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Abstract

Considerable research has focused on the problem of
scheduling dynamically arriving independent parallel jobs
on a given set of resources. There has also been some recent
work in the direction of providing differentiated service to
different classes of jobs using statically or dynamically cal-
culated priorities assigned to the jobs. However, the poten-
tial and usability of a Quality of Service based scheme has
not been much studied. In this paper, we extend a previously
proposed scheme (QoPS) to provide Quality of Service to
submitted jobs; we propose extensions to the algorithm in
multiple aspects: (i) studying the effect of user tolerance to-
wards missed deadlines on the overall profit attainable by
the supercomputer center, (ii) providing artificial slack to
some jobs to maximize the overall profit and (iii) utilizing
a Kill-and-Restart mechanism to further improve the profit
attainable.

1 Introduction

A lot of research has focused on the problem of scheduling
dynamically arriving independent parallel jobs on a given
set of resources. The metrics evaluated include system
metrics such as the system utilization, throughput [2, 5],
etc., and user metrics such as the turnaround time, wait
time [3, 6, 9, 10, 14, 15], etc. Recently, there has been some
work in the direction of providing differentiated service to
different jobs. The schemes that provide differentiation can
be classified into two broad categories.

The first category comprises of approaches that provide
“best effort” relative prioritization for individual jobs or dif-
ferent classes of jobs. Such prioritization may either be as-
signed statically to the jobs (e.g., jobs from a group of users
might be given a higher priority compared to others), or may
dynamically vary during the queue time of the job (e.g., if
a job has been waiting in the queue for a long time, its pri-
ority is increased). The NERSC computing center [1] is an
example environment which uses such a scheduler. NERSC
offers different queues which have different costs and prior-
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ities: in addition to the normal priority queue, a high prior-
ity queue which double the usual charge, and a low priority
queue with half the usual charge. Jobs in the high priority
queue get priority over the normal queue, until some thresh-
old on the number of serviced jobs is exceeded.

The second category of schemes to provide differentiated
service comprises of those which guarantee a certain Qual-
ity of Service (QoS) in the turnaround time for the submit-
ted job. With such schemes, the users have an option of
specifying the deadline they need with each submitted job.
We are unaware of any production job schedulers that im-
plement such a scheme, but our recent work QoPS [7] is an
example of such a scheme. QoPS implements an admission
mechanism for incoming jobs, attempting various schedule
rearrangements of previously admitted jobs to make a deci-
sion on whether the requested deadline is achievable with-
out violating the deadlines provided for the other admitted
jobs. If achievable, QoPS admits the job and guarantees the
requested deadline to the job.

The overall issue of providing QoS for job scheduling can
be viewed in terms of two related aspects:

e Cost Model for Jobs: The quicker the sought response
time, the larger should be the charge. The charge will
generally be a function of many factors, including the
resources used and the load on the system.

e Job Scheduling with Response-time Guarantees: If
jobs are charged differently depending on the response
time demanded by the user, the system must provide
guarantees in the completion time.

The QoPS scheduling algorithm presented at last year’s
Job Scheduling Workshop addressed only the second as-
pect, i.e., how to implement admission control for deadline-
based scheduling of parallel jobs, effectively exploiting the
deadline flexibility among previously admitted jobs in or-
der to maximize system utilization without violating dead-
lines of any admitted jobs. But a scheduling mechanism
like QoPS, that implements admission control and provides
deadline guarantees to admitted jobs, will be ineffective in
providing effective differentiated services to users unless a
suitable charging model is imposed. If the charge differen-
tial for provision of rapid versus slow turn-around for jobs



is relatively small, all users might submit jobs demanding
very tight deadlines, so that no effective differentiation will
be achieved between urgent and non-urgent jobs submitted
to the system. In this paper, we propose extensions to the
QoPS algorithm, that are motivated by considerations with
respect to the job charging model. We perform evaluations
to characterize trends with respect to a QoS cost-component
and a resource-usage cost component. The issue of how to
effectively combine the QoS component and resource-usage
component to form the overall charging function is a diffi-
cult and open problem that is beyond the scope of this paper.
Here, we study two separate cost components for QoS and
resource usage (as explained later in Section 3).

The enhancements to QoS-based scheduling that we
present in this paper are summarized below:

e Feedback on earliest feasible completion of unadmit-
ted jobs: In our previous trace-based evaluation of
QoPS, we associated deadlines with each job, and only
admitted jobs whose deadlines could be met without
violating any prior commitments. Thus, if the re-
quested deadline of a job was not satisfiable, it was
simply dropped and not further considered for schedul-
ing. In practice, it is likely that in some circumstances
users would be willing to accept a slower response
time than their original request, while in other situa-
tions they would not - they may choose to submit their
job at some other center or choose to submit a differ-
ent job instead. With a basic QoS-based scheduling
scheme like QoPS, that implements admission control
and deadline guarantees, users of unadmitted jobs with
flexibility may need to iteratively resubmit their jobs
with looser and looser deadlines until acceptance (or
abandonment if the achievable deadline was unaccept-
ably late). We develop a mechanism in QoPS to pro-
vide users of inadmissible jobs with feedback on the
earliest guaranteeable deadline for the job.

e Modeling User Tolerance: Given the feedback mecha-
nism described above, it is feasible to perform trace-
based evaluations of QoS-based scheduling, where
some jobs that cannot meet their originally requested
deadline are nevertheless re-submitted with a more re-
laxed deadline. We performed simulations under dif-
ferent assumptions of user tolerance with respect to
deadlines. We parameterize our studies with a Toler-
ance Factor (TF), that specifies the relative increase in
response-time that a user is willing to tolerate. The ef-
fect on the QoS and resource components of cost are
studied as a function of TF. A surprising result is that
the total QoS component of revenue of a center does
not monotonically increase with increasing tolerance
on the part of the user.

e Incorporation of Artificial Slack: Although giving a
job its best possible deadline would maximize the rev-
enue achievable from that job, this might result in a
tight schedule for the rest of the jobs causing many

later arriving (and potentially more urgent jobs) to be
dropped. On the other hand, providing an artificial
slack to some of the jobs (which do not provide too
much revenue) might result in later arriving urgent jobs
to be admitted, causing an overall increase in the su-
percomputer center revenue. We study the effect of
different degrees of artificial slack for various assumed
tolerance factors.

e Enabling Kill-and-Restart: Some supercomputer cen-
ters implement mechanisms for Kill-and-Restart,
where a running job can be killed to enable a differ-
ent job to be started. Later, the killed job is re-started,
but from scratch. We evaluate whether such a mech-
anism can be utilized to improve the overall profit in
the supercomputer centers in the QoS-based schedul-
ing context.

The remaining part of the paper is organized as follows.
In Section 2, we provide some brief background about this
work and other related work. Section 3 deals with the cur-
rent cost model used by current supercomputer centers, our
proposed cost model and its various components. In Sec-
tion 4, we discuss the feedback based QoPS algorithm de-
veloped to provide the best possible deadline achievable by
the job. Section 5 deals with the experimental setup we used
in our simulation test-bed. We describe the impacts of user-
tolerance and various approaches to negate the negative im-
pacts in Sections 6, 7 and 8 and present some concluding
remarks and possible future work in Section 9.

2 Background and Related Work

In this section, we provide some background informa-
tion about this and other related work. In particular, we
discuss our previous work, the QoPS scheduling algo-
rithm (Quality of Service for Parallel Job Scheduling) [7].
Two other related scheduling algorithms, namely the Slack-
Based scheduler by Feitelson et al., and the Real-Time
scheduler by Ramamritham et al., are discussed in [7, 8]
and omitted here due to space constraints.

2.1 QoPSAlgorithm

The QoPS algorithm, standing for QoS for Parallel Job
Scheduling, provides Quality of Service based schedul-
ing for independent parallel jobs. For dynamic systems
with more than one processor, a polynomial-time optimal
scheduling algorithm does not exist [12, 13, 11]. The QoPS
scheduling algorithm uses a heuristic approach to find fea-
sible schedules for the jobs.

The scheduler considers a system where each job arrives
with a corresponding completion time deadline require-
ment. When each job arrives, the QoPS scheduler attempts
to find a feasible schedule for the newly arrived job. A
schedule is said to be feasible if it does not violate the
deadline constraint for any job in the schedule, including
the newly arrived job. However, it does allow the flexibil-



ity of reordering the jobs in any order as long as the resul-
tant schedule remains feasible. Figure 1 presents the pseudo
code for the QoPS scheduling algorithm.

The QoPS scheduler allows flexibility in the order in
which jobs are considered for scheduling. The amount of
flexibility offered is determined by the K-factor denoted in
the pseudo code illustrated by Figure 1. Suppose jobs J;,
Jo, ..., Iy are the jobs which are currently in the schedule
but not yet started. When a new job arrives, the scheduler
considers log» (V) points in time where its insertion into the
schedule is attempted, corresponding to the reserved start-
times of jobs {0, N/2, 3N/4, ... } respectively, where N is the
number of jobs currently in the schedule. Considering the
first attempted insertion point (corresponding to job 0), we
start by removing all the jobs from the schedule and placing
them in a temporary list (TL). The newly arrived job is also
added to TL. TL is then sorted according to some heuristic
function (such as laxity first, earliest deadline first, etc). Fi-
nally, we try to place the jobs in the reservation schedule in
that sorted order. For the second choice of insertion point,
we do not start with an empty schedule. Instead, we only
remove the latter N/2 jobs in the original schedule, chosen
in scheduled start time order, place them in the temporary
list TL, and sort this temporary list (based on the heuristic
function). We then create a reservation for the newly arrived
job, and finally generate reservations for the remaining N/2
jobs in the order specified by TL. For the third choice of
insertion point, we only remove the last N/4 of the reserved
jobs from the reservation schedule. Thus, at most loga (V)
alternative insertion points are considered when a new job
arrives.

For each insertion point considered for a newly arrived job,
the algorithm tries to schedule the jobs based on the order-
ing in the temporary list TL. If a job misses its deadline, this
job is considered as a critical job and is pushed to the head
of the list (thus altering the order in TL). This altering of
the temporary schedule is allowed at most K’ times; after
this the scheduler decides that the new job cannot be sched-
uled while maintaining the deadline for all of the already
accepted jobs and rejects it. This results in a time complex-
ity of O(KNlog N) for the QoPS scheduling algorithm.

3 Cost Model for Supercomputer Centers

In this section, we discuss the charging model in cur-
rent supercomputer centers. We extend this cost model
to incorporate the QoS capabilities of the QoPS scheduler
and present the various components associated with such a
charging model.

The charging model in current supercomputer centers is
mainly based on the resources utilized by the submitted
jobs, and is unrelated to the responsiveness of the system.
Thus, a 16-processor job that ran for one hour would be
charged for 16 CPU-hours irrespective of whether the turn-
around time were one hour or one day. Further, on most sys-
tems, even if a user is willing to pay more to get a quicker

Checking the admissibility of Job J into an existing
profile of size N:
Original_QoPS(Job J):

A. For each time dot tsin position (0, N/2, 3N/4, 7N/8, ...)
starting from current time

1. Remove al the waiting jobs from position tsto the
end of the profile and place them into a Temporary

List including the new job J
2. Sort the Temporary List using the heuristic function
3. Set the Violation Count = 0
4. For each job Jc in the Temporary List
i. Add job Jcinto existing schedule
ii. if(thereis adeadline violation for job Jc at slot T) then
a Violation Count = Violation Count + 1

b. If Violation Count > K-FACTOR break
c. Remove al the jobs from the schedule of position
mid(T + ts) to position T and add them into
Temporary List
d. Sort Temporary List again using the same heuristic
e. Add thefailed job Jc into the top of Temporary List
to make sure it will be scheduled at mid (T + ts)
End if
End for
5. If (Violation Count > K-FACTOR) then
return FAILED. // Job rejected
End if
End for

B. If (Violation Count <= K-FACTOR) then
return SUCCESS. // Job Accepted
End if

Figure 1. The QoPS Scheduler: Pseudo Code



turn-around on an urgent job, there is no mechanism to fa-
cilitate that. As mentioned earlier, some systems such as
NERSC [1] offer the users some choice by providing three
queues: a normal queue, a high priority queue (with dou-
ble the usual charge) and a low priority queue (with half
the usual charge) but don’t give users any guarantee on the
response time provided. However, the idea of charging the
user based on the service or priority assigned to them is still
relevant and critical to the practical applicability of a QoS
based scheduler.

In this paper, we break the total charge of a submitted job
into different components: (i) Resource charge and (ii) QoS
charge.

The resource charge is similar to that used by current su-
percomputer centers and is based on the resources requested
by the job. In general, this would depend on the various re-
sources provided by the supercomputer center, e.g., CPU,
memory, disk space, etc. In our environment, we only con-
sider the CPU resource, i.e., the resource charge for a job
would be equal to the product of the processors requested
by the job and the time for which the job runs. This idea
can easily be extended to other resources too.

The QoS charge on the other hand depends on the urgency
of the job. For example, if two similar jobs are submitted
where one of them is urgent while the other is not urgent, the
resource charge for both the jobs would be similar, whereas
the QoS charge would be much different. Further, if two
different jobs request for similar urgencies, they could still
have different QoS charges based on the “difficulty” of the
supercomputer center in meeting the requested urgency.

In this paper we use the slowdown of the job as the base
metric for deciding the QoS charge for the job. The “diffi-
culty” of the supercomputer center in meeting the requested
deadline depends on two components: (i) the current load
on the system (the number of queued processor seconds)
and (ii) the average slowdown of the category to which the
job belongs. For example, typically short-wide jobs (ones
which use a lot of processors but run for a small amount of
time) have huge slowdown values while long-narrow jobs
have lesser slowdown values. Thus, we categorize short-
wide jobs to be more “difficult” to schedule within the re-
quested slowdown as compared to long-narrow jobs.

We use the following equations for the resource and QoS
charges for the jobs:

ResourceCharge = Processors x Runtime

_ CategorySlowdown
QoSCharge " RequestedSlowdown

4 Feedback based QoPS Algorithm

As discussed earlier, in our previous QoPS algorithm we
associated deadlines with each job and only admitted jobs
whose deadlines could be met without violating any prior
commitments. Thus, a job whose requested deadline can
not be satisfied is dropped and not considered further for
scheduling. In practice, however, users might not be so

strict about their requested deadline. Ideally, the user would
have liked to have it done by the requested deadline. If this
is not possible, a different and less stringent deadline might
also be fine with the user. However, by blindly dropping the
job, such possibilities had not been considered previously.
With the basic QoPS scheme, users of unadmitted jobs with
flexibility may need to iteratively resubmit their jobs with
looser and looser deadlines.

In this section, we discuss the provision of providing a
feedback mechanism with the QoPS based algorithm which
lets the users know the best possible deadline the system can
provide to their job. The basic idea of the scheme is to first
try to provide the requested deadline to the submitted job. If
the system is able to admit the job for this requested dead-
line, it just accepts the job. On the other hand, if the system
fails to admit the job right away, the algorithm tries a fixed
number of other possible deadlines (logarithmically refin-
ing the search for the best deadline). Based on these trials,
it provides the user with what it thinks is the best possible
deadline for the job that the system can provide. Figure 2
illustrates the pseudo code for this algorithm.

Checking the admissibility of ajob J into an existing
profile of size N:

Updated_QoPS(Job J):
A. Set status = Original_QoPS(Job J)
B. If (status= SUCCESS)

1. Return requested deadline of Job J
Else

1. Set StartPos = Requested deadline for Job J
2. Set deadline = INFINITE and schedule
3. Set EndPos = Completion Time of Job Jin the
above schedule
4. Loop through the following RETRY_COUNT times
i. Set deadline of Job J= (StartPos + EndPos) /2
ii. Set status = Origina_QoPS(Job J)
iii. If (status = SUCCESS) then
Set EndPos = (StartPos + EndPos)/ 2
else
Set StartPos = (StartPos + EndPos) /2
End if
End Loop
5. Return deadline of Job Jin the final schedule

Figure 2. The Feedback based QoPS Sched-
uler: Pseudo Code

5 Experimental Setup

Job Scheduling strategies are usually evaluated using real
workload traces, such as those available at the Parallel
Workload Archive [4]. However, real job traces from su-
percomputer centers have no deadline information. After
studying the existing approaches for deadline inclusion in
real traces, we decided to go ahead with the approach we



had previously used in [7].

We start with an existing trace from Feitelson’s archive
(a 5000-job subset of the CTC trace). Using the comple-
tion time of the EASY backfill output, we assign deadlines
for the different jobs. A deadline stringency factor deter-
mines how tight the deadline is to be set, compared to the
EASY backfill schedule. The deadline for the job is calcu-
lated using the formula: Deadline = max (Job’s Runtime,
(1-S)*(EASY Response time)). It can be seen that for a
stringency factor of “0’, the deadline would be the same as
the completion time generated by the EASY backfill sched-
ule. As ‘S’ is increased, the deadlines become less flexible
making it harder to find a schedule.

Also, we used the duplication approach for varying the
load on the supercomputer center (humber of jobs submit-
ted). This is done by duplicating randomly selected jobs in
the trace. For example, we start with a trace and call this the
base trace (load = 1.0). To generate a new trace with load =
1.2, we randomly pick 20% of the jobs in the base trace and
introduce extra duplicate jobs at the same points in the trace.
The deadline for the newly introduced job is retained as the
original job’s deadline (from the EASY backfill schedule).

As mentioned in Section 3, the QoS charge of the jobs is
based on the slowdown of the category of the jobs to which
this job belongs, i.e., short-wide jobs have a high category-
slowdown and hence would have a higher QoS charge for
a requested slowdown as compared to long-narrow jobs
which have a low category-slowdown.

We classify different categories for the jobs by using two
parameters: the runtime of the job and the number of pro-
cessors requested by the job. In particular, we spilt up
both the time and processors into sixteen different cate-
gories ranging from short-narrow jobs to long-wide jobs.
We run the EASY backfill for different loads with several
stringency factors and calculate the corresponding category
slowdown for the various types of jobs.

6 Modeling User Tolerance

As discussed earlier, when a new job is submitted, the
Feedback based QoPS scheme (FQoPS) tries to find a
schedule without violating the deadline constraints of ei-
ther the new job or the existing jobs in the schedule. If it
is able to satisfy the deadline, it accepts the job. However,
if it is unable to satisfy the deadline, it doesn’t drop it in-
stantaneously. Instead, it finds the best possible deadline it
can provide to the job and returns it to the user. Then it is
in the user’s discretion to accept or reject the offered dead-
line. In the modeling of our scheme, we tried to emulate the
most rational behavior of the users. For instance, we emu-
late user tolerance in terms of the factor of extension in the
requested deadline that the user might be willing to accept
in case the scheme fails to accept the job within the initially
requested deadline. We quantify this factor by a parameter
named Tolerance Factor (TF). This parameter is completely
based on the user characteristics. In our simulations, we

show the impact of such tolerance on the part of the user on
the overall profits attainable by the supercomputer center by
choosing different assumed values for this paramter.

Whenever the FQoPS scheme fails to schedule a job within
the user requested deadline, it finds a schedule at the earliest
possible time. If the earliest possible deadline the scheme
can provide is within the user tolerance given by (TF x Re-
quested Deadline), we assume that the user would accept
the provided deadline. Otherwise, we assume that the user
would not accept the provided deadline.

6.1 Impact of User Tolerance

In our first set of simulation experiments, we study the be-
havior of the FQoOPS scheme with respect to admittance ca-
pacity, resource charge and QoS charge metrics as a func-
tion of TF. As it is hard to predict or simulate the user char-
acteristics, we use the TF in two different ways - Fixed TF
and Random TF. For Fixed TF, we assume that all users
have the same amount of tolerance (equal TF for all jobs).
These experiments try to show critical insights into the real
impact of the user tolerance without being diluted by the
difference in the tolerance amongst various users. For Ran-
dom TF, we add some degree of randomness by arbitrarily
choosing the effective TF value between 0 and 2 times the
TF value (defined as a simulation parameter). These exper-
iments try to provide the real life environment where differ-
ent users have different tolerance values. The TF defined as
the simulation parameter shows the general characteristics
of the users in this case, e.g., a high value of TF would cre-
ate a scenario where the users are more tolerant while a low
value of TF would create a scenario where the users are less
tolerant.

Figure 3a shows the variation in the number of jobs ac-
cepted with respect to TF. We can see that fewer jobs are
accepted as the TF increases initially; after that the number
of accepted jobs increases monotonically and can reach to
100% acceptance for even higher TF. The reason for the ini-
tial downward trend is attributed to the acceptance of many
heavy jobs (w.r.t. processor seconds). The same TF value
would provide a higher absolute tolerance for larger jobs
when compared to smaller jobs. When the absolute toler-
ance was less (for small TF values), earlier arriving small
jobs could use up the space in the schedule and force the
large job to be dropped. When the tolerance increases, the
large job can still be accepted due to the additional absolute
tolerance available. This however would mean that later ar-
riving smaller jobs would be dropped since the large job
would use up the space in the schedule. This hypothesis
is strengthened by the variation of the accepted Processor-
Seconds as shown in Figure 3b. As the TF value increases,
the overall accepted processor-seconds increase. When the
TF value becomes sufficiently large, however, the trend is
more intuitive with more and more jobs being accepted. We
have also analyzed the category-wise breakup of the number
of jobs and processor-seconds accepted for each category of
the jobs. The results for the same are in accordance with the
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previous analysis and can be found in [8].

We next look at the variation of the resource charge of the
system with TF (Figure 4). The resource charge increases
as the TF increases. This is pretty intuitive as the resource
charge is directly proportional to the accepted processor-
seconds.

Figure 5 shows the QoS Charge as a function of TF for
different loads. This figure shows a counter-intuitive result
of a monotonic drop in the QoS charge with user tolerance,
i.e., if the users are more tolerant, the supercomputer cen-
ter gets lesser profit from the jobs! This is attributed to the
per-job profit achieved with increasing user tolerance. With
an increase in the TF value, jobs which would have failed
in the original no-tolerance scheme are now accepted. Due
to this, later arriving jobs which would have been accepted
with the user requested deadline are unable to be admitted
with this deadline. However, due to the increased user tol-
erance, they are still admitted with a looser deadline, i.e.,
the later arriving jobs are still admitted, but for a lesser QoS
charge. This effect cascades for later arriving jobs causing
an overall decrease in the QoS charge the supercomputer
center can get.

7 Providing Artificial Slack

As discussed in Section 6, users are most of the times not
very strict in their requested deadlines. If the supercomputer
center is not able to meet their requested deadline, we try to
find the best possible deadline the center can provide and let
the user decide if this deadline is acceptable. However, as
we have seen, though the resource charge achieved by the
supercomputer center increases as the users become more
and more tolerant, the overall QoS charge falls.

Depending on the ratio of the QoS charge to resource
charge imposed by the supercomputer center, a high toler-
ance might provide a higher or lower overall profit. One
extreme is for the supercomputer center to have no explicit
charge for the QoS provided, in which case the center has
to do nothing; the tolerance of the users would automati-

cally improve the profit achievable by the center. The other
extreme is to charge the users only based on the QoS they
requested. In this case, the original QoPS algorithm would
perform the best, since its behavior would be equivalent to
that of no user tolerance (TF = 1.0). It is to be noted that
user tolerance is completely dependent on the user charac-
teristics and is not a parameter under the control of the su-
percomputer center. So, in the general case where the over-
all profit depends on both the QoS charge as well as the
resource charge, we need to come up with a different ap-
proach to try to negate the effect of the user tolerance to any
required degree.

In this section, we introduce the concept of an “Artificial
Slack” provided to jobs. If we are not able to accept a job
with the user requested deadline, providing the best possi-
ble deadline would maximize the revenue achievable from
that job. However, this might result in a tight schedule for
the rest of the jobs causing many later arriving (and poten-
tially more urgent) jobs to be dropped. Instead, we pro-
vide a certain artificial slack to such jobs and return an even
looser deadline to the user. If the user agrees to submit the
job with this deadline, the supercomputer center would gain
more flexibility to admit later arriving jobs. We model this
slack with an additional parameter called Slack Factor (SF).
The offered deadline to the user is given by (Arrival Time +
(Earliest possible deadline - Arrival Time) x SF).

We study different cost metrics with different slack (SF)
and tolerance factor (TF) values. It is worthy to note that the
value of the Slack Factor could be 1 or more (SF = 1 means
no slack). Also for any TF value less than SF, the scheme
behaves like our original QoPS, i.e. all the jobs whose ini-
tially requested deadline could not be met, are dropped im-
mediately. Further, in general, an increase in the value of
SF tends to negate user tolerance, i.e., increasing SF tends
to be equivalent to decreasing TF. We evaluate the metrics
for both moderate load (1.3) and high load (1.6).

Figure 6 shows the variation of the resource charge with
the Slack Factor (SF) for different Tolerance Factors. With



Resource Charge Vs Fixed TF

7.5e+08 I -

Load=1.3 —=— [P o
Load=1.6 — Ccs

o 7eros | -0 600

S 6e5et08| o

w S

8 /

S 6e+08 | |

(@]

0

0 ;

© 5.5e+08 |

5e+08 °

1 15 2 25
Fixed TF

3.5

Resource Charge

7.4e+08

Resource Charge Vs Random TF

7.2e+08 |

7e+08 |
6.8e+08 |
6.6e+08 |

6.4e+08 &~

6.2e+08 |

6e+08 r
5.8e+08 |
5.6e+08

Load=1.3 —=—
Load=1.6 —o—

1.5 2 25 3 35 4
Random TF

Figure 4. Resource Charge for different loads with Stringency Factor = 0.2: (a) Fixed Tolerance Factor
(TF) (b) Random Tolerance Factor (TF)

QoS Charge Vs Fixed TF

14 ‘ ‘ :
0000 " Load=1.3 —=—

120000 | L0ad=1.6 o

& 100000 [ o

= e

S 80000 | S
2

S 60000 |

40000 - o o o |

20000

1 15 2 25
Fixed TF

3.5

QoS Charge

QoS Charge Vs Random TF

110000
100000 r
90000 r
80000 r
70000 r
60000 r
50000 r

400095 5 o 5 0 o g

30000

%Q@Qzl.s S
Load=1.6 —o— 1

Oeee

1

1.5 2 25 3 35 4
Random TF

Figure 5. QoS Charge for different loads with Stringency Factor = 0.2 (a) Fixed Tolerance Factor (TF)

(b) Random Tolerance Factor (TF)

Resource Charge Vs SF

6.1e+08

TF=1.0
6e+08 E?'"T‘F:Q,_oq,,,e 77777
5.9e+08 & = - B}
,TF—30 e
5.8e+08 TE=10 e
5.7e+08 | S
5.6e+08 t
5.5e+08 |
5.4e+08
5.3e+08 |
5.2e+08 t
5.1e+08 |

Resource Charge

5e+0g E——=——i——=

3.5

Resource Charge

Resource Charge Vs SF

7.5e+08
7e+08
6.5e+08 |
6e+08

5.5e+08 |

5 TF=3.0 s

CTF=1.0 ==
TF:QZO """ S v

“FE=4.0 v

n
ol
n
5

5e+08
1

15 2 2.5 3 3.5 4

Figure 6. Resource Charge for different Slack Factors with Stringency Factor = 0.2: (a) For Load =

1.3 (b) Load = 1.6
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Load =1.6

increasing SF, again, larger jobs have a higher absolute
slack value. This lets more small jobs to be admitted by uti-
lizing this slack. The admittance of these small jobs, how-
ever, uses up the slack present in the schedule and forcing
later arriving larger jobs to be dropped. So, in general, in-
creasing SF has the inverse effect of increasing TF.

Figure 7 shows the variation of the QoS charge with the
Slack Factor (SF) for different Tolerance Factors. Again,
we see a similar effect as the previous graph: increasing
SF has the inverse effect of increasing TF, i.e., QoS charge
increases with increasing SF.

8 Kill and Restart

Some supercomputer centers support a kill-and-restart
mechanism - a running job can be killed and restarted as
a new job if no permanent files are modified during the run.
The model of 1/O for such jobs at the Ohio Supercomputer
Center is that all input files are first copied into a special
temporary directory created for the job, and all output is
written into files in that temporary directory during execu-
tion of the program; after successful completion of the pro-
gram, the output files are copied from the temporary direc-
tory to the persistent files. If such a job is aborted and then
restarted from scratch and run to completion, the final re-
sults would be exactly the same as running to completion on
the first initiation. In this section, we present an approach
to utilize such capabilities provided by the supercomputer
center to further improve the profit achievable.

The basic idea of the algorithm is to schedule a new job
by killing a running job if the QoPS scheme fails to find
a schedule for the new job within its deadline. In this ap-
proach, instead of trying to find the earliest possible dead-
line for a job whose initially requested deadline could not be
satisfied, we try to satisfy the requested deadline by Killing
and restarting an already running job. If we are able to sat-
isfy the job’s requested deadline, we try to reschedule the
killed job within its guaranteed deadline. If we are able to
schedule this job too, the final schedule is accepted.

Our scheme uses a heuristic approach to determine the or-
der in which running job should be killed. The running jobs
are sorted in the increasing order of used processors seconds
(the processor seconds for which they have already run so
far). We then kill the first job in the list and try to schedule
the new job. If an acceptable schedule is found for the new
job, we try to schedule the killed job again within its guar-
anteed deadline. If both jobs are thus scheduled without
violating their deadlines, we accept the new schedule. Oth-
erwise we keep the first job running and follow the same
steps with the second running job from the sorted list. If
no schedule is possible after trying all the running jobs, we
try to find the earliest possible deadline we can provide and
return it to the user.

Figures 8 and 9 show the resource and QoS charges
achievable by the supercomputer center for varying slack
factors with tolerance factors of 2 and 4. We see that
for small tolerance factors, there’s no difference in either
charge (Resource or QoS) between using Kill-and-Restart
and not using it. However, as the tolerance factor increases
to 4, we see that Kill-and-Restart provides a better QoS
charge while losing out on the resource charge. The gain
in the QoS charge is attributed to the capability of the Kill-
and-Restart scheme to admit later arriving urgent jobs by
killing one of the already running jobs. On the other hand,
the loss in the resource charge is attributed to the wastage
of processor-seconds due to the restarting of the jobs. We
don’t observe any difference between the two schemes for
a low tolerance factor due to the low amount of flexibility
available in the schedule.

In general, if the system has a mix of urgent and non-
urgent jobs, Kill-and-Restart allows us to admit more urgent
jobs by killing already running non-urgent jobs and increase
the overall QoS cost in the system. To further strengthen
this argument, we study the impact of the Kill-and-Restart
based scheme on workloads where not all jobs require dead-
lines. This is a more realistic scenario for real supercom-
puter centers. Some jobs request a hard deadline and pay
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Figure 8. Resource Charge with Kill-and=Restart and without Kill-and-Restart for Stringency Factor
=0.2 and load = 1.6 (a) Tolerance Factor = 2.0 (b) Tolerance Factor = 4.0

more (in the form of the QoS charge) while others don’t re-
quest any hard deadline and pay lesser (only the resource
charge). We however provide an artificial deadline to the
non-deadline jobs to ensure that there’s no starvation in the
system. At the same time, these jobs are given sufficient
slack so that they don’t interfere in the admission of true
deadline based jobs.

Figures 10 to 11 show the resource and QoS charges for
the scenario where 20% of the jobs are deadline jobs. We
can see that the Kill-and-Restart based scheme effectively
utilizes the slack provided by the non-deadline jobs to im-
prove the QoS and resource charge achieved by the super-
computer center.

9 Concluding Remarks

Although there has been considerable research on the topic
of scheduling of parallel jobs, the issue of provision of QoS
has received little attention. In this paper, we extended a
previously proposed scheme (QoPS) to provide Quality of
Service to submitted jobs; we propose extensions to the al-
gorithm in multiple aspects: (i) a feedback mechanism to
provide the best possible deadline for jobs whose requested
deadline could not be met, (ii) providing artificial slack to
some jobs to maximize the overall profit the supercomputer
center can achieve and (iii) utilizing Kill-and-Restart to im-
prove the profit attainable.

As a part of the future work, we plan to incorporate QoS
in the Maui/Moab and scheduler and deploy it the Ohio Su-
percomputer Center (OSC).
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