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Abstract

While a number of user-level protocols have been developed to reduce the gap between the performance capabilities of the physical
network and the performance actually available, their compatibility issues with the existing sockets-based applications and IP-based
infrastructure has been an area of major concern. To address these compatibility issues while maintaining a high performance, a number
of researchers have been looking at alternative approaches to optimize the existing traditional protocol stacks. Broadly, previous research
has broken up the overheads in the traditional protocol stack into four related aspects, namely: (i) compute requirements and contention,
(ii) memory contention, (iii) I/O bus contention and (iv) system resources’ idle time. While previous research dealing with some of these
aspects exists, to the best of our knowledge, there is no work which deals with all these issues in an integrated manner while maintaining
backward compatibility with existing applications and infrastructure. In this paper, we address each of these issues, propose solutions for
minimizing these overheads by exploiting the emerging architectural features provided by modern Network Interface Cards (NICs) and
demonstrate the capabilities of these solutions using an implementation based on UDP/IP over Myrinet. Our experimental results show
that with our implementation of UDP, termed as E-UDP, can achieve up to 94% of the theoretical maximum bandwidth. We also present a
mathematical performance model which allows us to study the scalability of our approach for different system architectures and network
speeds.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Commodity off-the-shelf (COTS) clusters have been ac-
cepted as a feasible and cost-effective approach to main-
stream supercomputing for a broad subset of applications.
Most of the success of these COTS clusters is derived from
the high-performance-to-cost ratio achievable through them.
With the advent of the several modern high-speed intercon-
nects, such as Myrinet [9], InfiniBand [4], Quadrics [35],
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10-Gigabit Ethernet[16,21,22] and others, the bottleneck
in the data communication path in such clusters has shifted
to the messaging software at the sending and the receiving
side.

Researchers have been looking at alternatives by which
one could increase the communication performance de-
livered by clusters in the form of low latency and high
bandwidth user-level protocols such as the Virtual In-
terface Architecture (VIA) [11], FM [34] and GM [23]
for Myrinet, U-Net [44] for ATM and Ethernet, EMP
[40,41] for Gigabit Ethernet and others. While this ap-
proach is good for writing new applications which com-
pletely reside inside the cluster environment, these have
several limitations with respect to compatibility with exist-
ing applications and infrastructure. In particular, we look
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at the following incompatibilities:

1. A number of applications have been developed in a span
of several years over the traditional protocols using the
sockets interface. Developing new high-performance pro-
tocols might not be directly beneficial for such applica-
tions.

2. IP is the most widely accepted and used network protocol
today. However, the above mentioned user-level protocols
are not compatible with existing IP infrastructures, i.e.,
an application using GM over Myrinet or EMP over Gi-
gabit Ethernet cannot communicate across clusters where
the intermediate nodes/switches are IP-based and do not
understand these user-level protocols.

3. Several security mechanisms such as IPsec have been de-
veloped over IP. Using user-level protocols instead of IP-
based protocols might require such security mechanisms
to be re-developed for these new protocols.

Summarizing, several traditional applications primarily
focus on portability across various platforms and typi-
cally span several clusters (sometimes known as cluster-
of-cluster configurations). These applications rely on
high-performance networks in order to achieve a high-
performance for intra-cluster communication. At the same
time they are based on IP-based protocols in order to al-
low inter-cluster communication. The sockets interface is a
common choice for such applications. Further, applications
built on other programming models such as the Message
Passing Interface (MPI)[17], Distributed Shared Memory
(DSM) [3,29], Global Arrays [33], etc. also have imple-
mentations utilizing the sockets layer underneath in order
to achieve such compatibility.

Researchers have looked at some of these issues in a seg-
regated manner. For example, user-level sockets over high-
performance networks [6–8,30,39] and other substrates [38]
have been developed to allow sockets-based applications
to take advantage of the high-performance networks. This
approach tries to solve the first issue (allowing existing
sockets-based applications to take advantage of the high-
performance networks), but does not address the remaining
issues. Similarly, the Trapeze project [13,12] by Chase et
al., tries to address issues two and three (compatibility with
the existing IP infrastructure), but modifies the sockets inter-
face resulting in incompatibility with existing applications.
These and other related work are discussed in Section 7 in
more detail.

To address these compatibility issues while maintaining a
high-performance, a number of researchers have been look-
ing at alternative approaches to optimize the existing tradi-
tional protocol stacks. Broadly, previous research has bro-
ken up the overheads in the traditional protocol stack into
four related aspects, namely: (i) compute requirements and
contention, (ii) memory contention, (iii) I/O bus contention
and (iv) system resources’ idle time.

In this paper, we first utilize the earlier proposed tech-
niques, in particular those specific to Protocol Offload

Engines (POEs)[37,42,46], to implement a partial offload
of the UDP/IP protocol stack over Myrinet to address the
first two issues, i.e., compute requirements and memory con-
tention. Next, we modify the Myrinet device driver to allow
a delayed posting of descriptors in order to reduce the con-
tention at the I/O bus. Finally, we implement a fine-grained
overhead pipelining technique on the firmware of the NIC
to minimize the link idle time. In this paper, we refer to this
implementation as E-UDP (standing for Enhanced UDP).
This IP-based protocol implementation is not only compati-
ble with existing sockets applications, but also with the tra-
ditional UDP/IP stack.

In this paper, we focus on the following key
questions:

• How does the performance of E-UDP compare with that
of the traditional UDP stack?

• How does the performance of E-UDP compare with that
of the existing user-level high-performance protocols?

• Would the feasibility of fine-grained pipelining in E-UDP
be specific to the application communication pattern, i.e.,
is it formally verifiable that a fine-grained pipelining
would be possible for any communication pattern?

• How does E-UDP perform for various other system and
network configurations, e.g., for 10-Gigabit networks,
faster I/O buses, etc?

To answer the first two questions, we analyze the perfor-
mance impact of the above-mentioned techniques in UDP/IP
over Myrinet. To answer the third question, we present a
formal verification model and show the pipelining capabil-
ities of the Network Interface Card (NIC) architecture in a
generic communication pattern. Finally, to answer the fourth
question, we propose an analytical model in order to study
the performance of our design for various system and net-
work configurations.

The remaining part of the paper is organized as follows:
in Section2 we present background information about the
traditional UDP/IP implementation, POEs and the Myrinet
network. In Section 3, we discuss the architectural inter-
action and implications of the UDP/IP protocol implemen-
tation. In Section 4, we present several solutions for the
system resource contention and other inefficiencies intro-
duced by the UDP/IP stack. We present the experimental
and analytical results in Section 5, some discussion related
to the broader impact of our work in Section 6, other re-
lated work in Section 7 and some concluding remarks in
Section 8.

2. Background

In this section, we present a brief background about the
traditional UDP/IP implementation, POE and the function-
ality of the Myrinet NIC. More details about each of these
can be found in [25].
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2.1. Traditional UDP/IP implementation

Like most networking protocol suites, the UDP/IP proto-
col suite is a combination of different protocols at various
levels, with each layer responsible for a different facet of
the communications.

To allow standard Unix I/O system calls such asread()
andwrite() to operate with network connections, the file-
system and networking facilities are integrated at the system
call level. Network connections represented by sockets are
accessed through a descriptor in the same way an open file
is accessed through a descriptor. This allows the standard
file-system calls such asread() andwrite() , as well
as network-specific system calls such assendto() and
recvfrom() , to work with a descriptor associated with a
socket.

On the transmission side, the message is copied into the
socket buffer, data integrity ensured through checksum com-
putation (to form the UDP checksum) and passed on to
the underlying IP layer. The checksum computation on the
sender side is usually performed during the copy operation
to maximize the cache effect. The IP layer fragments the data
to MTU sized chunks, constructs the IP header, and passes
on the IP datagram to the device driver. After the construc-
tion of a packet header, the device driver makes a descriptor
for the packet and passes the descriptor to the NIC using
a Programmed I/O (PIO) operation. The NIC performs a
DMA operation to move the actual data indicated by the de-
scriptor from the socket buffer to the NIC buffer and raises
an interrupt to inform the device driver that it has finished
moving the data. The NIC then ships the data with the link
header to the physical network.

On the receiver side, the NIC DMAs received segments
to the socket buffer and raises an interrupt informing the de-
vice driver about this. The device driver hands it over to the
IP layer using a software interrupt mechanism. The inter-
rupt handler for this software interrupt is typically referred
to as the bottom-half handler and has a higher priority com-
pared to the rest of the kernel. The IP layer verifies the IP
checksum and if the integrity is maintained, defragments
the data segments to form the complete UDP message and
hands it over to the UDP layer. The UDP layer verifies the
data integrity of the message. When the application calls the
read() operation, the data is copied from the socket buffer
to the application buffer.

2.2. Protocol offload engines

The processing of traditional protocols such as TCP/IP
and UDP/IP is accomplished by software running on the
central processor, CPU or microprocessor, of the server. As
network connections scale beyond Gigabit Ethernet speeds,
the CPU becomes burdened with the large amount of proto-
col processing required. Resource-intensive memory copies,
checksum computation, interrupts and reassembling of

out-of-order packets put a tremendous amount of load on the
host CPU. In high-speed networks, the CPU has to dedicate
more processing to handle the network traffic than to the
applications it is running. POE are emerging as a solution to
limit the processing required by CPUs for networking links.

The basic idea of a POE is to offload the processing of
protocols from the host processor to the hardware on the
adapter or in the system. A POE can be implemented with
a network processor and firmware, specialized ASICs, or a
combination of both. Most POE implementations available
in the market concentrate on offloading the TCP and IP
processing, while a few of them focus on other protocols
such as UDP/IP, etc.

As a precursor to complete protocol offloading, some op-
erating systems have started incorporating support for fea-
tures to offload some compute intensive features from the
host to the underlying adapters. TCP/UDP and IP check-
sum offload implemented in some server network adapters
is an example of a simple offload. But as Ethernet speeds
increased beyond 100 Mbps, the need for further protocol
processing offload became a clear requirement. Some Gi-
gabit Ethernet adapters complemented this requirement by
offloading TCP/IP and UDP/IP segmentation or even whole
stack on to the network adapter[1,2].

POE can be implemented in different ways depending on
the end-user preference between various factors like deploy-
ment flexibility and performance. Traditionally, firmware-
based solutions provided the flexibility to implement new
features, while ASIC solutions provided performance but
were not flexible enough to add new features. Today, there is
a new breed of performance optimized ASICs utilizing mul-
tiple processing engines to provide ASIC-like performance
with more deployment flexibility.

2.3. Myrinet network

Myrinet is a high-performance Local Area Network
(LAN) developed by Myricom Incorporation [9]. In this
section, we briefly describe the Myrinet NIC architecture
based on LANai9. The Myrinet NIC consists of a RISC
processor named LANai, memory, and three DMA engines
(host DMA engine, send DMA engine, and receive DMA
engine). Fig. 1 illustrates the Myrinet NIC architecture.

The LANai processor executes the Myrinet Control Pro-
gram (MCP), i.e., the firmware on the NIC. The NIC mem-
ory stores the data for sending and receiving. The host DMA
engine is responsible for the data movement between the
host and the NIC memories through the I/O bus. On the
other hand, the send DMA engine deals with moving the
data from the NIC memory to the Myrinet link. Similarly,
the receive DMA engine deals with moving the data from
the Myrinet link to the NIC memory.

There are several emerging features provided by the
Myrinet NIC. First, the programmability provided by the
Myrinet NICs can be utilized to modify the implementation
of existing features and/or add more features and function-
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Fig. 1. Myrinet NIC Architecture.

ality to the NIC. Such programmability can provide plentiful
opportunities to enhance existing IP-based protocols.

The second interesting feature is the capability of the
memory on the Myrinet NIC. The memory on the NIC runs
at the same clock speed as the RISC processor. Further, the
LBUS (shown in Fig.1) operates at twice the chip clock
speed (two LBUS memory cycles for every clock cycle). The
host DMA engine, the receive DMA engine and the send
DMA engine each can request a maximum of one memory
access per clock cycle. The on-chip processor can request up
to two memory accesses per clock cycle. Further, the mem-
ory itself can serve up to two memory accesses per clock cy-
cle. This means that two DMA engines, e.g., the host DMA
engine and the send DMA engine, can access the memory
simultaneously.

Yet another interesting feature provided by Myrinet is the
capability of the host DMA engine on the Myrinet NIC. The
host DMA engine allows checksum computation during the
DMA operation itself. In addition, to specify the end of the
buffer for a send DMA operation, the Myrinet NIC provides
two kinds of registers. One is the SMLT register, which
specifies not only the end of the buffer in the DMA operation
but also the end of the message segment. The other register,
SML, only indicates the end of the buffer. Therefore, several
chunks of data sent with the SML register set, are notified
as parts of the same segment on the receiver side.

3. Architectural viewpoint of UDP/IP

While the UDP/IP data and control path is fairly straight-
forward with respect to the operating system functionality,
it has a number of implications on the architectural require-
ments of the system which implements this. These archi-
tectural requirements deal with several issues in the sys-
tem such as the computational requirements of the protocol
stack, memory contention caused by the stack, the I/O bus
contention, etc.

3.1. Interaction of UDP/IP with system resources

UDP/IP interacts with several system resources such as
CPU, host memory, I/O bus and the network link. In this
section, we briefly point out the requirements and extent
of these interactions using the Linux UDP/IP stack as an
example implementation.

CPU interaction: As described in Section2.1, a number
of components in the UDP/IP data path tend to be com-
pute intensive. For example, the copy of the data from/to the
application buffer occurring in the UDP/IP layer has large
computation requirements. Similarly, the checksum compu-
tation occurring as a part of the bottom-half (described in
Section 2.1) on the receiver side requires compute resources
as well. The bottom-half typically has a higher priority com-
pared to the rest of the kernel. This means that checksum
computation for incoming packets is given a higher priority
as compared to copying of the data to the application buffer.
This biased prioritization of providing CPU resources for
the different components has interesting implications as we
will see in Section 3.2.

Host memory interaction: In cases where the sender buffer
is touched before transmission or when the same buffer
is used for transmission several times (e.g., in a micro-
benchmark test), the application buffer can be expected to be
in cache during the transmission operation. In such cases the
data copy from the application buffer to the socket buffer is
performed with cached data and does not incur any memory
references. However, the case on the receiver side is quite
different. On receiving data, the NIC initiates a DMA oper-
ation to move the received data into the host memory. If the
host memory area for DMA is in the cache of any proces-
sor, the cache lines are invalidated and the DMA operation
allowed to proceed to memory. The checksum computation,
which follows the DMA operation, thus accesses data that
is not cached and always requires memory accesses. Thus,
the checksum computation, the DMA operation and also the
data copy operation in some cases compete for memory ac-
cesses.

I/O bus interaction: As described in Section 2.1, once the
IP layer hands over the data to the device driver, it forms a
descriptor corresponding to the data and posts the descriptor
to the NIC using a PIO operation over the I/O bus. The NIC
on seeing this posted descriptor performs a DMA operation
on the actual data from the host memory to the NIC mem-
ory. Both these operations as well as other DMA operations
corresponding to incoming data use the same I/O bus and
essentially contend for its ownership.

NIC and link interaction: The host DMA engine on the
Myrinet NIC performs the DMA operation to fetch the data
from the host memory to the NIC memory. The send DMA
engine waits for the DMA operation to complete before it
can transmit the data from the NIC memory to the link.
This delay in transmitting the data can lead to the link being
idle for a long period of time, in essence under-utilizing the
available link bandwidth.

3.2. Implications of system resources on UDP/IP
performance

The interaction of the UDP/IP stack with the various
system resources has several implications on the end per-
formance it can achieve. In this section, we study these



1352 H.-W. Jin et al. / J. Parallel Distrib. Comput. 65 (2005) 1348–1365

Fig. 2. Time flow chart of the host and the NIC overheads: (a) sender side and (b) receiver side.

performance implications based on some experimental re-
sults using the traditional UDP/IP stack in Linux and its time
flow chart. To generate the time flow chart, we utilized the
measurement methodology proposed in[27]. The key fea-
ture of this measurement methodology is to use the clock on
the NIC for the overhead measurement of both the host as
well as the NIC. The most important factor that should be
considered for the time flow chart is that the timestamps for
the host and the NIC overhead measurement have to be gen-
erated by the same clock so that we can elucidate the timing
relationship between the host and the NIC overheads.

Figs. 2a and b present the time flow chart on the trans-
mission and reception sides of the traditional UDP/IP im-
plementation. The figures show the time flow chart of the
host and the NIC when 10 UDP packets (of 32 kB each) are
transmitted in a burst. The time is set to zero when the first
packet is sent by the UDP application. They-axis represents
the layers that each packet goes through in order to be pro-
cessed. A rectangle is the time spent in the corresponding
layer to process the packet. On the receiver side, the bottom-
half is not dealt as a part of UDP/IP to clearly point out the
overheads caused by the checksum operation (a part of the
bottom-half handler) and by the data copy operation (a part
of UDP). The rectangles are shaded alternatively for clarity.
In these figures, we can see that the different rectangles in
the same layer are of different sizes especially on the NIC
on the sender side and the host on the receiver side. This is
attributed to the contention between the host and the NIC
for the various system resources including the host CPU,
host memory, I/O bus, etc. We will deal with each of these
resources in the following few subsections.

3.2.1. Compute requirements and contention
We first analyze the case of the host CPU contention. The

host performs several compute intensive operations such as
checksum computation, copying the data to the application
buffer, etc. Within these, some of the operations such as the
checksum computation are performed as soon as the data
arrives within a higher priority context (bottom-half). Dur-
ing bulk data transfers where segments are received contin-
uously, this might imply that the CPU is completely devoted
to the bottom-half handler resulting in a starvation for the

other operations with compute requirements such as data
copy from the socket buffer to the application buffer.

We use the results depicted in Figs.2a and b to understand
this. If we first consider the transmission side, the contention
between the host and the NIC for the different system re-
sources causes the NIC to take more time for the first four
packets compared to the other packets (which is discussed
in Section 3.2.3 in detail). This delay in the NIC for the first
four packets is also reflected on the receiver side (Fig. 2b)
where the NIC has a significant amount of idle time for the
first few packets (shown as the gaps between the rectangles
in the figure). These gaps in the receiver NICs active time
are in turn reflected on the bottom-half handling time on the
receiver side, i.e., since the packets are not coming in at the
maximum speed on the network, the host can perform the
bottom-half and still would have enough time to copy the
data to the application buffer before the next packet comes
in. In short, in this case the sender is not sending out data at
the peak rate due to resource contention; this reduced data
rate gives the receiver ample time to receive data and place
it in the application buffer. Thus, in this case there is no
contention for the CPU on the receiver side.

However, for the later packets (rectangles 5–10 for the
NIC), as seen in Fig. 2a, the host has completed performing
its operations; so the NIC can proceed with its operations
without any contention from the host. This reduced con-
tention for the system resources ensures that the data can be
transmitted at a faster rate by the NIC, i.e., the time spent
for each packet is lesser in this case. This increased trans-
mission rate also reflects as a lesser idle time for the NIC on
the receiver side (rectangles 5–10 for the NIC in Fig. 2b).
Further, this reduced idle time means that the NIC continu-
ously delivers packets to the host, thus keeping the bottom-
half handler active. This results in the starvation of lower
priority processes in the UDP/IP stack such as the copy of
the data from the socket buffer to the application buffer. This
starvation for CPU is reflected in the third rectangle in UDP
of Fig. 2b where the copy operation for the third packet has
to wait until all the data corresponding to the other packets
has been delivered to the sockets layer.

To further verify these observations, we have also used
the Performance Measurement Counters (PMCs) for the
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Pentium processor to measure the impact of CPU starvation,
cache miss effects, etc. on the actual time taken by the data
copy operation. However, due to space restrictions, we do
not present the results here and refer the reader to[25] for
the same.

3.2.2. Memory contention
We next look at the host memory contention. Several op-

erations in the UDP/IP stack such as checksum computa-
tion, data copy to the application buffer, etc., as well as the
DMA operations to and from the network adapter compete
for memory accesses. We again refer to Fig. 2 for under-
standing these contention issues. Observing Fig. 2b, we no-
tice that when the rate of the incoming packets increases, the
time taken for the bottom-half increases (rectangles 4–6 in
the bottom-half). This is because the checksum computation
in the bottom-half handler competes for memory accesses
with the DMA operations carried out by the NIC (rectangles
5–10 for the NIC overhead in Fig. 2b). This figure shows
the impact memory contention can have on the performance
of the UDP/IP stack.

Again, to re-verify these results, we have used PMCs to
measure the actual checksum computation overhead and the
wait time for fetching data from the memory to cache. The
results for the same can be found in [25].

3.2.3. I/O bus contention
Posting of descriptors by the device driver as well as

DMA of data by the NIC to/from the NIC memory uses the
I/O bus causing contention. The transmission side in Fig. 2a
shows the increased time taken by the NIC for rectangles
1–4. However, this increase in the time taken by the NIC
can be because of both I/O bus contention and memory
contention. In order to understand the actual impact of the
I/O bus contention, we modified the UDP/IP stack to offload
the checksum computation to the NIC and allow a zero-
copy implementation. These modifications completely get
rid of the memory accesses by the host avoiding any memory
contention that might be possible.

Fig. 3 shows the I/O bus contention for the modified
UDP/IP stack. We can see that the UDP/IP overhead is negli-
gible in this case because of the offloading of the data touch-
ing components. On the other hand, the NIC overhead for
the first rectangle is significantly larger than the rest of the
rectangles due to the contention between the posting of the
descriptors and the DMA of the actual data to the NIC. Since
the host does not touch its memory at all, we can say that
this overhead is completely due to the I/O bus contention.

3.2.4. Link idle time
Fig. 4 shows the time flow chart for the NIC and the link

overheads for the traditional UDP/IP stack. As discussed ear-
lier, the earlier rectangles (1–4) showing the NIC overhead
on the transmission side are larger than the later ones (5–
10) because of the memory and I/O bus contentions. This

Fig. 3. Time flow chart of the host and the NIC overheads on the
transmission side with the modified UDP/IP stack (checksum offloaded
and zero-copy implementation).

Fig. 4. Time flow chart for the NIC and the link overheads for traditional
UDP/IP.

overhead on the sender NIC is reflected as idle time for the
link and the receiver NIC (shown as gaps between rectan-
gles in the figure). This figure shows that memory and I/O
contention at the host can result in the link being idle for
nearly 50% of the time, in essense dropping the effective
link bandwidth to half. Further, the startup overhead for the
link (shown as the gap before the first rectangle) becomes
especially important for applications which do not carry out
bulk data transfers, e.g., latency micro-benchmark test.

Overall, these results attempt to demonstrate the various
inefficiencies present in the current UDP/IP implementation
due to contention for the existing system resources. In Sec-
tion 4, we present several solutions to address these issues
and implement a high-performance UDP/IP stack using the
features provided by the Myrinet network.

4. Enhancing UDP/IP performance: Design overview

In the following few subsections, we discuss several de-
sign solutions for the issues pointed out in the previous sec-
tion. In particular, we look at the issues of (i) compute re-
quirements and contention, (ii) memory contention, (iii) I/O
bus contention and (iv) system resources’ idle time and sug-
gest efficient designs in the context of the Myrinet network
to address these issues.
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4.1. Partial protocol offloading for avoiding CPU and
memory contention

As discussed in Section3, the host CPU performs per-
byte operations such as data copy and checksum computa-
tion which result in not only an intensive consumption of
CPU resources, but also memory contention with the DMA
operations that access the host memory from the NIC. Fur-
ther, as described earlier, checksum offload and zero-copy
transmission and reception implemented by some POEs al-
lows a significant reduction in these resource usage require-
ments. We regard basic checksum offloading and zero-copy
data transmission as pre-requisites to our work and imple-
ment these over Myrinet.

We can consider two design alternatives to offload the
checksum computation on to the NIC. The first alternative
is to let the NIC firmware perform the checksum compu-
tation on the data in the NIC memory. This can be per-
formed in parallel with the protocol processing by the host
CPU. Though this approach would reduce the contention for
the CPU requirement on the host, it would merely shift the
memory contention issue from the host memory to the NIC
memory causing the checksum computation to contend with
the host and network DMA operations. In addition, since the
NIC processor is significantly slower than the host CPU, it
is difficult to expect this approach to reduce the overhead
for checksum computation.

The other approach is to utilize the checksum computation
capability of the host–DMA engine. The checksum compu-
tation by the DMA engine does not generate any additional
computation overhead or memory accesses since the data
checksum is performed together with the DMA operation
and before being placed into the NIC memory. This allows
us to achieve both offloading as well as high performance. At
the same time, the checksum offloading does not introduce
any additional memory contention on the NIC memory.

Together with checksum computation, the data copy
present in the traditional UDP implementation is another
source of CPU and host memory contention. One way to
remove the copy operation is to utilize the memory map-
ping mechanism between the application and the kernel
memory spaces and use the mapped kernel memory space
for all data communication [14]. Another alternative is to
directly move the data in the application buffer through
DMA with the address and the length of the application
buffer [47]. Without the copy operation, the protocol layer
can simply take the virtual address of the application buffer
and translate it into the corresponding physical address by
traversing the page directory and table. This physical ad-
dress is used by the NIC to perform the DMA operations.
In either case, since we allow applications to use arbitrary
application buffers, we have to consider the linearity of the
buffer. In cases where the buffer is not physically linear,
we construct gather or scatter lists so that the NIC can
perform a DMA operation for each linear chunk in the ap-
plication buffer separately. Both approaches have their own

Fig. 5. Two level queues to control I/O bus contention.

advantages and disadvantages, but for efficiency and ease of
implementation, we chose the second approach.

4.2. Scheduling I/O bus transactions

As mention in Section2.1, once the IP layer presents the
information about the outgoing data to the device driver,
it forms a descriptor for the data message and pushes this
descriptor to the NIC through a PIO operation. While this
approach is quite efficient when there is little contention
on the I/O bus, this might lead to a significant degradation
of the performance when the I/O bus gets more heavily
utilized. For example, bursty communication requests from
applications can generate a high rate of descriptor posting to
the network adapter with each descriptor posting requiring
a PIO transaction across the I/O bus.

In order to resolve this problem, we propose a two-level
queue structure to allow an efficient scheduling of the rate
of descriptor posting without sacrificing the performance.
Fig. 5 shows the basic structure of two-level queue, where the
level-1 (L1) queue is large and located in the host memory,
while the level-2 (L2) queue is small and located in the NIC
memory.

When an application issues a send request, if the L2 send
queue is not full, the device driver puts the descriptor corre-
sponding to the request in the L2 send queue through a PIO
operation. On the other hand, if the L2 send queue is full,
the descriptor is just queued in the L1 queue. When the NIC
firmware completes a send, an interrupt is triggered, which
means that a vacancy is created in the L2 send queue. Ac-
cordingly, the interrupt handler gets a descriptor from the
L1 send queue and puts it into the L2 send queue through a
PIO operation. This approach ensures that the L1 send queue
behaves in a self-clocking manner, i.e., it uses the interrupt
for send completion as a clock to put a new descriptor into
the L2 send queue. The description of the two-level queue
on the receiver side is similar.

Consequently, the two-level queue structure can mitigate
the rate of PIO to less than

Ratemax = n + sizeof(L2)

t
,

wheren is the maximum number of requests that the NIC
can process in timet. And sizeof(L2) is the number of
requests that L2 queue can hold.
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The kernel and the NIC do not need to know any details
about the queue structure because the device driver allocates
and manages the L1 queue and can decide the size of the L2
queue. Accordingly, it is easy to apply to various operating
systems and NICs. While we understand the importance of
the performance impacts the size of the L2 queue might
have, in this paper, we do not deal with its variation and fix
it to a predefined value for all experiments.

4.3. Fine-grained pipelining to minimize link idle time

As mentioned earlier, the Myrinet NIC memory allows
two memory accesses per clock cycle while each DMA en-
gine can only request one memory access per clock cycle.
This means that the transmission of a data segment by the
send DMA engine can be pipelined with the DMA of the
next segment by the host DMA engine (since these engines
can read and write to the memory simultaneously).1 The
current GM architecture follows this approach for data trans-
mission. We term this form of pipelining ascoarse-grained
pipelining. Earlier generation protocols over Myrinet such
as Berkeley-VIA [11] achieve a much lower performance as
they do not utilize this information about the memory clock
speed at all and carry out the host DMA and the network
DMA in a serialized manner [26]. However, as discussed in
Section 3, even a coarse-grained pipelining approach does
not fully avoid the idle time in the link since the transmis-
sion is not carried out till the DMA of the entire segment is
completed.

In order to address the issue of the link idle time, we
propose a fine-grained pipelining approach between the I/O
bus and the Myrinet link. In the fine-grained pipelining ap-
proach, the NIC initiates its DMA operation as soon as a
sufficient number of bytes have arrived from the host mem-
ory (through a host DMA) or the network (through a receive
DMA). For instance, on the sender side the send DMA en-
gine can send a packet out to the network while the host
DMA engine is still moving a later part of the same packet
from the host to the NIC memory. This approach allows us
to fully pipeline the overheads of the send DMA and the
host DMA for the same packet. It is to be noted that this
approach only aims at reducing the per-byte overhead of the
packet and does not impact the per-packet overhead associ-
ated with UDP/IP.

In order to achieve a fine-grained pipelining between the
NIC and the link overheads, the following conditions should
be satisfied. First, the NIC architecture has to allow mul-
tiple accesses to the NIC memory at a time by different
DMA engines. The Myrinet NIC allows two DMA engines to

1 In theory, unlike dual ported memory interfaces, the Myrinet NIC
memory does not provide truly concurrent access. However, the number
of requests the memory can handle is twice the number of requests
each DMA engine can generate. So, the accesses can be assumed to be
concurrent.

access the NIC memory simultaneously. Second, the NIC
has to provide an approach to send several fragments of a
packet separately and realize that these fragments belong to
the same packet on the receiver side. As described in Section
2, the Myrinet NIC provides two kinds of registers, namely
SMLT and SML to achieve this. Third, the NIC firmware
should force the host DMA engine to perform the DMA
operation in parallel with the network DMA engines within
the same packet.

While it is easily verifiable that the NIC satisfies the
first two conditions, it is very difficult to verify that the
NIC firmware always guarantees the third property irrespec-
tive of the communication pattern followed by the appli-
cation. To address this, we propose a formal verification
for the fine-grained pipelining-based firmware model on the
Myrinet NIC firmware, MCP. The MCP performs coarse-
grained overhead pipelining for IP-based protocols, where
DMA overheads across different packets are overlapped.

The MCP consists of multiple threads: SDMA, RDMA,
SEND, and RECV. The SDMA and SEND threads are re-
sponsible for sending. The SDMA thread moves data from
the host memory to the NIC memory, and the SEND thread
sends data in the NIC memory to the physical network. The
receiving of data is performed by the RDMA and RECV
threads. The RECV thread receives data from the physical
network to the NIC memory. The RDMA thread moves the
received data to the host memory.

Based on this design we suggest an extended firmware
design for fine-grained pipelining as shown in Fig. 6. In the
figure, the states in the rectangle (with the dotted line) are the
newly defined states for fine-grained overhead pipelining.
The shaded states in the figure are dispatching entries of
each thread. Each thread starts from the initial state and
when it reaches a dispatching state, yields the processor to
another thread that is ready to run without waiting for the
next event to translate the state of the running thread. The
yielding thread starts at a later point from the state in which
the thread was suspended right before.

For example, let us consider the states for fine-grained
pipelining on the RDMA thread. The initial state of the
RDMA thread is the iIdle state. If the amount of data ar-
rived is more than the threshold for fine-grained pipelining,
the state is moved toFine_Grained_Rdma , where the
RDMA thread initiates the host DMA operation to move the
data in the NIC memory to the host memory. After finishing
this DMA operation, in theFine_Grained_Rdma_Done
state, if there is still more data than the threshold, the
RDMA thread performs the host DMA operation again
moving to theFine_Grained_Rdma state. Otherwise, if
the receive DMA has completed, the state of the RDMA
thread is changed to theRdma_Last_Fragment state.
In this state, the RDMA thread does the DMA operation
for the rest of the packet regardless of its size.

In order to verify the correctness of the proposed state
transition diagram, we used the Spin verification tool. Spin
[20] is a tool for formal verification of distributed software
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Fig. 6. State transition model for: (a) SDMA, (b) RDMA, (c) SEND, and (d) RECV threads.

systems, such as operating systems and data communication
protocols. It uses a high level language to specify a system,
called PROMELA (PROcess MEta LAnguage)[19]. Given a
model specified in PROMELA, Spin verifies that the model
satisfies properties written in linear temporal logic (LTL)
[32]. LTL was designed for expressing temporal ordering of
events and variables; it characterizes the behavior of systems
by specifying some behavior that all traces of a system must
obey.

For the formal verification, we first translate the
state transition diagrams of Fig. 6 into specifications
written in PROMELA. We then define propositional sym-
bols and derive verification formulas written in LTL as
Table 1.

Formulas 1 and 2 represent the properties that the sug-
gested model performs the fine-grained pipelining. Formula
3 represents that the model utilizes the Myrinet link in full-
duplex mode. Formula 4 ensures correctness, i.e., only one
thread between SDMA and RDMA should occupy the host
DMA engine at a time. Using these formulas with Spin, we
formally verified that the above presented model performs
fine-grained pipelining with any generic communication
pattern.

4.4. Performance modeling

To analyze the performance of our design described in
Sections4.1–4.3 on various systems, we propose a mathe-
matical performance model. First, we derive the performance
model for coarse-grained pipelining as a base model to com-
pare against. Next, we describe the performance model for
fine-grained pipelining. Both models implement the partial
protocol offloading as well as the two-level queuing and dif-
fer only in the pipelining mechanism. In this section, we
model our implementation based on the Myrinet network
architecture. However, as we will see in Section 6, many
of these features are quite general and supported by several
emerging NICs for high-speed networks. Therefore, the per-
formance models in this section are expected to give us a
strong hints about the benefits achievable by our proposed
protocol offloading and overhead pipelining mechanisms on
next generation high-speed networks.

4.4.1. Coarse-grained pipelining
In the coarse-grained pipelining model, pipelining be-

tween the overheads for the(p +1)th packet at theith layer
and thepth packet at the(i + 1)th layer occurs as shown in
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Table 1
Linear temporal logic formulas

Propositional symbols #define sdma (SDMA_state == Sdma)
#define coarse_rdma (RDMA_state == Coarse_Grained_Rdma)
#define fine_sdma (RDMA_state == Fine_Grained_Rdma)
#define coarse_send (SEND_state == Coarse_Grained_Send)
#define fine_send (SEND_state == Fine_Grained_Send)
#define recv (RECV_state == Recv)

Formula 1 <> ( sdma && ( coarse_send || fine_send ) )
Can the SEND thread initiate a send DMA while the SDMA thread performs a host DMA, and vice versa?

Formula 2 <> ( ( coarse_rdma || fine_rdma ) && recv )
Can the RECV thread initiate a receive DMA while the RDMA thread performs a host DMA, and vice versa?

Formula 3 <> ( ( coarse_send || fine_send ) && recv )
Can the SEND thread initiate a send DMA while the RECV thread performs a receive DMA, and vice versa?

Formula 4 [ ] ( sdma && ( coarse_rdma || fine_rdma ) )
The SDMA thread cannot use the host DMA engine while RDMA thread utilizes it, and vice versa.

gi gi+1B ⋅ Gi B ⋅ Gi+1

Si

ig′

x1,1,i+1 ⋅ Gi+1

B ⋅ Γ2,i+1

x�1,i+1,1,i+1 ⋅ Gi+1 x�2,i+1,2,i+1 ⋅ Gi+1

layer

layer

Latencycoarse Latencyfine

time

time

(a) (b)

Fig. 7. Overhead pipelining: (a) coarse grained and (b) fine grained.

Fig. 7a, where the smaller numbered layer is the upper layer.
In the figure,gi andGi denote the per-packet and the per-
byte overheads at theith layer, respectively.B is the byte
size of the packet.

In this case, the one-way latency per packet is given by

Latencycoarse=
n∑

i=1

(gi + B · Gi) (1)

and the bandwidth is given by

Bandwidthcoarse

= lim
m→∞

B · m

(m − 1) · (gb + B · Gb) + ∑n
i=1 (gi + B · Gi)

= B

gb + B · Gb
, (2)

wheren is the number of layers that perform the overhead
pipelining. The subscript b represents the bottleneck layer,
andm is the number of packets. We analyze the bandwidth

for a large number of packets (i.e.,m → ∞) since we
assume that the test would use a massive data transmission.

4.4.2. Fine-grained pipelining
Based on the implementation of partial protocol offload-

ing and two-level queuing, we can achieve fine-grained
pipelining with the firmware model described in Section
4.3. In the fine-grained pipelining approach, a layer initi-
ates its per-byte processing as soon as a sufficient number
of bytes have arrived from the upper layer. Therefore, the
overhead of a packet at theith layer and the same packet at
the (i + 1)th layer are fully pipelined except the per-packet
overhead as shown in Fig. 7b. In the figure,Si is the start-up
overhead that is required to start a per-byte operation such
as a DMA operation,g′

i is the per-packet overhead except-
ing the start-up time,Si , (i.e., g′

i = gi − Si), andxf,p,i is
the size off th fragment of thepth packet in theith layer. A
characteristic of fine-grained pipelining is that the per-byte
processing of a layer is affected by the per-byte overhead
of the upper layer. Accordingly, we define a new parameter,
�p,i [25], which represents the per-byte processing time.
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Then, the one-way latency of the fine-grained pipelining is
as follows:

Latencyfine =
n∑

i=1,i 
=e

(gi + t · Gi) + g′
e + B · �1,e, (3)

wheree is the last layer such that�1,e 
= 0, and t is the
threshold that defines the minimum number of bytes making
a layer start its per-byte processing.

In order to model the bandwidth, we define a param-
eter, u, which is the number of packets after which the
fine-grained pipelining is changed into the coarse-grained
pipelining. This occurs because when a layer passes the data
to the next layer which happens to be slower, data accumu-
lates in the buffer of the next layer triggering progressively
larger transfers. Therefore, for all packets from the first to
theuth, the per-byte overhead is defined by�p,i while, af-
ter theuth packet, the per-byte overhead is the same as that
of coarse-grained pipelining (i.e.,Gi). Thus, the bandwidth
of fine-grained pipelining is given by

Bandwidthfine

= lim
m→∞

B · m
∑n−1

i=1 g′
i
+ ∑m

p=1(g′
n + B · �p,n)

≈ lim
m→∞

B · m
∑n−1

i=1 g′
i
+ ∑m

p=1(g′
b + B · Gb + kp,b · Sb)

= lim
m→∞

B·m
∑n−1

i=1 g′
i
+m·(g′

b+B·Gb)+ ∑u
p=1(kp,b·Sb)+ ∑m

p=u Sb

= B

gb + B · Gb
,

(4)

wherekp,i is the number of fragments of thepth packet of
the ith layer[25].

An interesting result is that Eq. (4) is the same with Eq. (2).
This is because fine-grained pipelining switches to coarse-
grained pipelining after theuth packet when a large number
of packets are transmitted in burst. As a result, fine-grained
pipelining can achieve a low latency without sacrificing the
bandwidth.

More detailed proofs, equations and explanations for fine-
grained pipelining are skipped in this paper in order to main-
tain simplicity and are presented in [25].

5. Experimental results

In this section, we first present the capability of our
E-UDP implementation to avoid the various inefficiencies
pointed out in Section 3. Next, we present the performance
achieved by E-UDP compared to other protocol implemen-
tations. Finally, we present the results of our analytical
model showing the performance of E-UDP for various
system and network configurations.

For the evaluation, we used a pair of machines equipped
with an Intel Pentium III 1 GHz processor on an ASUS
motherboard (Intel 815EP chipset). Each machine has a

Myrinet NIC (LANai 9.0) set to a 32 bit 33 MHz PCI slot,
and the NICs are directly connected to each other through
the Myrinet-1280 link. The Linux kernel version used is 2.2,
and we adopt GM (version 1.4) for the device driver and the
firmware on the Myrinet NIC. The MTU size is set to 32 kB.

5.1. System resource consumption in E-UDP

To analyze the effect of partial protocol offloading on the
CPU overhead, we measured the overhead on both the host
and the NIC CPUs. Figs.8a and b compare the CPU over-
heads of the original UDP and E-UDP for small (1 B) and
large (32 kB) message sizes, respectively. For small mes-
sages, though the copy operation and the checksum compu-
tation overheads are small, we can see a slight reduction in
the CPU overhead, especially on the receiver side. On the
other hand, the NIC overheads of E-UDP are increased due
to the offload of the copy operation and the checksum com-
putation. Further, some other functionalities such as a part
of the UDP/IP header manipulation also have been moved
to NIC. Overall, the accumulated overhead on both the host
and the NIC are nearly equal (44.7us on E-UDP vs. 42.3us
on original UDP).

For large messages, however, we can see a large benefit
through partial protocol offloading. By offloading the per-
byte operations from the host, we achieve a very small host
overhead regardless of the message size. At the same time,
there is no significant increase in the overhead on the NIC.

To observe whether E-UDP resolves the resource con-
tention and the idle resource problems, we study the time
flow chart of E-UDP for 10 packets each of 32 kB size. The
time flow chart of the original UDP has already been shown
in Section 3. Fig. 9 shows the time flow chart of E-UDP. We
can see that the overhead of each layer can be fully pipelined
with the others from the sender side to the receiver side.
This is due to the fact that E-UDP eliminates the CPU, the
memory, and the I/O bus contentions. In addition, E-UDP
performs a fine-grained overhead pipelining to overlap the
NIC and the link overheads. Consequently, the largest over-
head (i.e., the NIC overhead) hides the smaller overheads
and allows us to achieve a performance close to the theoret-
ical maximum.

5.2. Latency and bandwidth

In this section, we compare the performance of E-UDP
with that of the original UDP, GM and Berkeley-VIA [11],
a well-known implementation of VIA. Since there is no im-
plementation of Berkeley-VIA on LANai9, we measured its
performance with a LANai4-based Myrinet NIC on the same
platform.

Fig. 10 compares the latency of E-UDP, GM, Berkeley-
VIA, and original UDP with the theoretical minimum
latency of the experimental system for large and small
messages, respectively. The latency test is conducted in a
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Fig. 9. Time flow chart for E-UDP.

ping-pong fashion, and the results are derived from the
round-trip time by dividing it by two. Since the bottleneck of
the system is the PCI bus (1007 Mbps of PCI vs. 1280 Mbps
of Myrinet-1280), the theoretical maximum performance in
this subsection is derived from that achievable by the PCI
bus used.

We can observe that the latency of E-UDP is smaller than
the others and almost even with the theoretical minimum
latency. An interesting result is that the latency of E-UDP
is even smaller than that of the user-level protocols, such
as GM and Berkeley-VIA for large message sizes. This is
because E-UDP performs fine-grained overhead pipelining
on the NIC. On the other hand, in the case of small data
sizes (Fig.10b), GM shows the smallest one-way latency.
This is because for small messages, the per-packet overhead
becomes the dominant factor. User-level protocols have a
lower per-packet overhead compared to UDP/IP following
which they are able to achieve a lower latency.

Fig. 11 shows the bandwidth achieved by E-UDP com-
pared to the other protocols. We have used thettcp [43]
and thegm_allsizebenchmarks to measure the bandwidth
of E-UDP and GM, respectively. We measured the through-
put of Berkeley-VIA using thewindowprogram.gm_allsize
is a benchmark provided as a part of the Myrinet software

package to measure the performance achievable by GM.
windowis a test program included in Berkeley-VIA software
package for Linux. We turned on theLAZY_BENCHMARK
option for thewindowprogram; this generates the theoretical
maximum bandwidth achievable by evaluating the maximum
injection rate to the network on the sender side regardless
of the receiver.

A notable result is that E-UDP achieves a peak bandwidth
of 951 Mbps which is about 94% of the theoretical maxi-
mum bandwidth of the experimental system. The bandwidth
of GM is slightly lower than that of E-UDP. This is because
GM splits a large packet into several segments with a fixed
size of 4 kB. This segmentation increases the packet pro-
cessing overhead in proportion to the number of segments.
Consequently, the throughput suffers.

An unexpected result in Fig.11 is that for large data
sizes (larger than 1 kB) Berkeley-VIA shows a much lower
throughput than the others. This can be partly because we
measured its performance with a LANai4-based NIC. How-
ever, since the rest of the experimental system was the same,
the data-touching portion is unchanged between LANai4
and LANai9. Based on this, the drop in bandwidth is at-
tributed to the lack of pipelining between the NIC and the
link overheads, i.e., the NIC firmware of Berkeley-VIA se-
rializes DMA operations even for those performed by dif-
ferent DMA engines without taking advantage of the capa-
bilities of the Myrinet NIC memory to allow simultaneous
access to both the DMA engines.

5.3. Performance modeling results

To verify that the mathematical performance model sug-
gested in Section 4.4 is accurate, we compare the perfor-
mance evaluated from the model with the real performance
numbers on our test-bed. Figs. 12a and b show the latency
and bandwidth comparisons, respectively. Since, from the
performance model equations in Section 4.4, the bandwidth
of the coarse and the fine-grained pipelining mechanisms are
the same, Fig. 12b does not deal with coarse and fine-grain
pipelining separately. Real data for coarse-grain pipelining
refers to a version of UDP with partial protocol offloading
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and two-level queuing for the I/O requests, i.e., it differs
from E-UDP in only the pipelining mechanism. As we can
see in the figures, the performance model matches the actual
data very closely with an error of less than 5%.

Based on the performance model, we tried to analyze
the latency and bandwidth of E-UDP on faster networks
and I/O buses than our evaluation system. We considered
2 and 10 Gbps networks to reflect the characteristics of
the emerging networks such as Myrinet-2000, 10-Gigabit
Ethernet, and InfiniBand. In addition, we took account of
64 bit/66 MHz and 64 bit/133 MHz PCI systems. We used
the per-packet overhead values measured on E-UDP and de-
cided the per-byte overhead values according to the target
network and the PCI bus speed.

Figs. 13a and b show the latency and bandwidth on a
2 Gbps network with a 64 bit/66 MHz PCI bus. We can see
that in this case the fine-grained pipelining can achieve a
very low latency for large message sizes compared to coarse-
grained pipelining. In addition, the rate of increase of the
overhead is equal to that of the network link latency; this
shows that fine-grained pipelining is able to hide the DMA

overhead on the NIC behind the link overhead successfully.
Moreover, Fig.13b shows that both overhead pipelining
mechanisms can achieve a near physical bandwidth.

The results on a 10 Gbps network and a 64bit/133 MHz
PCI bus are shown in Figs. 14a and b. We can see that even
fine-grained pipelining cannot fully utilize the network link.
The main reason for this is that the network and I/O bus
systems are an order of magnitude faster than the processor
on the NIC (the modeling is based on the Myrinet LANai9
processor); this results in a relatively high percentage of the
overall overhead to be associated with the protocol process-
ing time (per-packet overhead). With the current faster pro-
cessors on the NIC and hardware-based solutions being in-
corporated for protocol processing, we expect this overhead
to be reduced significantly.

6. Discussion

While this work has been implemented and evaluated with
the Myrinet network architecture, several of these ideas are
quite general and applicable in various other architectures.
In this context, we would like to recognize and consolidate
a primary set of features provided by the Myrinet and other
similar architectures which we feel can form a basis for a
generic POE. In particular, we would like to discuss: (i) in-
tegrated checksum and DMA capability, (ii) exposing Scat-
ter/Gather capabilities to the device driver, (iii) solicit bit for
message segmentation, (iv) multiple DMA engine support
and (v) memory bandwidth for internal data movement on
the network adapter.

Integrated Checksum and DMA capability: As mentioned
in Section 5, the performance of a protocol stack for small
messages mainly depends on the per-packet overheads as-
sociated including the protocol stack data path overhead, in-
terrupts, etc. On the other hand, the performance for large
messages depends on the per-byte overhead associated in-
cluding checksum, copy and data DMA.
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Fig. 12. Performance modeling results verification: (a) latency and (b) bandwidth.
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Fig. 13. Latency and bandwidth measurements on a 2 Gbps network with a 64 bit/66 MHz I/O bus.
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Fig. 14. Latency and bandwidth measurements on a 10Gbps network with a 64 bit/133 MHz I/O bus.

Some network adapters (e.g., some of the Gigabit Eth-
ernet adapters available in market) allow offloading the
checksum computation to the NIC. Though this technique
is quite beneficial for the host in terms of the CPU required
for checksum processing, this solution merely shifts this

overhead from the host CPU to the network adapter. Further,
this requires additional fetching and manipulation of data on
the memory in the network adapter, increasing the require-
ment for the memory bandwidth provided by the memory
on the network adapter. On the other hand, some network
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adapters such as Myrinet allow an integrated checksum and
DMA capability, i.e., the DMA engine itself can compute the
checksum of the data while performing the DMA operation.
This avoids the checksum computation overhead on the host
CPU and at the same time does not increase the memory
bandwidth requirements on the network adapter (since it
does not require any additional fetching of data).

Exposing Scatter/Gather capabilities to the device driver:
Several network architectures including Myrinet, Quadrics
and InfiniBand allow applications to send data from non-
contiguous virtual address space and receive data into non-
contiguous virtual address space, a capability often referred
to as scatter/gather data transfer. For IP-based protocols
this feature has several implications due to the functional-
ity and implementation of these protocol stacks. For exam-
ple, TCP/IP and UDP/IP copy the data from the application
buffer into the kernel buffer and attach appropriate protocol
headers for each segment of data before handing it over to
the device driver. For such protocols, the header is gener-
ated inside the kernel. Implementing a zero-copy data trans-
fer for such protocols would result in the data being present
in the application buffer while the protocol header being
generated in the kernel. To efficiently transfer these non-
contiguous segments in a zero-copy manner by the kernel,
a gather feature is quite important and required. Similarly,
on the receiver side, the protocol headers need to be placed
inside the kernel space while the data needs to be placed in
the application buffer. In such a situation a scatter feature in
the network adapter is quite beneficial.

Together with such a capability, we would also like to
point out the requirement for scatter/gather capabilities with
contiguous virtual address space but non-contiguous phys-
ical address space. Since, in our implementation, we retain
the sockets API which allows arbitrary application buffers,
the buffer from which the application tries to send data would
be a contiguous virtual address space but does not have
to be a contiguous physical address space. Therefore, the
data transmission should be able to handle non-contiguous
physical address space.2 For handling such requirements
in the data transmission, a scatter/gather capability for non-
contiguous physical address space is very critical.

Solicit bit for message segmentation: The fine-grained
pipelining described in this paper utilizes a feature known
as solicit bit-based message segmentation. Using this fea-
ture, the Myrinet NIC allows several segments of data to
be sent out separately but considered as a single message
on the receiver side. The main advantage of this feature is
that each of these segments does not need to have a separate
protocol or MAC header; thus the available bandwidth can
be utilized for transferring only the actual data. It is to be
noted that since the Myrinet network is a cut-through net-

2 It is to be noted that an approach, where the device driver issues
multiple posts for the different physical pages is not possible since this
would require the receiver to know the exact layout of the data on the
sender side in order to post-appropriate-sized descriptors.

work, each segment does not need to have a MAC header
to identify the destination node. As long as the solicit bit is
set on the message segments, the Myrinet switch considers
these segments to be a part of the same stream (message)
and automatically forwards them to the same destination.

For store-and-forward networks, however, though this
kind of an approach is possible, it might not be as beneficial
for a large network. Store-and-forward networks require
the entire link level message (MAC header + data specified
by the MAC header) to be received by the switch before
it can be forwarded to the destination node. Thus, there
can be some amount of pipelining at the source nodes host
and network adapter, but once the message reaches the
first switch, there would be no difference between coarse-
grained pipelining and fine-grained pipelining.

Multiple DMA engine support: Another important feature
on the NIC that pipelining tries to exploit is the use of mul-
tiple DMA engines. The Myrinet NIC provides three DMA
engines; one to transfer data from the host memory to the
NIC memory and vice versa, one to transfer data from the
NIC memory to the link and one to transfer data from the
link to the NIC memory. It is to be noted that the current
Myrinet network adapters are based on PCI and PCI-X I/O
buses. These I/O buses are shared for data traffic in both
directions (from host to NIC and from NIC to host). Thus,
one DMA engine would be sufficient to perform the data
transfer in both directions (SDMA and RDMA threads). On
the other hand, the network link is full-duplex, i.e., data can
be sent and received simultaneously. Thus, one dedicated
DMA engine (SEND and RECV) is required for data trans-
fer in each direction (from NIC memory to link and from
link to NIC memory). It is to be noted that with the current
PCI-Express technology network adapters will be capable of
moving data from the host to the NIC and from the NIC to
the host simultaneously in a dedicated manner. This can put
a requirement for an additional DMA engine or full-duplex
DMA capability to be present on the NIC.

Memory bandwidth for internal data movement on the
NIC:As mentioned earlier, the Myrinet NIC performs check-
sum calculation during the DMA operation from the host
memory to the NIC memory. Similarly, it performs a CRC
computation during the DMA operation from the NIC mem-
ory to the link. This means that the only data accesses to
the data in the NIC memory are by the DMA engines (one
access while performing the DMA from the host memory
to the NIC and one access while performing the DMA from
the NIC memory to the link). The memory on the Myrinet
NIC can support two accesses per clock cycle. On the other
hand, the DMA engines can request one memory access
each per clock cycle. So, two DMA engines can access the
memory simultaneously at full speed. We utilized this to
show fine-grained pipelining for uni-directional traffic. For
bi-directional traffic on the other hand, the RECV DMA en-
gine also needs to access the memory thus increasing the
requirement for memory bandwidth. It is to be noted that for
network architectures with full-duplex links and full-duplex
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I/O buses (PCI-Express), the memory bandwidth require-
ments can be up to four times the link bandwidth in or-
der to achieve non-blocked pipelining. Further, it is to be
noted that this requirement is not specific to fine-grained
pipelining, but a generic requirement to perform any kind of
pipelining.

7. Related work

Several researchers have worked on implementing high-
performance user-level sockets implementations over high-
performance networks. Balaji et al. have worked on such
pseudo-sockets layers over Gigabit Ethernet[7], GigaNet
cLAN [8,39] and InfiniBand [6]. However, these sockets lay-
ers only deal with compatibility issues with existing appli-
cations and do not focus on compatibility with the existing
IP infrastructure.

Similarly, there has been some previous work in the MPI
domain. Madeleine MPI [5] and MPICH-G [28] are two im-
plementations of MPI which focus on transparently handling
heterogeneous network environments. However, these solu-
tions are applicable for only MPI-based applications and are
not usable by applications based on other common inter-
faces, such as sockets, DSM [3,29], Global Arrays [33], etc.
On the other hand, since there exist sockets-based imple-
mentations for most of these environments, our implemen-
tation can be expected to provide a transparent compatibility
with the applications as well as the IP-based infrastructure.

Trapeze [13] has implemented zero copy, checksum of-
floading, and a form of overhead pipelining based on TCP/IP
on Myrinet. This research is notable in the sense that this
was the one of the first to show that an IP-based protocol can
achieve a significantly high performance. However, Trapeze
provides a different API from the sockets interface and is
not compatible with the traditional TCP/IP implementation.
In our paper, we try to achieve a near theoretical perfor-
mance while keeping the socket interface and compatibility
existing the UDP/IP implementations.

For overhead pipelining, several studies have been done
to achieve a middle-grained pipelining [24,36,45], which
splits a large packet into smaller sized segments so that
the overheads for a packet at a layer and the same packet
at the next layer are partly pipelined. The middle-grained
pipelining can achieve a lower latency than coarse-grained
pipelining but is not as efficient as fine-grained pipelining.
Further, since middle-grained pipelining splits a packet into
separate segments, each with a separate segment header, it
sacrifices some of the bandwidth.

A notable research on formal verification of the NIC
firmware is performed by Kumar et al. [31], which employs
a model checking approach to implement the NIC firmware.
They use Event-driven State-machine Programming (ESP);
a language for writing firmware for programmable devices
to verify the retransmission protocol, memory safety, and
the deadlock free property of the VMMC [15] firmware.

We expect that their approach can effectively help implement
our suggested model.

8. Concluding remarks and future work

While a number of user-level protocols have been devel-
oped to reduce the gap between the performance capabilities
of the physical network and the performance actually avail-
able, their compatibility issues with the existing sockets-
based applications and IP-based infrastructure has been an
area of major concern. To address these compatibility is-
sues while maintaining a high performance, a number of re-
searchers have been looking at alternative approaches to op-
timize the existing traditional protocol stacks. Broadly, pre-
vious research has broken up the overheads in the traditional
protocol stack into four related aspects, namely: (i) compute
requirements and contention, (ii) memory contention, (iii)
I/O bus contention and (iv) system resources’ idle time.

There has been some previous research which deals with
some of these aspects. For example, POEs have been re-
cently proposed as an industry standard for offloading the
compute intensive components in protocol processing to spe-
cialized hardware. However, these approaches require net-
work adapters supported with specialized ASIC-based chips
which implement the protocol processing and are not generic
enough to be implemented on most network adapters. Fur-
ther, these deal with only the compute requirement and mem-
ory contention issues and do not address the remaining is-
sues. In short, to the best of our knowledge, there is no work
which deals with all these issues in an integrated manner
while maintaining backward compatibility with existing ap-
plications and infrastructure.

In this paper, we address each of these issues and propose
solutions for minimizing these overheads. We also modify
the existing UDP/IP implementation over Myrinet to demon-
strate the capabilities of these solutions. We first utilize the
earlier proposed techniques to implement a partial offload
of the UDP/IP protocol stack to address the first two issues,
i.e., compute requirements and memory contention. Next,
we modify the device driver to allow a delayed posting of
descriptors in order to reduce the contention at the I/O bus
between descriptor posting and the DMA operations of the
actual outgoing or incoming data. Finally, we implement
a fine-grained pipelining technique on the firmware of the
network adapter to minimize the link idle time in order to
achieve a high performance. Further, all these enhancements
to the UDP stack are completely compatible not only with
existing applications and infrastructure, but also with the ex-
isting UDP implementations. Our experimental results show
that with our implementation of UDP, termed as E-UDP, can
achieve up to 94% of the theoretical maximum bandwidth.
We also present a mathematical performance model which
allows us the study the performance of our design for vari-
ous system architectures and network speeds.

Reliability is a critical feature for running several real ap-
plications over a cluster-of-clusters environment. There has
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been some previous work related to reliability over UDP
[10,18]. Such reliability relieves us of the requirement of
a heavy protocol such as TCP/IP and allows us to achieve
high performance. As a part of our future work, we plan
to integrate this kind of reliability into E-UDP. This would
allow us to deploy our solution in a real cluster-of-clusters
environment and measure the actual application level perfor-
mance gains achievable through this solution. Also, we are
currently looking into offloading the per-packet overheads
in the current UDP/IP stack on to the network adapter. This
would not only allow us to achieve a better performance
for small messages (where the per-packet overhead is dom-
inant), but also a better scalability for faster networks.
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