes quite necessary to
have a software implementation of iWARP on
such networks in order to maintain compatibil-
ity with the hardware offloaded iWARP imple-
mentations.

2. Though the iWARP interface provides a richer
feature-set as compared to the sockets inter-
face, it requires applications to be rewritten
with this interface. While this is not a concern
for new applications, it is quite cumbersome
and impractical to port existing applications
to use this new interface. Thus, it is desirable

1The intermediate switches, however, need not support
iWARP.

WAN

Servers

Servers

Servers

Clients

Switch

Switch

Switch

Clients

Figure 1. Multiple clients with regular
network adapters communicating with
servers using iWARP-capable network
adapters.

to have an interface which provides a two-fold
benefit: (i) it allows existing applications to
run directly without any modifications and (ii)
it exposes the richer feature set of iWARP such
as zero-copy, asynchronous and one-sided com-
munication to the applications to be utilized
with minimal modifications.

In general, we would like to have a software stack
which would provide the above mentioned exten-
sions for regular Ethernet network adapters as well
as TOEs. In this paper, however, we focus only
on regular Ethernet adapters and design and imple-
ment a software stack to provide both these exten-
sions. Specifically, (i) the software stack emulates
the functionality of the iWARP stack in software to
provide compatibility for regular Ethernet adapters
with iWARP capable networks and (ii) it provides
applications with an extended sockets interface that
provides the traditional sockets functionality as well
as functionality extended with the rich iWARP fea-
tures.
The rest part of the paper is organized as follows:

In Section 2, we provide a brief background about
TOEs and the iWARP standard. In Section 3 we go
into details about the design and implementation of
our software iWARP-aware extended sockets inter-
face. In addition, we suggest design alternatives for
the software implementation of iWARP. We present
the experimental evaluation of our stacks in Sec-
tion 4, some related work in Section 5 and conclude
the paper in Section 6.

2 Background

In this section, we provide a brief background
about TOEs and the iWARP standard.

2

2.1 TCP Offload Engines

The processing of traditional protocols such as
TCP/IP and UDP/IP is accomplished by software
running on the central processor, CPU or micro-
processor, of the server. As network connections
scale beyond Gbps speeds, the CPU becomes bur-
dened with the large amount of protocol processing
required. Resource-intensive memory copies, check-
sum computation, interrupts, and reassembling of
out-of-order packets put a tremendous amount of
load on the host CPU. In high-speed networks, the
CPU has to dedicate more processing to handle the
network traffic than to the applications it is running.
TCP Offload Engines (TOEs) [26] are emerging as
a solution to limit the processing required by CPUs
for networking.
The basic idea of a TOE is to offload the processing

of protocols from the host processor to the hardware
on the adapter or in the system. A TOE can be im-
plemented with a network processor and firmware,
specialized ASICs, or a combination of both. Most
TOE implementations available in the market con-
centrate on offloading the TCP and IP processing,
while a few of them focus on other protocols such
as UDP/IP.
As a precursor to complete protocol offloading,

some operating systems started incorporating sup-
port for features to offload some compute-intensive
features from the host to the underlying adapter,
e.g., checksum computation. But as Ethernet
speeds increased beyond Gbps, the need for fur-
ther protocol processing offload became a clear re-
quirement. Some GigE adapters complemented this
requirement by offloading TCP/IP and UDP/IP
segmentation onto the network adapter [13, 8].
With the advent of multi-gigabit networks, the
host-processing requirements became so burden-
some that they ultimately led to adapter solutions
with complete protocol offload.

2.2 iWARP Specification Overview

The iWARP standard comprises of up to three
protocol layers on top of a reliable IP-based pro-
tocol such as TCP: (i) RDMA interface, (ii) Direct
Data Placement (DDP) layer and (iii) Marker PDU
Aligned (MPA) layer.
The RDMA layer is a thin interface which allows

applications to interact with the DDP layer. The
DDP layer uses an IP based reliable protocol stack
such as TCP to perform the actual data transmis-
sion. The MPA stack is an extension to the TCP/IP
stack in order to maintain backward compatibility
with the existing infrastructure. Details about the
DDP and MPA layers are provided in Sections 2.2.1

and 2.2.2 respectively.

2.2.1 Direct Data Placement (DDP)

The DDP standard was developed to serve two pur-
poses. First, the protocol should be able to provide
high performance in SAN and other controlled en-
vironments by utilizing an offloaded protocol stack
and zero-copy data transfer between host memories.
Second, the protocol should maintain compatibility
with the existing IP infrastructure using an imple-
mentation over an IP based reliable transport layer
stack. Maintaining these two features involves novel
designs for several aspects. We describe some of
these in this section.
In-Order Delivery and Out-of-Order Place-

ment: DDP relies on de-coupling of placement and
delivery of messages, i.e., placing the data in the
user buffer is performed in a decoupled manner with
informing the application that the data has been
placed in its buffer. In this approach, the sender
breaks the message into multiple segments of MTU
size; the receiver places each segment directly into
the user buffer, performs book-keeping to keep track
of the data that has already been placed and once
all the data has been placed, informs the user about
the arrival of the data. This approach has two bene-
fits: (i) there are no copies involved in this approach
and (ii) suppose a segment is dropped, the future
segments do not need to be buffered till this seg-
ment arrives; they can directly be placed into the
user buffer as and when they arrive. The approach
used, however, involves two important features to
be satisfied by each segment: Self-Describing and
Self-Contained segments.
The Self-Describing property of segments involves

adding enough information in the segment header so
that each segment can individually be placed at the
appropriate location without any information from
the other segments. The information contained in
the segment includes the Message Sequence Number
(MSN), the Offset in the message buffer to which the
segment has to be placed (MO) and others. Self-
Containment of segments involves making sure that
each segment contains either a part of a single mes-
sage, or the whole of a number of messages, but not
parts of more than one message.
Middle Box Fragmentation: DDP is an end-to-

end protocol. The intermediate nodes do not have
to support DDP. This means that the nodes which
forward the segments between two DDP nodes, do
not have to follow the DDP specifications. In other
words, DDP is transparent to switches with IP for-
warding and routing. However, this might lead to a
problem known as “Middle Box Fragmentation” for

3

Layer-4 or above switches.
Layer-4 switches are transport protocol specific

and capable of making more intelligent decisions
regarding the forwarding of the arriving message
segments. The forwarding in these switches takes
place at the transport layer (e.g., TCP). The mod-
ern load-balancers (which fall under this category
of switches) allow a hardware based forwarding of
the incoming segments. They support optimization
techniques such as TCP Splicing [7] in their imple-
mentation. The problem with such an implemen-
tation is that, there need not be a one-to-one cor-
respondence between the segments coming in and
the segments going out. This means that the seg-
ments coming in might be re-fragmented and/or re-
assembled at the switch. This might require buffer-
ing at the receiver node, since the receiver cannot
recognize the DDP headers for each segments. This
mandates that the protocol not assume the self-
containment property at the receiver end, and add
additional information in each segment to help rec-
ognize the DDP header.

2.2.2 Marker PDU Aligned (MPA)

In case of “Middle Box Fragmentation”, the self-
containment property of the segments might not
hold true. The solution for this problem needs to
have the following properties:

• It must be independent of the segmentation al-
gorithm used by TCP or any layer below it.

• A deterministic way of determining the seg-
ment boundaries are preferred.

• It should enable out-of-order placement of seg-
ments. In the sense, the placement of a seg-
ment must not require information from any
other segment.

• It should contain a stronger data integrity
check like the Cyclic Redundancy Check
(CRC).

The solution to this problem involves the develop-
ment of the MPA protocol [9]. Figure 2 illustrates
the new segment format with MPA. This new seg-
ment is known as the FPDU or the Framing Proto-
col Data Unit. The FPDU format has three essen-
tial changes:

• Markers: Strips of data to point to the DDP
header in case of middle box fragmentation

• Cyclic Redundancy Check (CRC): A Stronger
Data Integrity Check

Pad CRC

Segment Length

DDP
Header

DDP
Header

Marker

Payload (IF ANY)

Payload (IF ANY)

Figure 2. Marker PDU Aligned (MPA) proto-
col Segment format

• Segment Pad Bytes

The markers placed as a part of the MPA protocol
are strips of data pointing to the MPA header and
spaced uniformly based on the TCP sequence num-
ber. This provides the receiver with a deterministic
way to find the markers in the received segments and
eventually find the right header for the segment.

3 Designing Issues and Implementa-

tion Details

To provide compatibility for regular Ethernet net-
work adapters with hardware offloaded iWARP im-
plementations, we propose a software stack to be
used on the various nodes. We break down the stack
into two layers, namely, the Extended sockets inter-

face and the iWARP layer as illustrated in Figure 3.
Amongst these two layers, the Extended sockets in-

terface is generic for all kinds of iWARP implemen-
tations; for example it can be used over the software

iWARP layer for regular Ethernet networks pre-
sented in this paper, over a software iWARP layer

for TOEs, or over hardware offloaded iWARP imple-
mentations. Further, for the software iWARP layer

for regular Ethernet networks, we propose two kinds
of implementations: user-level iWARP and kernel-
level iWARP. Applications, however, only interact
with the extended sockets interface which in turn
uses the appropriate iWARP stack available on the
system. In this paper, we only concentrate on the
design and implementation of the stack on regular
Ethernet network adapters (Figures 3a and 3b).

3.1 Extended Sockets Interface

The extended sockets interface is designed to serve
two purposes. First, it provides a transparent com-
patibility for existing sockets based applications to
run without any modifications. Second, it exposes
the richer interface provided by iWARP such as
zero-copy, asynchronous and one-sided communi-
cation to the applications to utilize as and when
required with minimal modifications. For existing

4

IP

TCP

Sockets

Network Adapter

Device Driver

Application

Extended Sockets Interface

User−level iWARP

IP

Network Adapter

Device Driver

Application

TCP (Modified with MPA)

Sockets

Extended Sockets Interface

Kernel−level
iWARP

Application

TCP

IP

Device Driver

Sockets
Traditional

Extended Sockets Interface

High Performance Sockets

Offloaded TCP

Offloaded IP

Network Adapter

Software iWARP

Application

TCP

IP

Device Driver

Network Adapter

Offloaded IP

Offloaded TCP

Offloaded iWARP

Sockets
Traditional

Extended Sockets Interface

High Performance Sockets

Figure 3. Extended sockets interface with different Implementations of iWARP: (a) User-Level
iWARP (for regular Ethernet networks), (b) Kernel-Level iWARP (for regular Ethernet networks),
(c) Software iWARP (for TOEs) and (d) Hardware offloaded iWARP (for iWARP-capable network
adapters).

sockets applications (which do not use the richer ex-
tensions of the extended sockets interface), the in-
terface just passes on the control to the underlying
sockets layer. This underlying sockets layer could be
the traditional host-based TCP/IP sockets for regu-
lar Ethernet networks or a High Performance Sock-
ets layer on top of TOEs [10] or other POEs [5, 6, 3].
For applications which DO use the richer extensions
of the extended sockets interface, the interface maps
the calls to appropriate calls provided by the un-
derlying iWARP implementation. Again, the un-
derlying iWARP implementation could be a soft-
ware implementation (for regular Ethernet network
adapters or TOEs) or a hardware implementation.
In order to extend the sockets interface to sup-

port the richer interface provided by iWARP, cer-
tain sockets based calls need to be aware of the ex-
istence of iWARP. The setsockopt() system call, for
example, is a standard sockets call. But, it can be
used to set a given socket to IWARP MODE. All fu-
ture communication using this socket will be trans-
ferred using the iWARP implementation. Further,
read(), write() and several other socket calls need
to check if the socket mode is set to IWARP MODE

before carrying out any communication. This re-
quires modifications to these calls, while making
sure that existing sockets applications (which do
not use the extended sockets interface) are not ham-
pered.
In our implementation of the extended sockets in-

terface, we carried this out by overloading the stan-
dard libc library using our own extended sockets in-
terface. This library first checks whether a given
socket is currently in IWARP MODE. If it is, it car-

ries out the standard iWARP procedures to trans-
mit the data. If it is not, the extended sockets in-
terface dynamically loads the libc library to pass on
the control to the traditional sockets interface for
the particular call.

3.2 User-Level iWARP

In this approach, we designed and implemented the
entire iWARP stack in user space above the sockets
layer (Figure 3a). Being implemented in user-space
and above the sockets layer, this implementation
is very portable across various hardware and soft-
ware platforms2. However, the performance it can
deliver might not be optimal. Extracting the maxi-
mum possible performance for this implementation
requires efficient solutions for several issues includ-
ing (i) supporting gather operations, (ii) supporting
non-blocking operations, (iii) asynchronous commu-
nication, (iv) handling shared queues during asyn-
chronous communication and several others. In this
section, we discuss some of these issues and propose
various solutions to handle these issues.
Gather operations supported by the iWARP

specifications: The iWARP specification defines
gather operations for a list of data segments to be
transmitted. Since, the user-level iWARP imple-
mentation uses TCP as the underlying mode of com-
munication, there are interesting challenges to sup-
port this without any additional copy operations.

2Though the user-level iWARP implementation is mostly
in the user-space, it requires a small patch in the kernel to
extend the MPA CRC to include the TCP header too and to
provide information about the TCP sequence numbers used
in the connection in order to place the markers at appropriate
places (this cannot be done from user-space).

5

Some of the approaches we considered are as fol-
lows:

1. The simplest approach would be to copy data
into a standard buffer and send the data out
from this buffer. This approach is very simple
but would require an extra copy of the data.

2. The second approach is to use the scatter-
gather readv() and writev() calls provided
by the traditional sockets interface. Though
in theory traditional sockets supports scat-
ter/gather of data using readv() and writev()
calls, the actual implementation of these calls
is specific to the kernel. It is possible (as is cur-
rently implemented in the 2.4.x linux kernels)
that the data in these list of buffers be sent out
as different messages and not aggregated into
a single message. While this is perfectly fine
with TCP, it creates a lot of fragmentation for
iWARP, forcing it to have additional buffering
to take care of this.

3. The third approach is to use the TCP CORK
mechanism provided by TCP/IP. The
TCP CORK socket option allows data to
be pushed into the socket buffer. However,
until the entire socket buffer is full, data is not
sent onto the network. This allows us to copy
all the data from the list of the application
buffers directly into the TCP socket buffers
before sending them out on to the network,
thus saving an additional copy and at the same
time guaranteeing that all the segments are
sent out as a single message.

Non-blocking communication operations
support: As with iWARP, the extended sockets
also supports non-blocking communication opera-
tions. This means that the application layer can
just post a send descriptor; once this is done, it can
carry out with its computation and check for com-
pletion at a later time. In our approach, we use a
multi-threaded design for user-level iWARP to allow
non-blocking communication operations (Figure 4).
As shown in the figure, the application thread posts
a send and a receive to the asynchronous threads
and returns control to the application; these asyn-
chronous threads take care of the actual data trans-
mission for send and receive, respectively. To al-
low the data movement between the threads, we use
pthreads() rather than fork(). This approach gives
the flexibility of a shared physical address space
for the application and the asynchronous threads.
The pthreads() specification states that all pthreads

post_recv()

write()

Sender

setsockopt()

post_send()

Main thread

Async threads
recv_done()

setsockopt()

Receiver

Figure 4. Asynchronous Threads Based
Non-Blocking Operations

should share the same process ID (pid). Operat-
ing Systems such as Solaris follow this specification.
However, due to the flat architecture of Linux, this
specification was not followed in the Linux imple-
mentation. This means that all pthreads() have
a different PID in Linux. We use this to carry
out inter-thread communication using inter-process
communication (IPC) primitives.
Asynchronous communication supporting

non-blocking operations: In the previous issue
(non-blocking communication operations support),
we chose to use pthreads to allow cloning of virtual
address space between the processes. Communica-
tion between the threads was intended to be car-
ried out using IPC calls. The iWARP specification
does not require a shared queue for the multiple
sockets in an application. Each socket has sepa-
rate send and receive work queues where descriptors
posted for that socket are placed. We use UNIX
socket connections between the main thread and
the asynchronous threads. The first socket set to
IWARP MODE opens a connection with the asyn-
chronous threads and all subsequent sockets use this
connection in a persistent manner. This option al-
lows the main thread to post descriptors in a non-
blocking manner (since the descriptor is copied to
the socket buffer) and at the same time allows the
asynchronous thread to use a select() call to make
progress on all the IWARP MODE sockets as well as
the inter-process communication. It is to be noted
that though the descriptor involves an additional
copy by using this approach, the size of a descriptor
is typically very small (around 60 bytes in the cur-
rent implementation), so this copy does not affect
the performance too much.

3.3 Kernel-Level iWARP

The kernel-level iWARP is built directly over the
TCP/IP stack bypassing the traditional sockets
layer as shown in Figure 3b. This implementation

6

requires modifications to the kernel and hence is not
as portable as the user-level implementation. How-
ever, it can deliver a better performance as com-
pared to the user-level iWARP. The kernel-level de-
sign of iWARP has several issues and design chal-
lenges. Some of these issues and the solutions cho-
sen for them are presented in this section.
Though most part of the iWARP implementation

can be done completely above the TCP stack by
just inserting modules (with appropriate symbols
exported from the TCP stack), there are a number
of changes that are required for the TCP stack itself.
For example, ignoring the remote socket buffer size,
efficiently handling out-of-order segments, etc. re-
quire direct changes in the core kernel. This forced
us to recompile the linux kernel as a patched kernel.
We have modified the base kernel.org kernel ver-
sion 2.4.18 to the patched kernel to facilitate these
changes.
Immediate copy to user buffers: Since iWARP

provides non-blocking communication, copying the
received data to the user buffers is a tricky issue.
One simple solution is to copy the message to the
user buffer when the application calls a completion
function, i.e., when the data is received the kernel
just keeps it with itself and when the application
checks with the kernel if the data has arrived, the
actual copy to the user buffer is performed. This
approach, however, loses out on the advantages of
non-blocking operations as the application has to
block waiting for the data to be copied while check-
ing for the completion of the data transfer. Further,
this approach requires another kernel trap to per-
form the copy operation.
The approach we used in our implementation is

to immediately copy the received message to the
user buffer as soon as the kernel gets the message.
An important issue to be noted in this approach
is that since multiple processes can be running on
the system at the same time, the current process
scheduled can be different with the owner of the user
buffer for the message; thus we need a mechanism
to access the user buffer even when the process is
not currently scheduled. To do this, we pin the user
buffer (prevent it from being swapped out) and map
it to a kernel memory area. This ensures that the
kernel memory area and the user buffer point to
the same physical address space. Thus, when the
data arrives, it is immediately copied to the kernel
memory area and is automatically reflected into the
user buffer.
User buffer registration: The iWARP speci-

fication defines an API for the buffer registration,
which performs pre-communication processes such

as buffer pinning, address translation between vir-
tual and physical addresses, etc. These opera-
tions are required mainly to achieve a zero-copy
data transmission on iWARP offloaded network
adapters. Though this is not critical for the kernel-
level iWARP implementation as it anyway per-
forms a copy, this can protect the buffer from being
swapped out and avoid the additional overhead for
page fetching. Hence, in our approach, we do pin
the user-buffer.
Efficiently handling out-of-order segments:

iWARP allows out-of-order placement of data. This
means that out-of-order segments can be directly
placed into the user-buffer without waiting for the
intermediate data to be received. In our design,
this is handled by placing the data directly and
maintaining a queue of received segment sequence
numbers. At this point, technically, the received
data segments present in the kernel can be freed
once they are copied into the user buffer. How-
ever, the actual sequence numbers of the received
segments are used by TCP for acknowledgments,
re-transmissions, etc. Hence, to allow TCP to pro-
ceed with these without any hindrance, we defer the
actual freeing of these segments till their sequence
numbers cross TCP’s unacknowledged window.

4 Experimental Evaluation

In this section, we perform micro-benchmark level
experimental evaluations for the extended sockets
interface using the user- and kernel-level iWARP
implementations. Specifically, we present the
ping-pong latency and uni-directional bandwidth
achieved in two sets of tests. In the first set of tests,
we measure the performance achieved for standard
sockets based applications; for such applications,
the extended sockets interface does basic process-
ing to ensure that the applications do not want to
utilize the extended interface (by checking if the
IWARP MODE is set) and passes on the control
to the traditional sockets layer. In the second set of
tests, we use applications which utilize the richer ex-
tensions provided by the extended sockets interface;
for such applications, the extended sockets inter-
face utilizes the software iWARP implementations
to carry out the communication.
The latency test is carried out in a standard ping-

pong fashion. The sender sends a message and
waits for a reply from receiver. The time for this
is recorded by the sender and it is divided by two to
get the one-way latency. For measuring the band-
width, a simple window based approach was fol-
lowed. The sender sends WindowSize number of
messages and wait for a message from the receiver

7

������������	
����
����
	����	
����
�

�

��

���

���

���

���

� � � � �� �� �� ��� ��� ��� �� �� ��
�
����
����
�
 �	
��

�
�
	

�
�
�
�

!
�
�

"#�$��

%�
��&
'
&��()*�

�
��
&�&
'
&��()*�

�����������	�
��

����������	������������
���

�

���

���

���

���

���

���

���

���

� � �� �� ��� � � �� ��

!���
"����#���$%����

�
�
�
��
��
��
!
$
&
�
�

'()*�) �������+����,-.) ��������+����,-.)

Figure 5. Micro-Benchmark Evaluation for applications using the standard sockets interface:
(a) Ping-pong latency and (b) Uni-directional bandwidth

for every WindowSize messages.
The experimental test-bed used is as follows: Two

Pentium III 700MHz Quad machines, each with an
L2-cache size of 1 MB and 1 GB of main memory.
The interconnect was a Gigabit Ethernet network
with Alteon NICs on each machine connected using
a Packet Engine switch. We used the RedHat 9.0
linux distribution installed with the kernel.org ker-
nel version 2.4.18.
The results for the applications with the standard

unmodified sockets interface are presented in Fig-
ure 5. As shown in the figure, the extended sock-
ets interface adds very minimal overhead to existing
sockets applications for both the latency and the
bandwidth tests.
For the applications using the extended interface,

the results are shown in Figure 6. We can see that
the user- and kernel-level iWARP implementations
incur overheads of about 100µs and 5µs respectively,
as compared to TCP/IP. There are several reasons
for this overhead. First, the user- and kernel-level
iWARP implementations are built over sockets and
TCP/IP respectively; so they are not expected to
give a better performance than TCP/IP itself. Sec-
ond, the user-level iWARP implementation has ad-
ditional threads for non-blocking operations and re-
quires IPC between threads. Also, the user-level
iWARP implementation performs locking for shared
queues between threads. However, it is to be noted
that the basic purpose of these implementations is
to allow compatibility for regular network adapters
with iWARP-capable network adapters and the per-
formance is not the primary goal of these imple-
mentation. We can observe that both user- and
kernel-level iWARP implementations can achieve a
peak bandwidth of about 550Mbps. An interest-
ing result in the figure is that the bandwidth of
the user- and kernel-level iWARP implementations
for small and medium message sizes is significantly

lesser compared to TCP/IP. This is mainly because
they disable Nagle’s algorithm in order to try to
maintain message boundaries. For large messages,
we see some degradation compared to TCP/IP due
to the additional overhead of CRC data integrity
performed by the iWARP implementations.

5 Related Work

Several researchers, including ourselves, have
performed a significant amount of research on
the performance of iWARP-unaware network
adapters including regular Ethernet-based network
adapters [12, 11, 4] as well as TCP Offload En-
gines [10, 2]. Also, there has been a lot of re-
search for implementing high performance sock-
ets over various protocol offload engines including
TOEs [22, 19, 5, 6, 3, 17, 18]. However, all this lit-
erature focuses on the improving the performance
of the sockets interface for host-based or offloaded
protocol stacks and does not deal with any kind of
extensions to it.
Shivam et. al. had implemented a new proto-

col stack, EMP [24, 23], on top of Gigabit Eth-
ernet which provides iWARP like features to the
applications. However, this protocol has a com-
pletely different interface and cannot support sock-
ets based applications directly. Further, this proto-
col is not IP compatible and thus cannot be used
in a WAN environment unlike TOEs or iWARP-
capable network adapters. We had previously im-
plemented a high performance sockets implementa-
tion over EMP [5]; while this allows compatibility
for existing sockets applications, it still does not al-
low IP compatibility. Further, this layer only pro-
vides the basic sockets interface with no iWARP-
based extensions as such.
The extended sockets interface proposed in this pa-

per is in some ways similar to the Windows Direct
Sockets or winsock interface which provides asyn-

8

������������	
����
��	
��
����	
����
�

�

��

���

���

���

���

� � � � �� �� �� ��� ��� ��� �� �� ��
�
����
� �!
�
"�	
��

�
�
	

�
�
�
�

#
�
�

$%�&��

'�
��(
)
(��*+,�

�
��
(�(
)
(��*+,�

�����������	�
��

������������������������
���

�

���

���

���

���

���

���

���

���

� � �� �� ��� �� �� ��� ���

 �!!
"��#�$���%&��!�

�
�
�
��
��
��

%
'
!
�

()*+�* �!�����,����-./* ���������,����-./*

Figure 6. Micro-Benchmark Evaluation for applications using the extended iWARP interface:
(a) Ping-pong latency and (b) Uni-directional bandwidth

chronous communication features in addition to the
standard features supported by the Berkeley sockets
interface. However, our extended sockets interface
tightly couples with the iWARP implementations
in the system instead of relying on TCP/IP and
provides an even richer feature set (e.g., one-sided
communication primitives).
Jagana et. al. have developed a software sys-

tem to provide kernel support for iWARP and other
RDMA aware networks [15]. This work can be
considered a complementary development towards
iWARP-capable networks while our work deals with
iWARP capabilities for regular Ethernet networks.
We hope to unify our solution with this software
system in order to avoid further fragmentation in
the software stacks provided to end users.

6 Concluding Remarks

Several new initiatives by IETF such as iWARP
and Remote Direct Data Placement (RDDP) [25],
were started to tackle the various limitations with
TOEs while providing a completely new and fea-
ture rich interface for applications to utilize. For
a wide-spread acceptance of these initiatives, how-
ever, two important issues need to be considered.
First, software compatibility needs to be provided
for regular network adapters (which have no of-
floaded protocol stack) with iWARP-capable net-
work adapters. Second, the predecessors of iWARP-
capable network adapters such as TOEs and host-
based TCP/IP stacks used the sockets interface
for applications to utilize them while the iWARP-
capable networks provide a completely new and
richer interface. Rewriting existing applications us-
ing the new iWARP interface is cumbersome and
impractical. Thus, it is desirable to have an ex-

tended sockets interface which provides a two-fold
benefit: (i) it allows existing applications to run di-
rectly without any modifications and (ii) it exposes

the richer feature set of iWARP such as zero-copy,
asynchronous and one-sided communication to the
applications to be utilized with minimal modifica-
tions. In this paper, we have designed and imple-
mented a software stack to provide both these ex-
tensions.
As continuing work, we are currently working

in two broad directions. First, we are provid-
ing the extended sockets interface for hardware of-
floaded iWARP implementations such as the net-
work adapters provided by Ammasso as well as
the TOEs. This will allow a common interface for
all applications whether they are utilizing regular
NICs (software iWARP), TOEs (software iWARP)
and iWARP-capable network adapters (hardware
iWARP). Second, we are developing a simulator
which can provide details about the actual archi-
tectural requirements for different designs of the of-
floaded iWARP stack.

References

[1] TOP 500 Supercomputer Sites.
http://www.top500.org.

[2] P. Balaji, W. Feng, Q. Gao, R. Noronha, W. Yu,
and D. K. Panda. Head-to-TOE Evaluation of
High-Performance Sockets over Protocol Offload
Engines. Technical Report LA-UR-05-2635, Los
Alamos National Laboratory, June 2005.

[3] P. Balaji, S. Narravula, K. Vaidyanathan, S. Kr-
ishnamoorthy, J. Wu, and D. K. Panda. Sockets
Direct Protocol over InfiniBand in Clusters: Is it
Beneficial? In the Proceedings of the IEEE Inter-
national Symposium on Performance Analysis of
Systems and Software, Austin, Texas, March 10-12
2004.

[4] P. Balaji, H. V. Shah, and D. K. Panda. Sock-
ets vs RDMA Interface over 10-Gigabit Networks:
An In-depth analysis of the Memory Traffic Bottle-

9

neck. In Workshop on Remote Direct Memory Ac-
cess (RDMA): Applications, Implementations, and
Technologies (RAIT), San Diego, CA, Sep 20 2004.

[5] P. Balaji, P. Shivam, P. Wyckoff, and D.K. Panda.
High Performance User Level Sockets over Gigabit
Ethernet. In the Proceedings of Cluster Computing,
Chicago, IL, Sept 23-26 2002.

[6] P. Balaji, J. Wu, T. Kurc, U. Catalyurek, D. K.
Panda, and J. Saltz. Impact of High Performance
Sockets on Data Intensive Applications. In the Pro-
ceedings of the IEEE International Conference on
High Performance Distributed Computing (HPDC
2003), June 2003.

[7] Ariel Cohen, Sampath Rangarajan, and Hamilton
Slye. On the Performance of TCP Splicing for
URL-aware Redirection. In the Proceedings of the
USENIX Symposium on Internet Technologies and
Systems, October 1999.

[8] Chelsio Communications. http://www.chelsio.
com/.

[9] P. Culley, U. Elzur, R. Recio, and S. Bailey.
Marker PDU Aligned Framing for TCP Specifica-
tion, November 2002.

[10] W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and
D. K. Panda. Performance Characterization of a
10-Gigabit Ethernet TOE. In the Proceedings of
the IEEE International conference on High Perfor-
mance Interconnects (HotI), Palo Alto, CA, Aug
2005.

[11] W. Feng, J. Hurwitz, H. Newman, S. Ravot, L. Cot-
trell, O. Martin, F. Coccetti, C. Jin, D. Wei, and
S. Low. Optimizing 10-Gigabit Ethernet for Net-
works of Workstations, Clusters and Grids: A Case
Study. In SC ’03.

[12] J. Hurwitz and W. Feng. End-to-End Performance
of 10-Gigabit Ethernet on Commodity Systems.
IEEE Micro ’04.

[13] Ammasso Incorporation. http://www.ammasso.
com/.

[14] University of Southern California Information Sci-
ences Institute. TRANSMISSION CONTROL
PROTOCOL (TCP), RFC 793, 1981.

[15] V. Jagana, B. Metzler, and F. Neeser. Open RDMA
Project: Building an RDMA Ecosystem for Linux.
In the workshop on Remote Direct Memory Ac-
cess (RDMA): Applications, Implementations, and
Technologies (RAIT), 2004.

[16] H.-W. Jin, S. Narravula, G. Brown,
K. Vaidyanathan, P. Balaji, and D.K. Panda.
Performance Evaluation of RDMA over IP: A
Case Study with the Ammasso Gigabit Ethernet
NIC. In Workshop on High Performance Inter-
connects for Distributed Computing (HPI-DC); In
conjunction with HPDC-14, July 2005.

[17] H.-W. Jin, P. Palaji, C. Yoo, J.-Y. Choi, and
D.K. Panda. Exploiting NIC Architectural Support
for Enhancing IP Based Protocols on High Per-
formance Networks. Journal of Parallel and Dis-
tributed Computing(JPDC). in press.

[18] H.-W. Jin, C. Yoo, and S. K. Park. Stepwise Op-
timizations of UDP/IP on a Gigabit Network. In
Euro-Par 2002, April 2002.

[19] J. S. Kim, K. Kim, and S. I. Jung. SOVIA: A
User-level Sockets Layer over Virtual Interface Ar-
chitecture. In Proceedings of Cluster Computing,
2001.

[20] Sundeep Narravula, Pavan Balaji, Karthikeyan
Vaidyanathan, Savitha Krishnamoorthy, Jiesheng
Wu, and Dhabaleswar K. Panda. Supporting strong
cache coherency for active caches in multi-tier data-
centers over infiniband. In SAN-3 held in conjunc-
tion with HPCA 2004, 2004.

[21] P. Palaji, K. Vaidyanathan, S. Narravula, H.-
W. Jin K. Savitha, and D.K. Panda. Exploiting
Remote Memory Operations to Design Efficient Re-
configuration for Shared Data-Centers over Infini-
Band. In Proceedings of Workshop on Remote Di-
rect Memory Access (RDMA): Applications, Imple-
mentations, and Technologies (RAIT 2004), San
Diego, CA, September 2004.

[22] H. V. Shah, C. Pu, and R. S. Madukkarumuku-
mana. High Performance Sockets and RPC over
Virtual Interface (VI) Architecture. In Proceedings
of CANPC workshop, 1999.

[23] P. Shivam, P. Wyckoff, and D. K. Panda. Can
user Level Protocols Take Advantage of Multi-CPU
NIC? In IPDPS ’02. accepted to be presented.

[24] P. Shivam, P. Wyckoff, and D. K. Panda. EMP:
Zero-copy OS-bypass NIC-driven Gigabit Ethernet
Message Passing. In Int’l Conference on Supercom-
puting (SC ’01), November 2001.

[25] Thomas Talpey Stephen Bailey. Remote Direct
Data Placement (RDDP), April 2005.

[26] Eric Yeh, Herman Chao, Venu Mannem, Joe Ger-
vais, and Bradley Booth. Introduction to tcp/ip
offload engines (toe). White Paper, May 2002.

10

