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Abstract
Though traditional Ethernet based network architectures such as

Gigabit Ethernet have suffered from a huge performance difference
as compared to other high performance networks (e.g, InfiniBand,
Quadrics, Myrinet), Ethernet has continued to be the most widely
used network architecture today. This trend is mainly attributed to
the low cost of the network components and their backward compat-
ibility with the existing Ethernet infrastructure. With the advent of
10-Gigabit Ethernet and TCP Offload Engines (TOEs), whether this
performance gap be bridged is an open question.

In this paper, we present a detailed performance evaluation of
the Chelsio T110 10-Gigabit Ethernet adapter with TOE. We have
done performance evaluations in three broad categories: (i) de-
tailed micro-benchmark performance evaluation at the sockets layer,
(ii) performance evaluation of the Message Passing Interface (MPI)
stack atop the sockets interface, and (iii) application-level evalua-
tions using the Apache web server. Our experimental results demon-
strate latency as low as 8.9 µs and throughput of nearly 7.6 Gbps for
these adapters. Further, we see an order-of-magnitude improvement
in the performance of the Apache web server while utilizing the TOE
as compared to the basic 10-Gigabit Ethernet adapter without TOE.

1 Introduction
Despite the performance criticisms of Ethernet for high-

performance computing (HPC), the Top500 Supercomputer
List [2] continues to move towards more commodity-based
Ethernet clusters. Just three years ago, there were zero Gi-
gabit Ethernet-based clusters in the Top500 list; now, Giga-
bit Ethernet-based clusters make up 176 (or 35.2%) of these.
The primary drivers of this Ethernet trend are ease of de-
ployment and cost. So, even though the end-to-end through-
put and latency of Gigabit Ethernet (GigE) lags exotic high-
speed networks such as Quadrics [20], Myrinet [9], and In-
finiBand [4] by as much as ten-fold, the current trend indi-
cates that GigE-based clusters will soon make up over half
of the Top500 (as early as November 2005). Further, Eth-
ernet is already the ubiquitous interconnect technology for
commodity grid computing because it leverages the legacy
Ethernet/IP infrastructure whose roots date back to the mid-
1970s. Its ubiquity will become even more widespread as
long-haul network providers move towards 10-Gigabit Eth-
ernet (10GigE) [14, 13] backbones, as recently demonstrated
by the longest continuous 10GigE connection between Tokyo,
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Japan and Geneva, Switzerland via Canada and the United
States [12]. Specifically, in late 2004, researchers from Japan,
Canada, the United States, and Europe completed an 18,500-
km 10GigE connection between the Japanese Data Reservoir
project in Tokyo and the CERN particle physical laboratory in
Geneva; a connection that used 10GigE WAN PHY technol-
ogy to set-up a local-area network at the University of Tokyo
that appeared to include systems at CERN, which were 17
time zones away.
Given that GigE is so far behind the curve with respect to

network performance, can 10GigE bridge the performance
divide while achieving the ease of deployment and cost of
GigE? Arguably yes. The IEEE 802.3-ae 10-Gb/s standard,
supported by the 10GigE Alliance, already ensures interoper-
ability with existing Ethernet/IP infrastructures, and the man-
ufacturing volume of 10GigE is already driving costs down
exponentially, just as it did for Fast Ethernet and Gigabit Eth-
ernet1. This leaves us with the “performance divide” between
10GigE and the more exotic network technologies.
In a distributed grid environment, the performance differ-

ence is a non-issue mainly because of the ubiquity of Ethernet
and IP as the routing language of choice for local-, metropoli-
tan, and wide-area networks in support of grid computing.
Ethernet has become synonymous with IP for these envi-
ronments, allowing complete compatibility for clusters using
Ethernet to communicate over these environments. On the
other hand, networks such as Quadrics, Myrinet, and Infini-
Band are unusable in such environments due to their incom-
patibility with Ethernet and due to their limitations against
using the IP stack in order to maintain a high performance.
With respect to the cluster environment, Gigabit Ether-

net suffers from an order-of-magnitude performance penalty
when compared to networks such as Quadrics and InfiniBand.
In our previous work [14, 13, 6], we had demonstrated the ca-
pabilities of the basic 10GigE adapters in bridging this gap. In
this paper, we take the next step by demonstrating the capabil-
ities of the Chelsio T110 10GigE adapter with TCP Offload
Engine (TOE). We present performance evaluations in three
broad categories: (i) detailed micro-benchmark performance
evaluation at the sockets layer, (ii) performance evaluation of
the Message Passing Interface (MPI) [19] stack atop the sock-
ets interface, and (iii) application-level evaluation using the
Apache web server [1]. Our experimental results demonstrate

1Per-port costs for 10GigE have dropped nearly ten-fold in two years.
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Figure 1. TCP Offload Engines

latency as low as 8.9 µs and throughput of nearly 7.6 Gbps
for these adapters. Further, we see an order-of-magnitude im-
provement in the performance of the Apache web server while
utilizing the TOE as compared to a 10GigE adapter without
TOE.

2 Background
In this section, we briefly discuss the TOE architecture and

provide an overview of the Chelsio T110 10GigE adapter.

2.1 Overview of TCP Offload Engines (TOEs)

The processing of traditional protocols such as TCP/IP and
UDP/IP is accomplished by software running on the central
processor, CPU or microprocessor, of the server. As net-
work connections scale beyond GigE speeds, the CPU be-
comes burdened with the large amount of protocol processing
required. Resource-intensive memory copies, checksum com-
putation, interrupts, and reassembling of out-of-order packets
put a tremendous amount of load on the host CPU. In high-
speed networks, the CPU has to dedicate more processing to
handle the network traffic than to the applications it is run-
ning. TCP Offload Engines (TOEs) are emerging as a solution
to limit the processing required by CPUs for networking.

The basic idea of a TOE is to offload the processing of pro-
tocols from the host processor to the hardware on the adapter
or in the system (Figure 1). A TOE can be implemented with
a network processor and firmware, specialized ASICs, or a
combination of both. Most TOE implementations available
in the market concentrate on offloading the TCP and IP pro-
cessing, while a few of them focus on other protocols such as
UDP/IP.

As a precursor to complete protocol offloading, some op-
erating systems started incorporating support for features to
offload some compute-intensive features from the host to the
underlying adapter, e.g., TCP/UDP and IP checksum offload.
But as Ethernet speeds increased beyond 100 Mbps, the need
for further protocol processing offload became a clear require-
ment. Some GigE adapters complemented this requirement
by offloading TCP/IP and UDP/IP segmentation or even the
whole protocol stack onto the network adapter [15, 11].

2.2 Chelsio 10-Gigabit Ethernet TOE

The Chelsio T110 is a PCI-X network adapter capable of
supporting full TCP/IP offloading from a host system at line
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Figure 2. Chelsio T110 Adapter Architecture

speeds of 10 Gbps. The adapter consists of multiple compo-
nents: the Terminator which provides the basis for offloading,
separate memory systems each designed for holding particu-
lar types of data, and a MAC and XPAC Optical Transceiver
for physically transferring data over the line. An overview of
the T110’s architecture can be seen in Figure 2.
Context (CM) and Packet (PM) memory are available on-

board as well as a 64 KB EEPROM. A 4.5 MB TCAM is
used to store a Layer 3 routing table and can filter out in-
valid segments for non-offloaded connections. The T110 is
a Terminator ASIC, which is the core of the offload engine,
capable of handling 64,000 connections at once, with a setup
and tear-down rate of about 3 million connections per second.
Memory Layout: Two types of on-board memory are avail-

able to the Terminator. 256 MB of EFF FCRAM Context
Memory stores TCP state information for each offloaded and
protected non-offloaded connection as well as a Layer 3 rout-
ing table and its associated structures. Each connection uses
128 bytes of memory to store state information in a TCP Con-
trol Block. For payload (packets), standard ECC SDRAM
(PC2700) can be used, ranging from 128 MB to 4 GB.
Terminator Core: The Terminator sits between a systems

host and its Ethernet interface. When offloading a TCP/IP
connection, it can handle such tasks as connection manage-
ment, checksums, route lookup from the TCAM, congestion
control, and most other TCP/IP processing. When offload-
ing is not desired, a connection can be tunneled directly to
the host’s TCP/IP stack. In most cases, the PCI-X interface
is used to send both data and control messages between the
host, but an SPI-4.2 interface can be used to pass data to and
from a network processor (NPU) for further processing.

3 Interfacing with the TOE
Since the Linux kernel does not currently support TCP

Offload Engines (TOEs), there are various approaches re-
searchers have taken in order to allow applications to inter-
face with TOEs. The two predominant approaches are High
Performance Sockets (HPS) [21, 17, 18, 7, 8, 5, 16] and TCP
Stack Override. The Chelsio T110 adapter uses the latter ap-
proach.
In this approach, the kernel-based sockets layer is retained

and used by the applications. However, the TCP/IP stack is
overridden, and the data is pushed directly to the offloaded
protocol stack, bypassing the host TCP/IP stack implementa-
tion. One of Chelsio’s goals in constructing a TOE was to
keep it from being too invasive to the current structure of the
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system. By adding kernel hooks inside the TCP/IP stack and
avoiding actual code changes, the current TCP/IP stack re-
mains usable for all other network interfaces, including loop-
back.

The architecture used by Chelsio essentially has two soft-
ware components: the TCP Offload Module and the Offload
driver.

TCP Offload Module: As mentioned earlier, the Linux op-
erating system lacks support for TOE devices. Chelsio pro-
vides a framework of a TCP offload module (TOM) and a thin
layer known as the toedev which decides whether a connec-
tion needs to be handed over to the TOM or to the traditional
host-based TCP/IP stack. The TOM can be thought of as the
upper layer of the TOE stack. It is responsible for implement-
ing portions of TCP processing that cannot be done on the
TOE (e.g., TCP TIME WAIT processing). The state of all of-
floaded connections is also maintained by the TOM. Not all of
the Linux network API calls (e.g., tcp sendmsg, tcp recvmsg)
are compatible with offloading to the TOE. Such a require-
ment would result in extensive changes in the TCP/IP stack.
To avoid this, the TOM implements its own subset of the
transport layer API. TCP connections that are offloaded have
certain function pointers redirected to the TOM’s functions.
Thus, non-offloaded connections can continue through the
network stack normally.

Offload Driver: The offload driver is the lower layer of the
TOE stack. It is directly responsible for manipulating the Ter-
minator and its associated resources. TOEs have a many-to-
one relationship with a TOM. A TOM can support multiple
TOEs as long as it provides all functionality required by each.
Each TOE can only be assigned one TOM. More than one
driver may be associated with a single TOE device. If a TOE
wishes to act as a normal Ethernet device (capable of only
inputting/outputting Layer 2 level packets), a separate device
driver may be required.

4 Experimental Evaluation
In this section, we evaluate the performance achieved by

the Chelsio T110 10GigE adapter with TOE. In Section 4.1,
we perform evaluations on the native sockets layer; in Sec-
tion 4.2, we perform evaluations of the Message Passing Inter-
face (MPI) stack atop the sockets interface; and in Section 4.3,
we evaluate the Apache web server as an end application.

We used two clusters for the experimental evaluation. Clus-
ter 1 consists of two Opteron 248 nodes, each with a 2.2-
GHz CPU along with 1 GB of 400-MHz DDR SDRAM and
1 MB of L2-Cache. These nodes are connected back-to-back
with Chelsio T110 10GigE adapters with TOEs. Cluster 2
consists of four Opteron 846 nodes, each with four 2.0-GHz
CPUs (quad systems) along with 4 GB of 333-MHz DDR
SDRAM and 1 MB of L2-Cache. It is connected with similar
network adapters (Chelsio T110 10GigE-based TOEs) but via
a 12-port Fujitsu XG1200 10GigE switch (with a latency of
approximately 450 ns and capable of up to 240 Gbps of ag-
gregate throughput). The experiments on both the clusters
were performed with the SuSE Linux distribution installed

with kernel.org kernel 2.6.6 (patched with Chelsio TCP Of-
fload modules). In general, we have used Cluster 1 for all
experiments requiring only two nodes and Cluster 2 for all
experiments requiring more nodes. We will be pointing out
the cluster used for each experiment throughout this section.
For optimizing the performance of the network adapters, we

have modified several settings on the hardware as well as the
software systems, e.g., (i) increased PCI burst size to 2 KB,
(ii) increased send and receive socket buffer sizes to 512 KB
each, and (iii) increased window size to 10 MB. Detailed de-
scriptions about these optimizations and their impacts can be
found in our previous work [14, 13, 6].

4.1 Sockets-level Evaluation

In this section, we evaluate the performance of the native
sockets layer atop the TOEs as compared to the native host-
based TCP/IP stack. We perform micro-benchmark level eval-
uations in two sub-categories. First, we perform evaluations
based on a single connection measuring the point-to-point la-
tency and uni-directional throughput together with the CPU
utilization. Second, we perform evaluations based on multi-
ple connections using the multi-stream, hot-spot, fan-in and
fan-out tests.

4.1.1 Single Connection Micro-Benchmarks

Figures 3 and 4 show the basic single-stream performance
of the 10GigE TOE as compared to the traditional host-based
TCP/IP stack. All experiments in this section have been per-
formed on Cluster 1 (described in Section 4).
Figure 3a shows that the TCP Offload Engines (TOE) can

achieve a point-to-point latency of about 8.9 µs as com-
pared to the 10.37 µs achievable by the host-based TCP/IP
stack (non-TOE); an improvement of about 14.2%. Figure 3b
shows the uni-directional throughput achieved by the TOE as
compared to the non-TOE. As shown in the figure, the TOE
achieves a throughput of up to 7.6 Gbps as compared to the
5 Gbps achievable by the non-TOE stack (improvement of
about 52%). Throughput results presented throughout this pa-
per refer to the application data transferred per second and do
not include the TCP/IP/Ethernet headers.
Increasing the MTU size of the network adapter to 9 KB

(Jumbo frames) improves the performance of the non-TOE
stack to 7.2 Gbps (Figure 4b). There is no additional im-
provement for the TOE due to the way it handles the message
transmission. For the TOE, the device driver hands over large
message chunks (16 KB) to be sent out. The actual segmen-
tation of the message chunk to MTU-sized frames is carried
out by the network adapter. Thus, the TOE shields the host
from the overheads associated with smaller MTU sizes. On
the other hand, for the host-based TCP/IP stack (non-TOE),
an MTU of 1500 bytes results in more segments and corre-
spondingly more interrupts to be handled for every message
causing a lower performance as compared to Jumbo frames.
We also show the CPU utilization for the different stacks.

For TOE, the CPU remains close to 35% for large messages.
However, for the non-TOE, the CPU utilization increases

3
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Figure 3. Sockets-level Micro-Benchmarks (MTU 1500): (a) Latency and (b) Throughput
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Figure 4. Sockets-level Micro-Benchmarks (MTU 9000): (a) Latency and (b) Throughput

slightly on using jumbo frames. To understand this behav-
ior, we reiterate on the implementation of these stacks. When
the application calls a write() call, the host CPU copies the
data into the socket buffer. If there is no space in the socket
buffer, the CPU waits for the network adapter to complete
sending out the existing data and creating space for the new
data to be copied. Once the data is copied, the underlying
TCP/IP stack handles the actual data transmission. Now, if
the network adapter pushes the data out faster, space is cre-
ated in the socket buffer faster and the host CPU spends a
larger fraction of its time in copying data to the socket buffer
than waiting for space to be created in the socket buffer. Thus,
in general when the performance increases, we expect the host
CPU to be spending a larger fraction of time copying data and
burning CPU cycles. However, the usage of Jumbo frames re-
duces the CPU overhead for the host-based TCP/IP stack due
to reduced number of interrupts. With these two conditions,
on the whole, we see about a 10% increase in the CPU usage
with Jumbo frames.

4.1.2 Multiple Connection Micro-Benchmarks

Here we evaluate the TOE and non-TOE stacks with micro-
benchmarks utilizing multiple simultaneous connections. For
all experiments in this section, we utilize an MTU of 1500
bytes in order to stick to the standard Ethernet frame size.

Multi-stream Throughput Test: Figure 5a shows the ag-
gregate throughput achieved by two nodes (in Cluster 1) per-
forming multiple instances of uni-directional throughput tests.
We see that the TOE achieves a throughput of 7.1 to 7.6 Gbps.

The non-TOE stack gets saturated at about 4.9 Gbps. These
results are similar to the single stream results; thus using mul-
tiple simultaneous streams to transfer data does not seem to
make much difference.
Hot-Spot Latency Test: Figure 5b shows the impact of mul-

tiple connections on small message transactions. In this ex-
periment, a number of client nodes perform a point-to-point
latency test with the same server forming a hot-spot on the
server. We performed this experiment on Cluster 2 with one
node acting as a server node and each of the other three
4-processor nodes hosting totally 12 client processes. The
clients are alloted in a cyclic manner, so 3 clients refers to
1 client on each node, 6 clients refers to 2 clients on each
node and so on. As seen in the figure, both the non-TOE
as well as the TOE stacks show similar scalability with in-
creasing number of clients, i.e., the performance difference
seen with just one client continues with increasing number
of clients. This shows that the look-up time for connection
related data-structures is performed efficiently enough on the
TOE and does not form a significant bottleneck.
Fan-out and Fan-in Tests: With the hot-spot test, we

have shown that the lookup time for connection related data-
structures is quite efficient on the TOE. However, the hot-spot
test does not stress the other resources on the network adapter
such as management of memory regions for buffering data
during transmission and reception. In order to stress such
resources, we have designed two other tests namely fan-out
and fan-in. In both these tests, one server process carries out
uni-directional throughput tests simultaneously with a num-
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Figure 5. (a) Multi-stream Throughput and (b) Hot-Spot Latency
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Figure 6. (a) Fan-out Test and (b) Fan-in Test

ber of client threads (performed on Cluster 2). The difference
being that in a fan-out test the server pushes data to the dif-
ferent clients (stressing the transmission path on the network
adapter) and in a fan-in test the clients push data to the server
process (stressing the receive path on the network adapter).
Figure 6 shows the performance of the TOE stack as com-
pared to the non-TOE stack for both these tests. As seen in
the figure, the performance for both the fan-out and the fan-
in tests is quite consistent with increasing number of clients
suggesting an efficient transmission and receive path imple-
mentation.

4.2 MPI-level Evaluation

In this section, we evaluate the Message Passing Interface
(MPI) stack written using the sockets interface on the TOE
and non-TOE stacks. MPI is considered the de facto stan-
dard programming model for scientific applications; thus this
evaluation would allow us to understand the implications of
the TOE stack for such applications. We used the LAM [10]
implementation of MPI for this evaluation.

Figure 7 illustrates the point-to-point latency and uni-
directional throughput achievable with the TOE and non-TOE
stacks for an MTU size of 1500 bytes. As shown in Figure 7a,
MPI over the TOE stack achieves a latency of about 10.2 µs
compared to the 12.2 µs latency achieved by the non-TOE
stack. The increased point-to-point latency of the MPI stack
as compared to that of the native sockets layer (8.9 µs) is
attributed to the overhead of the MPI implementation. Fig-
ure 7b shows the uni-directional throughput achieved by the

two stacks. TOE achieves a throughput of about 6.9 Gbps as
compared to the 3.1 Gbps achieved by the non-TOE stack.

4.3 Application-level Evaluation

In this section, we evaluate the performance of the stacks
using a real application, namely the Apache web server. One
node is used as a web-server and three nodes to host up to 24
client processes.
In the first experiment (Figure 8a), we use a simulated trace

consisting of only one file. Evaluating the stacks with various
sizes for this file lets us understand their performance with-
out being diluted by other system parameters. As seen in the
figure, the TOE achieves a significantly better performance as
compared to the non-TOE especially for large files. In the
next experiment (Figure 8b), we build a trace based on the
popular Zipf [22] file request distribution. The Zipf distribu-
tion states that the probability of requesting the Ith most pop-
ular document is inversely proportional to a constant power α

of I. α denotes the temporal locality in the trace (close to one
represents a high temporal locality). We used the World-Cup
trace [3] to associate file sizes with the Zipf pattern; like sev-
eral other traces, this trace associates small files to be the most
popular ones while larger files tend to be less popular. Thus,
when the α value is very close to one, a lot of small files
tend to be accessed and when the α value becomes smaller,
the requests are more spread out to the larger files as well.
Accordingly, the percentage improvement in performance for
the TOE seems to be lesser for high α values as compared to
small α values.
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Figure 7. MPI-level Micro-Benchmarks (MTU 1500): (a) Latency and (b) Throughput
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Figure 8. Apache Web-Server Performance: (a) Single File Traces and (b) Zipf Traces

5 Concluding Remarks
In this paper, we presented a detailed performance evalua-

tion of the Chelsio T110 10GigE adapter with TOE. We have
performed evaluations in three categories: (i) detailed micro-
benchmark level evaluation of the native sockets layer, (ii)
evaluation of the Message Passing Interface (MPI) stack over
the sockets interface, and (iii) application-level evaluation of
the Apache web server. These experimental evaluations pro-
vide several useful insights into the effectiveness of the TOE
stack in scientific as well as commercial domains.
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